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Abstract

x� 2 X is said to be an r-limit point of a sequence (xi) in some normed

linear space (X; k � k) if lim sup kxi � x�k � r (r � 0). The set of all r-limit

points of (xi), denoted by LIMrxi, is bounded, closed and convex. This paper

deals with further properties of LIMrxi in case X = IRn, in particular, with the

relation between this rough convergence and other convergence notions, and with

the dependence of LIMrxi on the roughness degree r. For instance, the set-valued

mapping r 7! LIMrxi is strictly increasing and continuous on (�r;+1), where

�r := inffr 2 IR+ : LIMrxi 6= ;g. For a so-called �-Cauchy sequence (xi) satisfying

8" > 0 9i" : i; j � i" ) kxi � xjk < �+ ";

it is shown that in general r = n
n+1

� (or r =
q

n
2(n+1)

� for Euclidean space) is the

best convergence degree such that LIMrxi 6= ;.
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1. Introduction

Let (xi) be a sequence in some normed linear space (X; k � k), and r be a non-

negative real number. (xi) is said to be r-convergent to x�, denoted by xi
r!x�,

if

8" > 0 9i" 2 IN : i � i" ) kxi � x�k < r + "; (1:1)

or equivalently, if

lim supkxi � x�k � r: (1:2)

This is the rough convergence with r as roughness degree. For r = 0 we have

the classical convergence again. But our proper interest is case r > 0. There

are several reasons for this interest. For instance, since an originally convergent

sequence (yi) (with yi ! x�) often cannot be determined (i.e., measured or cal-

culated) exactly, one has to do with an approximated sequence (xi) satisfying

kxi� yik � r for all i, where r > 0 is the maximal approximation error. Then (xi)

is no more convergent in the classical sense, but

kxi � x�k � kxi � yik+ kyi � x�k � r + kyi � x�k

implies that it is r-convergent in the sense of (1.1).

If (1.1) holds, x� is an r-limit point of (xi), which is usually no more unique

(for r > 0). So we have to consider the so-called r-limit set (or shortly: r-limit) of

(xi) de�ned by

LIMrxi := fx� 2 X : xi
r!x�g: (1:3)

(xi) is said to be r-convergent if LIMrxi 6= ;. In this case, r is also called a

convergence degree of (xi).

Let us illustrate by an example. Clearly, the sequence (yi) with

yi = 0:5 + 2 (�1)i=i; i = 1; 2; : : : (1:4)

converges to 0:5. For su�ciently large i, it is impossible to calculate yi exactly by

computer, but it is rounded to some machine number, e.g. to the nearest one. For

the sake of simplicity, we normalize so that yi is approximated by

xi := rd(yi) := z where z is the integer satisfying z � 0:5 � yi < z + 0:5: (1:5)

Then

x1 = �1; x2 = 2; x2j�1 = 0 and x2j = 1 for j = 2; 3; : : :

Obviously, the sequence (xi) does not converge anymore. But by de�nition we

have xi
r!0:5 for r = 0:5, and altogether

LIMrxi =

� ; for r < 0:5

[1� r; r] for r � 0:5.
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Sometimes we are interested in the set of r-limit points lying in a given subset

S � X, which is called r-limit in S and denoted by

LIMS;rxi := fx� 2 S : xi
r!x�g: (1:6)

(Obviously, LIMX;rxi = LIMrxi and LIMS;rxi = S\ LIMrxi.) For instance, with

S = (xi), the set of the r-limit points of (xi) lying in this sequence is considered,

which is rather unusual in the classical point of view. In the example given by

(1.4){(1.5), we have

LIM(xi);rxi =

� ; for r < 1

fxi : i � 3g for r � 1.

Similarly as above, if some Cauchy sequence (yi) cannot be determined exactly

but is only approximated by a sequence (xi) with �=2 > 0 as maximal approxi-

mation error, i.e., kxi � yik � �=2 for all i, then (xi) does not satisfy the classical

Cauchy condition, but only ful�lls the following rough Cauchy condition

8" > 0 9i" : i; j � i" ) kxi � xjk < �+ ": (1:7)

Such a sequence is said to be a rough Cauchy sequence with roughness degree �, or

�-Cauchy sequence for short. � is also called a Cauchy degree of (xi).

Section 2 is devoted to some basic properties such as boundedness, closedness,

convexity... of r-limit sets. In Section 3 the relation between rough convergence

and classical convergence or set convergence is investigated. The dependence of r-

limit on the roughness degree r is the subject of Section 3. Section 4 is concerned

with rough Cauchy sequences, in particular, with the relation between Cauchy

degree and convergence degree of a sequence.

For the sake of simplicity, assume throughout this paper that X = IRn.

2. Elementary Properties

First, let us transform some properties of classical convergence to rough con-

vergence. It is well known if a sequence converges then its limit is unique. This

property is not maintained for rough convergence with roughness degree r > 0,

but only has the following analogy.

Proposition 2.1. The diameter of a r-limit set is not greater than 2r. In

general, there is no smaller bound.

Proof. We have to show that

diam(LIMrxi) = supfky � zk : y; z 2 LIMrxig � 2r: (2:1)
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Assume the contrary that diam(LIMrxi) > 2r, then there exist y; z 2 LIMrxi
satisfying d := ky� zk > 2r. For an arbitrary " 2 (0; d=2� r), it follows from (1.1)

and (1.3) that there is an i" 2 IN such that

kxi � yk < r + " and kxi � zk < r + " for i � i":

This implies

ky � zk � kxi � yk+ kxi � zk < 2(r + ") < 2r + 2(d=2� r) = d;

which conicts with d = ky � zk. Hence, (2.1) must be true.
Consider a convergent sequence (xi) with limxi = x�. Then, for

�Br(x�) := fy 2 X : ky � x�k � rg;

it follows from

kxi � yk � kxi � x�k+ kx� � yk � kxi � x�k+ r for y 2 �Br(x�);

(1.1), and (1.3) that LIMrxi = �Br(x�). Since diam �Br(x�) = 2r, this shows that

in general the upper bound 2r of the diameter of an r-limit set cannot be decreased

anymore.

Obviously, the uniqueness of limit (of classical convergence) can be regarded as

a special case of the latter property, because if r = 0 then diam(LIMrxi) = 2r = 0,

i.e., LIMrxi is either empty or a singleton.

A further property of classical concept is the boundedness of convergent se-

quences. Its analogy for rough convergence is:

Proposition 2.2. A sequence (xi) is bounded if and only if there exists

an r � 0 such that LIMrxi 6= ;. For all r > 0, a bounded sequence (xi) always

contains a subsequence (xij ) with

LIM(xij );rxij 6= ;:

Proof. If s := supfkxik : i 2 INg <1 then LIMsxi contains the origin of X.

On the other hand, if LIMrxi 6= ; for some r � 0 then all but �nite elements xi
are contained in some ball with any radius greater than r. Therefore, the sequence

(xi) is bounded.

As (xi) is a bounded sequence in a �nite-dimensional normed space, it cer-

tainly contains a convergent subsequence (xij ). Let x� be its limit point, then

LIMrxij =
�Br(x�) and, for r > 0,

LIM(xij );rxij = fxij : kx� � xijk � rg 6= ;:
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Note that the second part of the previous proposition is concerned with r-limit

points lying in the subsequence (xij ). It is straightforward that a sequence con-

tained in some bounded set S always possesses a subsequence being r-convergent

(for an arbitrary r > 0) to some point of S. Here, the closedness of S is not needed

as for classical convergence.

Corresponding to the property that each subsequence of a convergent sequence

also converges to the same limit point, we now have the following one whose proof

is rather simple.

Proposition 2.3. If (x0i) is a subsequence of (xi), then LIMrxi � LIMrx0i.

Those are possibly all properties having an analogy in classical concept. It is

really unimaginable to say something more about properties of classical limit sets

which are either empty or contain only a single point. But for rough convergence,

the r-limit set is generally no more a singleton. So its topological and geometrical

properties are of interest, as given in the next propositions.

Proposition 2.4. For all r � 0, the r-limit set LIMrxi of an arbitrary

sequence (xi) is closed.

Proof. Let (yj) be an arbitrary sequence in LIMrxi which converges to some

point y�. For each " > 0, by de�nition, there are a j"=2 and an i"=2 such that

kyj"=2 � y�k < "=2 and kxi � yj"=2k < r + "=2 whenever i � i"=2. Consequently,

kxi � y�k � kxi � yj"=2k+ kyj"=2 � y�k < r + " if i � i"=2:

That means y� 2 LIMrxi, too. Hence, LIM
rxi is closed.

Proposition 2.5

(a) If y0 2 LIMr0xi and y1 2 LIMr1xi then

y� := (1� �)y0 + �y1 2 LIM(1��)r0+�r1xi; for � 2 [0; 1]: (2:2)

(b) LIMrxi is convex. If (X; k � k) is a �nite-dimensional strictly convex space

(i.e., the closed unit ball is strictly convex) then LIMrxi is strictly convex,

i.e., y0; y1 2 LIMrxi and y0 6= y1 imply

y� 2 int( LIMrxi) for all � 2 (0; 1):

Proof. (a) By de�nition, for every " > 0 there exists an i" such that i � i"
implies kxi � y0k < r0 + " and kxi � y1k < r1 + ", which yields also

kxi � y�k � (1� �)kxi � y0k+ �kxi � y1k
< (1� �)(r0 + ") + �(r1 + ")

= (1� �)r0 + �r1 + ":
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Hence, y� 2 LIM(1��)r0+�r1xi.

(b) In particular, for r = r0 = r1, (a) yields immediately that LIMrxi is

convex.

Assume the space considered is strictly convex. In order to prove the strict

convexity of LIMrxi it su�ces to show that y0; y1 2 LIMrxi and y0 6= y1 imply

y0:5 =
1

2
(y0 + y1) 2 int( LIMrxi);

because for each y�, 0 < � < 1, there exist y0
0
; y0

1
2 LIMrxi satisfying y

0
0
6= y0

1
and

y� =
1

2
(y0

0
+ y0

1
).

Let C be the set of cluster points of (xi) which is obviously closed. Moreover,

since the normed space considered is �nite-dimensional and (xi) is bounded (by

Proposition 2.2), C is nonempty and bounded. Therefore, there exists a �c 2 C

satisfying

k�c� y0:5k = max
c2C

kc� y0:5k:

It follows from y0; y1 2 LIMrxi that

k�c� y0k � r and k�c� y1k � r

(compare (3.2)). These inequalities imply by the strict convexity of the space

considered

k�c� y0:5k = k0:5(�c� y0) + 0:5(�c� y1)k < maxfk�c� y0k; k�c� y1kg � r;

and thus � := r � k�c� y0:5k > 0. Now we have for all c 2 C and y 2 B�(y0:5)

kc� yk � kc� y0:5k+ ky0:5 � yk � k�c� y0:5k+ � = r;

which implies by de�nition y 2 LIMrxi. That means y0:5 is an interior point of

LIMrxi.

3. Relation to Other Convergence Notions

In this section we investigate the relation between rough convergence and some

other convergence notions, such as classical convergence and set convergence.

First, let us formulate an additive property of rough convergence.

Proposition 3.1. Suppose r1 � 0 and r2 > 0. A sequence (xi) in X is

(r1+ r2)-convergent to x� if and only if there exists a sequence (yi) in X such that

yi
r1!x� and kxi � yik � r2; i = 1; 2; ::: (3:1)
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Proof. Assume (3.1). yi
r1!x� means that for all " > 0 there exists an i" such

that

kyi � x�k < r1 + " if i � i":

Since kxi � yik � r2, this yields immediately

kxi � x�k � kxi � yik+ kyi � x�k < r1 + r2 + " if i � i":

Hence, (xi) is (r1 + r2)-convergent to x�.

Assume now that (xi) is (r1 + r2)-convergent to x�. With

yi :=

�
x� if kxi � x�k � r2
xi + r2

x��xi
kx��xik if kxi � x�k > r2

we have

kyi � x�k �
�
0 if kxi � x�k � r2
kxi � x�k � r2 if kxi � x�k > r2

and

kxi � yik � r2 for i = 1; 2; :::

By (1.2), x� 2 LIMr1+r2xi implies

lim sup kxi � x�k � r1 + r2;

and therefore

lim sup kyi � x�k � r1;

that means yi
r1!x�.

In particular, for r1 = 0 and r2 = r > 0, the latter conclusion says that a

sequence (xi) is r-convergent to x� i� there exists a sequence (yi) such that

yi ! x� and kxi � yik � r; i = 1; 2; :::

The necessity means that if (xi) is an approximation of a convergent sequence

yi ! x� with r as maximal approximation error then it is still r-convergent to x�.
This is what was already said in the introduction. On the other hand, if (xi) is

r-convergent to x� then there exists a sequence (yi) near (xi) (i.e., kxi � yik � r

for all i) which converges (in the classical sense) to x�.

To state an example of use of the preceding, let us consider now a special type

of sequences which arise as integer part of others. It corresponds to the compu-

tational practice where a real number is approximated by the maximal machine

number less or equal to the exact one.

Proposition 3.2. Assume (xi) is a sequence in (IRn; k � k) which converges

to x�. For x = (x1; x2; : : : ; xn) 2 IRn, denote [x] := ([x1]; [x2]; : : : ; [xn]), where [�]

is the integer part of the real number �.
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(a) If k � k is the maximum norm then

x� 2 LIM1[xi] and LIM0:5[xi] 6= ;:

(b) If k � k is the Euclidean norm then

x� 2 LIM
p
n[xi] and LIM0:5

p
n[xi] 6= ;:

Proof. Since 0 � x
j
i � [x

j
i ] < 1 for all i 2 IN and j 2 f1; 2; : : : ; ng, we have

kxi � [xi]k <
�
1 if k � k is the maximal normp
n if k � k is the Euclidean norm.

Therefore, Proposition 3.1 implies that

x� 2 LIMrxi for r =

�
1 if k � k is the maximal normp
n if k � k is the Euclidean norm.

Let ~x� := [x�]� (0:5; 0:5; : : : ; 0:5). Since xi ! x�, there exists an i� such that

[xj�]� 1 < x
j
i < [xj�] + 1 for j 2 f1; 2; : : : ; ng; i � i�;

which yields [x
j
i ] 2 f[xj�]� 1; [x

j
�]g, and therefore

j[xji ]� ~xj�j = 0:5 for j 2 f1; 2; : : : ; ng; i � i�:

Hence

k[xi]� ~x�k =
�
0:5 if k � k is the maximal norm

0:5
p
n if k � k is the Euclidean norm

for i � i�. That means by de�nition

~x� 2 LIMr[xi] for r =

�
0:5 if k � k is the maximal norm

0:5
p
n if k � k is the Euclidean norm.

Note that all parameters r stated in Proposition 3.2 are already optimal, i.e.,

one cannot give smaller parameters which are suitable for any case. To see this,

just consider the following.

Example 3.1. Let

x1i = x2i = � � � = xni = (�1)i=i:

Then xi = (x1i ; x
2

i ; : : : ; x
n
i ) converges to x� = (0; 0; : : : ; 0), and

[xi] =

�
(0; 0; : : : ; 0) if i is even

�(1; 1; : : : ; 1) if i is odd.
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Since

k � (1; 1; : : : ; 1)� (0; 0; : : : ; 0)k =
�
1 if k � k is the maximal normp
n if k � k is the Euclidean norm,

it is easy to see that

x� 62 LIMr[xi] for r <

�
1 if k � k is the maximal normp
n if k � k is the Euclidean norm,

and

LIMr[xi] = ; for r <

�
0:5 if k � k is the maximal norm

0:5
p
n if k � k is the Euclidean norm.

In the proof of Proposition 2.1 we have already shown that if (xi) converges

to x� then LIMrxi = �Br(x�). This is a part of the next.

Proposition 3.3. A sequence (xi) � IRn converges to x� if and only if

LIMrxi = �Br(x�).

Proof. It remains to show that LIMrxi = �Br(x�) implies xi ! x�. Assume

the contrary that (xi) has a cluster point x
0
� di�erent from x�. Then the point

�x� := x� +
r

kx� � x0�k
(x� � x0�)

satis�es

k�x� � x0�k = r + kx� � x0�k > r:

Since x0� is a cluster point, this inequality implies by de�nition that �x� 62 LIMrxi,

a contradiction to k�x��x�k = r and LIMrxi = �Br(x�). Thus x� is the only cluster
point of (xi) as a bounded sequence (by Proposition 2.2) in some �nite-dimensional

normed space. Consequently, (xi) converges to x�.

It follows directly that xi ! x� yields the existence of two points y1; y2 2
LIMrxi satisfying ky1 � y2k = 2r. In general, this existence does not imply the

convergence of (xi), as the following shows.

Example 3.2. Let (xi) be a sequence in IR2 de�ned by xi := (�i; 0), �i =

(�1)i. For k � k as the maximum norm, we have

LIM1xi = f(0; �) 2 IR2 : j�j � 1g:

Clearly, y1 := (0; 1) and y2 := (0;�1) satisfy y1; y2 2 LIM1xi and ky1 � y2k = 2,

but this sequence (xi) does not converge at all.

But this fact changes completely in strictly convex spaces.
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Proposition 3.4. Suppose (xi) is a sequence in some (�nite-dimensional)

strictly convex space. If there are y1; y2 2 LIMrxi satisfying ky1 � y2k = 2r then

(xi) converges to
1

2
(y1 + y2).

Proof. Let y3 be an arbitrary cluster point of (xi). Then y1; y2 2 LIMrxi
implies

ky1 � y3k � r and ky2 � y3k � r

(compare Proposition 3.5). On the other hand,

2r = ky1 � y2k � ky1 � y3k+ ky2 � y3k:

Therefore

ky1 � y3k = ky2 � y3k = r:

Since

1

2
(y2 � y1) =

1

2

�
(y3 � y1) + (y2 � y3)

�
and

12(y2 � y1)

 = r;

the strict convexity of the normed space considered implies

1

2
(y2 � y1) = y3 � y1 = y2 � y3:

Hence, y3 =
1

2
(y1+ y2). That means 1

2
(y1+ y2) is the only cluster point of (xi) as

a bounded sequence (by Proposition 2.2) in some �nite-dimensional normed space.

Consequently, (xi) must converge to
1

2
(y1 + y2).

The previous two assertions are concerned with the relation between a conver-

gent sequence and its r-limit set. In general, we do not expect sequences considered

to be convergent, but to have several cluster points.

Proposition 3.5.

(a) If c is a cluster point of the sequence (xi) then

LIMrxi � �Br(c): (3:2)

(b) Let C be the set of cluster points of (xi) � IRn. Then

LIMrxi =
\
c2C

�Br(c) = fx� 2 IRn : C � �Br(x�)g: (3:3)

Proof. (a) For an arbitrary cluster point c of (xi) we have

kx� � ck � r for all x� 2 LIMrxi; (3:4)

otherwise there are in�nite xi satisfying

kx� � xik > r + " with " := (kx� � ck � r)=2 > 0;
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because c is a cluster point of (xi), which contradicts (1.1). Hence, (3.2) must be

true.

(b) The preceding yields immediately

LIMrxi �
\
c2C

�Br(c):

If y 2 \c2C �Br(c) then ky � ck � r for all c 2 C, which is equivalent to

C � �Br(y), i.e. \
c2C

�Br(c) � fx� 2 IRn : C � �Br(x�)g:

If y 62 LIMrxi then, by de�nition, there is an " > 0 such that there exist

in�nite xi satisfying kxi�yk � r+", which implies the existence of a cluster point

c of (xi) with ky � ck � r + ", i.e., C 6� �Br(y) and y 62 fx� 2 IRn : C � �Br(x�)g.
Hence, y 2 LIMrxi follows from y 2 fx� 2 IRn : C � �Br(x�)g, i.e.

fx� 2 IRn : C � �Br(x�)g � LIMrxi:

The three inclusions proved above ensure that (3.3) holds true.

As an example, consider again the sequence (xi) with xi = ((�1)i; 0) 2 IR2.

Since it only has two cluster points (�1; 0) and (1; 0), it follows from (3.3) that

LIMrxi = �Br((�1; 0)) \ �Br((1; 0)).

(3.3) shows that an r-limit set of (xi) is \almost round" in such a sense that its

boundary consists of jCj boundary parts of balls with radius r, where jCj denotes
the cardinality of the cluster point set C of (xi).

Let us consider the relation of rough convergence to set convergence in Set-

Valued Analysis. Recall if (Ki)i2IN is a sequence of subsets of a metric space X

then the subsets

Limsup
i!1

Ki := fx 2 Xj lim inf
i!1

d(x;Ki) = 0g;

Liminf
i!1

Ki := fx 2 Xj lim
i!1

d(x;Ki) = 0g

are called upper or lower limit of the sequence (Ki) (see [1, p.17]).

By de�nition, Limsup fxig is the set of cluster points of (xi). Therefore, it

follows from (3.4)

Limsup fxig � �Br(x�) for all x� 2 LIMrxi;

and from (3.3)

LIMrxi =
\

c2Limsup fxig

�Br(c);
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if the normed space considered is �nite-dimensional.

Proposition 3.6.

LIMrxi = Liminf �Br(xi):

Proof. a) Assume y 2 LIMrxi. De�ne then

yi :=

�
xi +

r
ky�xik(y � xi) if ky � xik > r

y otherwise.

Since

xi + r

ky � xik (y � xi)� y

 =
���� r

ky � xik � 1

���� � ky � xik =
��ky � xik � r

��

we have

kyi � yk =
n ky � xik � r if ky � xik > r

0 otherwise.

Therefore, y 2 LIMrxi yields that yi tends to y as i!1. But kxi� yik � r, i.e.,

yi 2 �Br(xi). Consequently, limi!1 d
�
y; �Br(xi)

�
= 0, which means by de�nition

that y 2 Liminf �Br(xi).

b) If y 2 Liminf �B(xi; r) then, by de�nition, there exists a sequence (yi)

satisfying yi ! y and yi 2 Br(xi), i.e., kxi � yik � r. Therefore, Proposition 3.1

implies y 2 LIMrxi.

4. Dependence on Roughness Degree

The previous section is concerned with properties of r-limit set for a �xed

roughness degree r. Let us now investigate the dependence of r-limit LIMrxi of a

�xed sequence (xi) on varying parameter r.

It follows from de�nition

LIMr1xi � LIMr2xi if r1 < r2: (4:1)

This monotonicity is included in the following.

Proposition 4.1. Suppose r � 0 and � > 0. Then

(a) LIMrxi + �B�(0) � LIMr+�xi.

(b) �B�(y) � LIMrxi implies y 2 LIMr��xi.

Proof. (a) Let y 2 LIMrxi and z 2 �B�(0). By de�nition, for all " > 0 there

exists an i" such that kxi � yk < r + " if i � i", which implies by kzk � � that

kxi � y � zk < r + � + " if i � i":
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Hence, y + z 2 LIMr+�xi.

(b) Let c be an arbitrary cluster point of (xi). If ky � ck > r � � then the

point

x� := y +
�

ky � ck (y � c)

satis�es

kx� � ck = � + ky � ck > � + (r � �) = r:

By (3.2), this yields x� 62 LIMrxi, a contradiction to kx� � yk = � and �B�(y) �
LIMrxi. Hence, ky � ck � r � � for all cluster points c 2 C. Consequently, it

follows from (3.3)

y 2
\
c2C

�Br��(c) = LIMr��xi:

In general, LIMrxi + �B�(0) 6= LIMr+�xi is possible. For instance, the se-

quence (xi) in the two-dimensional Euclidean space with

xi = (0; �i) 2 IR2; �i = (�1)i; i = 1; 2; : : :

satis�es

LIM0:5xi + �B0:5(0) = ;+ �B0:5(0) = ; 6= f(0; 0)g = LIM1xi:

The reason does not consist in the voidness of LIM0:5xi, because

LIM1xi + �B1(0) = f(0; 0)g+ �B1(0) = �B1(0)

while
(p3; 0)� xi

 = (p3;�1) = 2 for all i implies

�p
3; 0
�
2 LIM2xi n �B1(0);

i.e., LIM1xi + �B1(0) 6= LIM2xi.

De�ne

�r := inffr 2 IR+ : LIMrxi 6= ;g: (4:2)

By the monotonicity given in (4.1), we have

LIMrxi

�
= ; for r < �r

6= ; for r > �r.
(4:3)

Moreover, by Proposition 4.1, for all r > �r and � 2 (0; r � �r), LIMrxi always

contains some ball with radius �, that means at least

int( LIMrxi) 6= ; for r > �r: (4:4)

13



Therefore,

int( LIMrxi) = ; implies r � �r and LIMr0xi = ; for r0 2 [0; r): (4:5)

It remains to ask what properties the �r-limit has.

Proposition 4.2.

(a) r = �r if and only if

LIMrxi 6= ; and int( LIMrxi) = ;: (4:6)

(b) If (X; k � k) is a �nite-dimensional strictly convex space then r = �r if and only

if LIMrxi is a singleton.

Proof. (a) Let r = �r. We have to show (4.6). It follows from Proposition

4.3 proved later that LIM�rxi =
T
r0>�r LIM

r0xi. For r
0 > �r, LIMr0xi is nonempty

(by (4.3)) and closed (Proposition 2.4). By (4.1), we have

\
r0>�r

LIMr0xi =
\

�r<r0��r+1
LIMr0xi;

and LIMr0xi, r
0 2 (�r; �r+1] is a family of nonempty closed subsets in the compact

set LIM�r+1xi having the �nite intersection property. Therefore, their intersection

is nonempty (see [2, p. 69]). Hence LIM�rxi 6= ;.
If int( LIMrxi) 6= ; then it contains some ball �B�(y) with � > 0, and by Propo-

sition 4.1 we have LIMr��xi 6= ;, i.e., r > �r. Thus r = �r yields int( LIMrxi) = ;.
Assume (4.6). Since LIMrxi 6= ;, we have r � �r. On the other hand, by

(4.5), r � �r follows from int( LIMrxi) = ;. Consequently, r = �r.

(b) If LIMrxi is a singleton then (4.6) is ful�lled. Therefore, by (a), r = �r.

It remains to show that LIM�rxi is a singleton. This follows directly from its strict

convexity (by Proposition 2.5), LIM�rxi 6= ;, and int( LIM�rxi) = ;.
Consider again the sequence (xi) with xi = ((�1)i; 0) 2 IR2. (3.3) yields

LIM1xi = �B1((�1; 0)) \ �B1((1; 0)). For both maximal and Euclidean norm, we

have

(0; 0) 2 LIM1xi 6= ; and int( LIM1xi) = ;;
which implies by Proposition 4.2 that the minimal convergence degree of this

sequence is �r = 1. In particular, if k � k is the maximal norm then

LIM1xi = f(0; �) 2 IR2 : j�j � 1g:

This shows that the strict convexity of the space considered is really necessary for

LIM�rxi to be a singleton.

14



Conversely, the uniqueness of �r-limit point is no signal for the strict convexity

of the space. For instance, consider (xi) � IR2 with

xi =

8><
>:
(0; 1) if i = 4j + 1

(1; 0) if i = 4j + 2

(0; 1) if i = 4j + 3

(0; 1) if i = 4(j + 1)

(j = 0; 1; : : :). Then for maximal norm, we also have LIM1xi = f(0; 0)g, although
with this norm the space is not strictly convex.

Proposition 4.3.

cl
� [
0�r0<r

LIMr0xi

�
� LIMrxi =

\
r0>r

LIMr0xi:

If r 6= �r then
S
0�r0<r LIM

r0xi = LIMrxi.

Proof. By the monotonicity given in (4.1) and the closedness of r-limit

(Proposition 2.4) we have

cl
� [
0�r0<r

LIMr0xi

�
� LIMrxi �

\
r0>r

LIMr0xi:

Consider now an arbitrary y 2 X n LIMrxi. By de�nition, there is an " > 0 such

that

8k 2 IN 9i � k : kxi � yk � r + ":

This implies for r0 < r + " that "0 := r + "� r0 > 0 and

8k 2 IN 9i � k : kxi � yk � r0 + "0:

Thus y 62 LIMr0xi for r0 < r + ", which implies y 62 T
r0>r LIM

r0xi. Hence

LIMrxi =
T
r0>r LIM

r0xi.

For r < �r, it is clear that

cl
� [
0�r0<r

LIMr0xi

�
= LIMrxi = ;:

Let r = r1 > �r and r0 = (�r+r1)=2. Since r0 > �r we can choose a y0 2 LIMr0xi 6= ;.
Consider an arbitrary y1 2 LIMr1xi. Proposition 2.5 yields

y� = (1� �)y0 + �y1 2 LIM(1��)r0+�r1xi; for � 2 [0; 1]:

Consequently,

y� 2
[

0�r0<r
LIMr0xi for � 2 [0; 1):
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Since

ky� � y1k = (1� �)ky0 � y1k ! 0 as �! 1;

it follows

y1 2 cl
� [
0�r0<r

LIMr0xi

�
:

Hence

cl
� [
0�r0<r

LIMr0xi

�
= LIMrxi

holds true for r > �r, too.

Let us investigate the semi-continuity of the set-valued mapping

F : IR+ ! 2X with F (r) := LIMrxi:

Due to Bouligand [4] and Kuratowski [6] (compare also [1,2]), F is said to be lower

semi-continuous (l.s.c.) at r, if for each open set U satisfying F (r) \ U 6= ; there
exists a neighborhood V (r) such that

t 2 V (r) implies F (t) \ U 6= ;:

It is called upper semi-continuous (u.s.c.) at r if for each open set U containing

F (r) there is a neighborhood V (r) such that

t 2 V (r) implies F (t) � U:

We say F is l.s.c. or u.s.c. on I if it has the corresponding property at every

r 2 I.

Proposition 4.4. F is l.s.c. on (�r;+1) and u.s.c. on [�r;+1).

Proof. Let r > �r and U be an open subset satisfying F (r) \ U 6= ;. Since

F (r) = LIMrxi is convex (by Proposition 2.5) and int( LIMrxi) 6= ; (by (4.4)),

int( LIMrxi) \ U is nonempty and open. Therefore, there exists a ball �B�(y)

contained in int( LIMrxi) \ U � LIMrxi. By Proposition 4.1, it follows y 2
LIMr��xi \ U . Thus (4.1) implies

y 2 LIMr��xi \ U � LIMtxi \ U = F (t) \ U for t 2 (r � �;+1):

Hence, F is l.s.c. at each r 2 (�r;+1).

Assume now r � �r and U is an open subset satisfying F (r) � U . By (4.1),

F (t) = LIMtxi � LIMrxi = F (r) � U for t 2 [0; r]:

Consequently, we only have to prove that there is a � > 0 such that

F (t) = LIMtxi � U for t 2 (r; r + �):
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If this does not hold true, then there exists a decreasing sequence (tj) such that

lim tj = r and LIMtjxi n U 6= ;; j = 1; 2; :::

Clearly, \
t>r

LIMtxi �
\
j2IN

LIMtjxi:

If y 62 Tt>r LIM
txi then there exists �t > r such that y 62 LIM

�txi. By lim tj = r

and (4.1), there is a t�j < �t such that y 62 LIMt�jxi, which yields y 62
T
j2IN LIMtjxi.

Hence \
t>r

LIMtxi =
\
j2IN

LIMtjxi:

Therefore, Proposition 4.3 and LIMrxi � U imply

\
j2IN

�
LIMtjxi n U

�
=
� \
j2IN

LIMtjxi

�
n U = LIMrxi n U = ;:

But LIMtjxi n U , j = 1; 2; :::, form a decreasing sequence of nonempty closed

subsets contained in the compact set LIMt1xi, therefore their intersection is not

empty (compare [2, p. 69]). This contradiction completes our proof.

5. Rough Cauchy Sequences

It is well know that each convergent sequence in a normed space satis�es

Cauchy condition, and conversely, each Cauchy sequence in a Banach space con-

verges. The relation between roughly convergent sequences and rough Cauchy

sequences cannot be described so shortly.

Let (xi) be r-convergent, i.e., LIM
rxi 6= ;. Take an arbitrary x� 2 LIMrxi.

By de�nition, for all " > 0 there exists an i" 2 IN such that i; j � i" implies

kxi � x�k � r + "=2 and kxj � x�k � r + "=2, which yields immediately

kxi � xjk � kxi � x�k+ kxj � x�k � 2r + ":

Hence (xi) is a �-Cauchy sequence with � = 2r. This Cauchy degree cannot be

generally decreased. Indeed, let z 2 IRn with kzk = r and xi = (�1)iz, then the

sequence (xi) is r-convergent with 0 2 LIMrxi, and � = 2r is its minimal Cauchy

degree.

Conversely, let � � 0 be a Cauchy degree of some given sequence (xi). Can

we expect its convergence degree to equal �=2, i.e., LIM�=2xi 6= ;? Not always.

The main purpose of this section is to �nd a possibly small convergence degree of

given �-Cauchy sequences.
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First, let us formulate some properties of Cauchy sequences. Similarly to the

boundedness of roughly convergent sequences (Proposition 2.2), the following is

rather obvious and its proof is therefore omitted.

Proposition 5.1. A sequence (xi) is bounded if and only if there exists an

� � 0 such that it is a �-Cauchy sequence.

As (xi) is a bounded sequence in a �nite-dimensional normed space, the cluster

point set C is nonempty and bounded. Thus its diameter D(C) and the radius

R(C) of its circumscribed ball are �nite.

Recall that the diameter D(S) and the radius R(S) of the circumscribed ball

of a bounded subset S in some normed space (IRn; k � k) is de�ned as follows:

D(S) := sup
x;y2S

kx� yk; R(S) := inf
x2IRn

sup
y2S

kx� yk: (5:1)

Proposition 5.2. Let C be the cluster point set of the sequence (xi). Then

D(C) is the minimal Cauchy degree and R(C) is the minimal convergence degree

�r of (xi). That means

D(C) = minf� 2 IR+ : (xi) is a �-Cauchy sequenceg; (5:2)

and

LIMrxi

�
= ; for r < R(C)

6= ; for r � R(C).
(5:3)

Proof. (a) If 0 � � < D(C) then for " = (D(C)��)=3 there exist two cluster

points c1 and c2 such that kc1 � c2k > �+ 2". For all k 2 IN there are i1; i2 � k

such that

kxi1 � c1k < "=2 and kxi2 � c2k < "=2;

which imply

kxi1 � xi2k � kc1 � c2k � k(xi1 � c1)� (xi2 � c2)k
� kc1 � c2k � (kxi1 � c1k+ kxi2 � c2k)
> �+ 2"� ("=2 + "=2)

= �+ ":

That means (xi) is not a �-Cauchy sequence if 0 � � < D(C).

Assume now � � D(C) and " > 0 is arbitrary. Clearly, there are only �nite

xi outside C +B"=2(0), otherwise there exists a cluster point outside C +B"=2(0),

because the space considered is �nite-dimensional and C+B"=2(0) is open. There-

fore, there is an i" such that xi 2 C + B"=2(0) for i � i". That means if i1 � i"
and i2 � i" then kxi1 � c1k < "=2 and kxi2 � c2k < "=2 for some c1; c2 2 C, which

yields by kc1 � c2k � D(C) � �

kxi1 � xi2k � kc1 � c2k+ kxi1 � c1k+ kxi2 � c2k
< �+ "=2 + "=2

= �+ ":
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Hence, (xi) is a �-Cauchy sequence if � � D(C). Thus (5.2) is proved.

(b) If r < R(C), by (5.1), for all z 2 IRn there exists y 2 C such that

kz � yk > r, which implies by Proposition 3.5 that z 62 LIMrxi, i.e., LIM
rxi = ;.

If r > R(C), by (5.1), there is an x� 2 IRn such that kx� � yk � r for all

y 2 C, which yields x� 2
T
y2C �Br(y). Hence, by Proposition 3.5, LIMrxi 6= ;.

It follows now from (4.2) that R(C) = �r. Therefore, by Proposition 4.2,

LIMrxi 6= ; for r = �r = R(C). Thus (5.3) is completely proved.

The latter proposition shows that R(C) is the minimal convergence degree

and D(C) is the minimal Cauchy degree of (xi). To �nd the relation between

convergence degree and Cauchy degree of a sequence, this result gives us a hint to

use the relation between the radius of the circumscribed ball of a bounded set and

its diameter, which is given in the following.

Proposition 5.3. (H. E. W. Jung [5], see also [8, p. 78]) For any bounded

closed subset S of the Euclidean space (IRn; k:k), the following inequality holds

between the diameter D(S) of S and the radius R(S) of the circumscribed ball:

R(S) �
r

n

2(n+ 1)
D(S): (5:4)

The inequality (5.4) becomes an equality if and only if convS contains a regular

simplex with side length D(S).

Proposition 5.4. (Bohnenblust [3]) Let S be a bounded closed subset of

some normed space (IRn; k:k). Then the following inequality holds between the

diameter D(S) of S and the radius R(S) of the circumscribed ball:

R(S) � n

(n+ 1)
D(S):

Note that Bohnenblust formulated this result in Minkowski geometry. Leicht-

weiss [7] showed later that n=(n+1) is the best factor by showing cases where the

equality holds true.

Let us state a relation between Cauchy degree and convergence degree.

Proposition 5.5. Let (xi) be a �-Cauchy sequence in some normed space

(IRn; k � k) for some � � 0. Then it is r-convergent for r � n
n+1

�. In particular, if

k � k is the Euclidean norm, then (xi) is r-convergent for r �
q

n
2(n+1)

�.

Proof. Since (xi) is a �-Cauchy sequence, by Proposition 5.2, we have � �
D(C), where C is the cluster point set of (xi). Therefore, by Proposition 5.4

r � n

n+ 1
� implies r � n

n+ 1
D(C) � R(C):

Consequently, by Proposition 5.2 again, LIMrxi 6= ; if r � n
n+1

�.
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In particular, if k � k is the Euclidean norm, then we obtain the remaining

assertion by using Proposition 5.3 instead of Proposition 5.4.

Remark. The parameter n given in Proposition 5.5 is the dimension of the

normed space considered. We can obtain a better result by replacing n through

the dimension m of the cluster point set C of (xi) (i.e., of the a�ne hull of C),

because m is often smaller than n, and in this case we have

n

n+ 1
>

m

m+ 1
and

r
n

2(n+ 1)
>

r
m

2(m+ 1)
:

To conclude this section, we consider the rough limit in some proper subsets

of IRn of �-Cauchy sequences.

If (xi) is a �-Cauchy sequence, then for all r > � there exists a k 2 IN such

that

fxi : i � kg � LIM(xi);rxi: (5:5)

In particular, for (xi) as a Cauchy sequence in the classical sense (i.e., � = 0) and

for all r > 0, there exists a k 2 IN such that (5.5) holds. Of course, if (xi) is a

sequence in some subset M , then LIM(xi);rxi � LIMM;rxi implies that

LIMM;rxi 6= ; for r > �;

although M is possibly not closed. This property is also available for smaller r.

The following gives an example in Euclidean spaces.

Proposition 5.6. Let M be a convex (and not necessarily closed) subset of

the Euclidean space (IRn; k�k), and (xi) be a �-Cauchy sequence in M (for instance

M = convfxi : i 2 INg). Then

LIMM;rxi 6= ; for r �
r

n

2(n+ 1)
�:

Proof. Consider the cluster point set C of (xi). Clearly, both C and its

convex hull convC are closed and bounded. It is well known that C has a center

z 2 IRn of its circumscribed ball, i.e.,

sup
y2C

kz � yk = R(C) = inf
x2IRn

sup
y2C

kx� yk;

which is unique and belongs to convC (compare [8, p. 78]). It follows C �
BR(C)(z), which yields by (3.3) that z 2 LIMR(C)xi. Moreover, since C is the

cluster point set of (xi) �M , we have C � clM . Therefore, z 2 clM follows from

the convexity of M and z 2 convC.
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If r > R(C) then, for � = r � R(C) > 0,

�B�(z) � LIMR(C)+�xi = LIMrxi:

Thus z 2 clM yields

; 6=M \ �B�(z) �M \ LIMrxi = LIMM;rxi:

If R(C) � r �
q

n
2(n+1)

� then Proposition 5.2 and Proposition 5.3 imply

R(C) � r �
r

n

2(n+ 1)
� �

r
n

2(n+ 1)
D(C) � R(C):

Consequently,

r = R(C) =

r
n

2(n+ 1)
� =

r
n

2(n+ 1)
D(C):

By Proposition 5.3, this equality is only ful�lled if C contains fc1; c2; : : : ; cn+1g
with kcj � ckk = D(C) for j 6= k. Since z is the center of the circumscribed ball

of the regular simplex convfc1; c2; : : : ; cn+1g, we have

z =
1

n+ 1

n+1X
j=1

cj and z 2 int(convfc1; c2; : : : ; cn+1g):

Consequently, since fc1; c2; : : : ; cn+1g � C � clM andM is convex, z must belong

to M . Therefore, we �nally have

z 2M \ LIMR(C)xi =M \ LIMrxi = LIMM;rxi:

6. Concluding Remarks

Although it is assumed that the normed space considered is �nite-dimensional,

some of the results presented in this paper remains true in in�nite-dimensional

spaces, for instance Propositions 2.1{2.4. Some other conclusions are also valid in

in�nite-dimensional spaces under certain compactness assumption.
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