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STRUCTURE FUNCTIONS ON THE LATTICE
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We report on a lattice computation of the second moment of the pion matrix element of the twist-2
non-singlet operator corresponding to the average momentum of parton densities. We apply a fully
non-perturbatively evaluated running renormalization constant as well as a careful extrapolation of
our results to the continuum limit. Thus the only limitation of our final result is the quenched
approximation.

1 Introduction

A reliable computation of parton distribution
functions from first principles would be very
important for future experiments planned
e.g. at the LHC. The results of such cal-
culations would offer a unique way to test
whether QCD is indeed the correct theory for
the strong interactions.

In principle, the lattice regularization of-
fers such a calculational scheme, where the
only starting point is the QCD lagrangian,
and indeed is able to give results for mo-
ments of parton density distributions in the
continuum and fully non-perturbatively, as we
will show in this contribution. The work pre-
sented here is a summary of a series of publi-
cations 1,2,3,4,5 that provide the essential in-
gredients to reach the above ambitious aim.

The moments of parton density distri-
butions are related to expectation values of
certain local operators, which are renormal-
ized multiplicatively by applying appropriate
renormalization factors Z(1/µ) that depend
on the energy scale µ. This leads to con-
sider renormalized matrix elements Oren

SF (µ)
to be computed in a certain, at this stage not
specified, renormalization scheme SF. If the
energy scale µ is chosen large enough, it is to
be expected that the scale evolution is very
well described by perturbation theory, giving
rise to the following definition of a renormal-
ization group invariant matrix element:

Oren
INV = Oren

SF (µ) · fSF(ḡ2(µ)) (1)

with ḡ(µ) the running coupling and

fSF(ḡ2) = (ḡ2(µ))−γ0/2b0 (2)

· exp

{
−

∫ ḡ(µ)

0

dg

[
γ(g)
β(g)

− γ0

b0g

]}

where β(g) and γ(g) are the β and
anomalous-dimension functions computed to
a given order of perturbation theory in the
specified scheme, i.e. here the SF scheme.
Once we know the value of Oren

INV evaluated
non-perturbatively, the running matrix ele-
ment in a preferred scheme can be computed,
for example in the MS scheme:

Oren
MS

(µ) = Oren
INV/f

MS(ḡ2(µ)) (3)

with now, of course, the β and γ functions
computed in the MS scheme.

A non-perturbatively obtained value of
the renormalization group invariant matrix
element is hence of central importance. Its
calculation has to be performed in several
steps. The reason is that we have to cover
a broad range of energy scales – from the
deep perturbative to the non-perturbative re-
gion. With the scale-dependent renormaliza-
tion factor Z(1/µ) we can write the renor-
malized matrix element of eq. (1) as

Oren
INV =

〈π|ONS|π〉
ZSF(1/µ)

· fSF(ḡ2(µ)) , (4)

with 〈π|ONS|π〉 the expectation value of the
(non-singlet) operator under consideration in
given states, here the pion states.

So far, all our discussions have been in
the continuum. However, if we think of the
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lattice regularisation and eventual numeri-
cal simulations to obtain non-perturbative re-
sults, it would be convenient to compute the
renormalized matrix element at only one con-
venient (i.e. small hadronic) scale µ0. We
therefore rewrite the r.h.s. of eq. (4) as:

〈π|ONS|π〉
ZSF(1/µ0)

· Z
SF(1/µ0)
ZSF(1/µ)︸ ︷︷ ︸

≡σ(µ/µ0,ḡ(µ))

·fSF(ḡ2(µ)) (5)

where we introduce the step scaling function
σ(µ/µ0, ḡ(µ)), which describes the evolution
of the renormalization factor from a scale µ0

to a scale µ. The advantage of concentrating
on the step scaling function instead of the
renormalization factor itself, is that the step
scaling function is well defined in the contin-
uum and hence suitable for eventual contin-
uum extrapolations of lattice results.

We finally write the r.h.s. of eq. (4) as

Oren
SF (µ0)σ(µ/µ0, ḡ(µ)) · fSF(ḡ2(µ))︸ ︷︷ ︸

≡SUV
INV(µ0)

(6)

with Oren
SF (µ0) the renormalized matrix ele-

ment, which is to be computed only once
at a scale µ0 and the (ultraviolet) invariant
step scaling function SUV

INV(µ0), which still
depends on the infrared scale µ0. The fol-
lowing sections are devoted to a description
of how these two basic ingredients can be
reliably computed on the lattice using non-
perturbative methods, i.e. numerical simula-
tions.

2 The renormalization group
invariant step scaling function

Let us start this section by disclosing what is
hidden behind the fictitious SF scheme men-
tioned in the introduction. SF stands for
Schrödinger functional and denotes a finite
physical volume, V = L3 · T , renormaliza-
tion scheme where the energy scale µ is iden-
tified with the inverse spatial length of the
box itself, e.g. µ = 1/L. The peculiarity of
the Schrödinger functional set-up is that fixed

boundary conditions in time x0 are imposed
with classical fields at the time boundaries at
time x0 = 0 and x0 = T . For a more detailed
discussion we refer the reader to 7.

To discuss the renormalization of oper-
ators related to moments of parton distri-
bution functions, we first have to provide a
renormalization condition. Denoting by |SF 〉
a classical SF state, i.e. a classical quark field
at a time boundary with external momentum
p, the renormalization condition that we will
use reads

〈SF |Oren

(
µ =

1
L

)
|SF 〉 = 〈SF |Otree|SF 〉 .

(7)
The relation between the expectation value of
the bare operator and the renormalized one is
established through a scale-dependent renor-
malization constant:

OR(µ) = Z−1(1/µ)Obare(1/L) . (8)

In perturbation theory, on the 1-loop level,
we have Z(1/µ) = 1− ḡ2(µ)

[
γ(0)ln(µ) +B0

]
with γ(0) the anomalous dimension and B0

the constant part. Up to this point, the dis-
cussion is given solely in the continuum where
the SF renormalization scheme is a perfectly
acceptable one. Different schemes such as the
MS scheme can be related to the SF scheme
as usual in perturbation theory.

If we are interested, however, in a non-
perturbative calculation, we have to detour
for a short time (which means, however, a
substantial computer time) to a finite lattice
with non-zero lattice spacing a that allows
for numerical simulations. A lattice repre-
sentation of the twist-2 non-singlet operator,
which is the only case we are considering here,
is given by

O12(x) =
1
4
ψ̄(x)γ{1

↔
D2}

τ3

2
ψ(x) , (9)

where
↔
Dµ is the covariant derivative and the

bracket around indices means symmetriza-
tion. The operator is probed by boundary
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quark fields ζ and ζ̄, which reside at x0 = 0
and a correlation function is constructed

fO12(
x0

a
) =

∑
x,y,z

〈eip(y−z)O12(x)ζ̄(y)γ2τ
3ζ(z)〉

(10)
with p the spatial 3-momentum.

To take into account the effects of the
boundary fields, we also consider the bound-
ary operators defined at the time boundaries
x0 = 0 and x0 = T :

O0 =
a6

L3

∑
y,z

ζ̄(y)γ5
τ3

2
ζ(z),

OT =
a6

L3

∑
y,z

ζ̄′(y)γ5
τ3

2
ζ′(z) (11)

from which we construct the correlation func-
tion:

f1 = −〈O0OT 〉 . (12)

The boundary wave-function contribution
can then be taken out by considering the ra-
tio fO12(x0/a)/

√
f1.

There are several physical scales in our
problem which all have to be given in units
of L, which is the only scale that is to be
changed. Therefore, in order to arrive at a
definition of the renormalization constant, we
have to specify the spatial momentum p, the
quark mass mq and the time x0 where we
read off the expectation value of the operator
between SF states from the correlation func-
tion. The final physical result does, of course,
not depend on our choice of these quantities,
but we choose them solely for convenience.
In particular we select

mq = 0 , x0 = T/4 , (13)

p ≡ (p1, p2, p3) = (p1 = 2π/L, 0, 0) .

The choice of a zero quark mass results in
using a massless renormalization scheme and
the choice of the smallest available momen-
tum on the lattice minimizes lattice artefacts.
With the above choice, it is indeed only the
physical box length L (assuming T = L) that
we identify with the inverse scale, which is
varied in the problem.

We are now in a position to give the
precise definition of the renormalization con-
stant

Z(L) = Z̄(L)/Z1(L) , (14)

with

Z̄(L) = fO12(T/4)/f tree
O12

(T/4) ,

Z1(L) =
√
f1(L)/

√
f tree
1 (L) , (15)

where we divide by the corresponding tree
level expression as required by the renormal-
ization condition, eq. (7). Instead of comput-
ing the Z-factors, we concentrate on the step
scaling functions

σZ̄ =
Z̄(2L)
Z̄(L)

, σf1 =
Z1(2L)
Z1(L)

, σZ =
Z(2L)
Z(L)

,

(16)
because, in contrast to the Z-factors, the step
scaling functions have a well-defined contin-
uum limit. The strategy is now to compute
the step scaling functions at various values
of the lattice spacing while keeping fixed the
conditions in eqs. (13) and the physical scale
µ = L−1 (determined by the running cou-
pling ḡ(µ)) and to extrapolate the results
thus obtained to a = 0.

It is one of the basic ingredients and char-
acteristics of our work that almost all simula-
tion results at non-zero lattice spacings have
been obtained by employing the standard
Wilson action and the non-perturbatively im-
proved clover action. Since these two formu-
lations lead to different lattice artefacts, it is
a very crucial test of our results that their
continuum extrapolations give consistent re-
sults. That this is indeed the case is demon-
strated in fig. 1. It shows that for the two step
scaling functions σf1 and σZ̄ the continuum
limit of both discretizations agree within the
error bars. We note that in the case of σZ̄ a
quadratic extrapolation in the lattice spacing
a is necessary while for σf1 a linear extrap-
olation is sufficient. After checking that a
similar behaviour is found at all values of the
coupling we have simulated, we performed
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Figure 1. Continuum extrapolation of the step scal-
ing functions σZ̄ and σf1 performed separately for
the Wilson action (circles and dotted lines) and the
non-perturbatively improved action (squares and full
lines) at a fixed value of the running coupling ḡ2 =
2.45.

constraint fits, demanding that the contin-
uum value of the step scaling functions be
the same from both actions. A summary of
our results for σZ̄ is shown in fig. 2.

At this point, having performed all nec-
essary continuum extrapolations, we end our
detour on a lattice with non-zero lattice spac-
ing and come back to the discussion in the
continuum. With the results on the step scal-
ing function, extrapolated to the continuum
limit, which were obtained at 9 values of the
running coupling constant, we can now com-
pute the (ultraviolet) invariant step scaling
function

SUV
INV(µ0) = σ(µ/µ0, ḡ

2(µ0)) · f(ḡ2(µ)) ,
(17)

which still depends on the infrared scale µ0.
This scale dependence will only be cancelled
when multiplying with the matrix element,
renormalized at the scale µ0. The function

Figure 2. Constraint continuum extrapolation of σZ̄

(notation as in fig. 1).
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Figure 3. The values of SUV
INV(µ0) for two choices of

the running coupling.

f(ḡ2(µ)) is the same as in eq. (3) and the β
and γ functions are taken up to 3 loops in the
SF schemea.

In fig. 3 we show SUV
INV(µ0) as a func-

tion of µ/µ0. For large enough energy scales,
µ/µ0 > 100, SUV

INV(µ0) does not change
within the errors and we can determine a
value for it by fitting the last, say, 4 points to
a constant. Although there still is a scheme
dependence in the invariant step scaling func-
tion through the remaining dependence on
µ0, the value should be independent of the
choice of coupling used in the analysis. This
is nicely illustrated in fig. 3, where the choices
of ḡ(L/4) and ḡ(L) give consistent values for
the invariant step scaling function.

We can therefore now give the first piece
of information for the invariant matrix ele-
ment itself, as needed in eq. (6), and quote

SUV
INV(µ0) = 1.11(4) . (18)

3 Renormalized matrix element

As a next step we have to compute the renor-
malized matrix element itself. Again, we will

aFor the γ function we have taken an effective 3-loop
parametrization as obtained by fitting our data to an
effective 3-loop form 2.

always use the SF scheme and we remark that
this is the first time that a calculation of a
2-quark matrix element is attempted in this
set-up. We first tried to compute the matrix
element (within pion states) of the operator
of eq. (9). However, since this operator needs
a non-vanishing momentum, we found, simi-
lar as in 6, that the signal is very noisy. We
therefore decided to switch to the operator

O00(x) = ψ̄(x)

[
γ0

↔
D0 −1

3

3∑
k=1

γk

↔
Dk

]
τ3

8
ψ(x)

(19)
which has the advantage that it can be com-
puted at zero momentum. Taking the bound-
ary operators of eq. (11) we construct a cor-
relation function

fM(x0) = a3
∑
x

〈O0O00(x)OT 〉 , (20)

which again is to be normalized by f1,
eq. (12), to take out the boundary wave-
function contributions. Performing a transfer
matrix decomposition, we find that for large
enough values of x0 and staying far enough
from both boundaries

f1 ' ρ2e−mπT ,

fM(x0) ' ρ2e−mπT 〈π|O00|π〉 . (21)

Assuming that there is a plateau region where
fM (x0)/f1 = const ≡ 〈π|O00|π〉, and in
which the first excited state gives essentially
no contributions, we obtain the physical ma-
trix element 〈x〉 after a suitable normaliza-
tion (see 6):

〈x〉 ≡ 2κ
mπ

〈π|O00|π〉 . (22)

In order to extract the matrix element of
eq. (22) we have chosen lattices with T =
3 fm and followed the correlation function
fM(x0) up to a distance of 1 fm in time di-
rection. At this distance we are sure that
we project on the pion states as an inspec-
tion of the pseudoscalar and axial-vector cor-
relation functions (from which we also ex-
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Figure 4. Constrained continuum extrapolation of
the renormalized matrix element

tracted the pion masses) showed. Indeed, for
1 fm < x0 < 2 fm the correlation function
exhibits a plateau behaviour as can be seen
in fig. 2 of ref. 5.

Once we have the bare matrix element
we need to renormalize it. To this end we
computed Z(1/µ0) with µ−1

0 = 1.436r0, r0 ≈
0.5 fm. We repeated such a calculation for
various lattice sizes, choosing the values of
β such that Lmax = µ−1

0 is kept fixed. In-
terpolating the numerical simulation data we
obtain in this way Z(1/µ0) in a range of lat-
tice spacing 0.05 ≤ a ≤ 0.1, i.e. the range
of a where the bare matrix element itself has
been computed.

This allowed us to apply the renormal-
ization factor at exactly the same values of
β where the matrix element has been com-
puted. We show the matrix element renor-
malized with Z12(1/µ0) in fig. 4. Again all
calculations have been performed with two
different discretizations, and we find quite
convincingly the same continuum limit.

It might, however, not have escaped the
reader’s attention that we have used the
wrong renormalization factor, namely Z12,

for renormalizing the operator O00(x) of
eq. (19). The continuum extrapolation of the
such renormalized operator needs a correc-
tion factor. In ref. 5 we have demonstrated
that this correction factor can be taken from
perturbation theory and amounts to a shift of
the continuum renormalized matrix element
by a few per cent. Taking the correction fac-
tor to be the same as found in 5, we can finally
give our main result:

Oren
INV = 0.222(24) (23)

4 Conclusion

In this contribution we have demonstrated
how we can compute on the lattice, in a fully
non-perturbative fashion, a renormalization
group invariant matrix element Oren

INV for the
second moment of parton distributions of the
twist-2 non-singlet operator in the pion. A
preliminary value for Oren

INV is given in eq. (23)
and can be used now as integration constant
to obtain the renormalized matrix element
at any scale in the preferred renormalization
scheme.

We want to emphasize that the value of
the renormalized matrix element is shifted
substantially from a value of about 〈x〉(a =
0.093) = 0.30 at β = 6 to 〈x〉(a = 0) = 0.2
in the continuum limit. Hence we experience
strong lattice artefacts in the renormalized
matrix element. Still, when the matrix ele-
ment is run in the MS scheme to a scale of
µ = 2.4 GeV, we find 〈x〉(µ = 2.4GeV) ≈ 0.3.
Thus we find that, by a conspiration of two
effects, our result agrees with the number
quoted in the pioneering work of 6. There-
fore, the fact that within the quenched ap-
proximation, used here exclusively, the num-
ber from the lattice simulations is higher than
the experimental value persists.
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