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ABSTRACT

We report on nine years of timing observations of PSR, J2019+2425, a millisecond pulsar in a wide
76.5 day orbit with a white dwarf. We measure a significant change over time of the projected semi-major
axis of the orbit, /2 = 1.3 £ 0.2 x 1071°s71, where @ = (a1 sini)/c. We attribute this to the proper
motion of the binary. This constrains the inclination angle to 7 < 72°, with a median likelihood value
of 63°. A similar limit on inclination angle arises from the lack of a detectable Shapiro delay signal.
These limits on inclination angle, combined with a model of the evolution of the system, imply that
the neutron star mass is at most 1.51 My ; the median likelihood value is 1.33 M. In addition to these
timing results, we present a polarization profile of this source. Fits of the linear polarization position
angle to the rotating vector model indicate the magnetic axis is close to alignment with the rotation

axis, a < 30°.

Subject headings: stars: neutron—binaries: general—pulsars: individual (PSR J2019+42425)

1. INTRODUCTION

Neutron star masses measured in radio pulsar binary
systems are consistent with a remarkably small range,
m = 1.35 £ 0.04 Mg, (Thorsett & Chakrabarty 1999). The
best such measurements, those with uncertainty less than
5%, are of pulsars in tightly bound, highly eccentric
neutron star—nmeutron star binaries. In such systems,
relativistic phenomena detected in radio pulse timing
experiments allow the direct, high precision measurement
of the masses of the component stars. By contrast,
measurement of masses of pulsars in neutron star—white
dwarf systems tend to have lower precision, or to
be statistical in nature. Measurement of masses in
these systems are of interest because their evolution is
substantially different from that of neutron star—neutron
star binaries. In particular, neutron star—white dwarf
systems go through an extended period of mass transfer,
during which the secondary loses several tenths of a solar
mass of matter, at least some of which is accreted onto
the neutron star, making the system visible as a low mass
X-ray binary. Thus, one might expect the neutron stars in
these systems to be more massive than those in neutron
star-neutron star binaries.

In this paper, we describe pulse timing observations
of PSR J2019+2425, a millisecond pulsar in a 76.5 day
orbit with a white dwarf. Qur observations constrain
the (a priori unknown) inclination angle of the orbit.
By combining this constraint with a theory of orbital
evolution, we determine an upper limit of the mass of the
pulsar.

We have previously reported on this pulsar in Nice &
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Taylor (1995). The present work represents a tripling of
the time span of the observations. In §2 we describe the
data acquisition. In §3 we present an analysis of the pulse
arrival times. Implications for the neutron star mass are
given in §4. Polarimetry of the pulsar is discussed in §5.

2. OBSERVATIONS
2.1. Data collection

We measured times of arrival (TOAs) of pulses
from PSR J201942425 on 78 separate days between
1 October 1991 and 7 August 2000, using the 305m
radio telescope at Arecibo. We made all observations at
430 MHz, primarily with the telescope’s line feed, except
for a few of the most recent observations, for which we
used the Gregorian 430 MHz receiver.

We employed two distinct data acquisition systems.
Between October 1991 and November 1994, we used the
Princeton Mark IIT data acquisition system (Stinebring
et al. 1992). An analog filter bank divided an 8 MHz
passband into thirty-two 0.25 MHz spectral channels
in each sense of circular polarization. These signals
were detected with 100 ps time constants, and opposite
polarizations were summed. The resulting intensity levels
were sampled and summed synchronously with the pulsar
period. Pulse profiles were accumulated for integration
times of 2-3 minutes and stored for later analysis.
Off-line, profiles from different spectral channels were
shifted 1n time to compensate for interstellar dispersion
and summed to produce a single de-dispersed profile for
each integration. A combination of differential dispersion
smearing within the spectral channels and analog filter
bank time constants limited the time resolution of these
profiles to 450us.
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Fic. 1.— Residual pulse arrival times after removing the timing model in table 1 but with constant projected semi-major axis (z = 0).

Open and closed circles indicate Mark III and Mark IV data, respectively. The solid line shows the residual arrival times expected from the
changing apparent orbital size, & = 5 x 10™14; this curve is sinusoidal with the orbital period with amplitude increasing linearly towards the
ends of the data set. Arrival time uncertainties shown in the figure do not include corrections for systematics.

No observations were made between November 1994 and
June 1998 due to the Arecibo telescope upgrade project.

Between July 1998 and August 2000, observations
were made as part of the Arecibo coordinated timing
project. We used the Princeton Mark IV system for
data collection (Stairs ef al. 2000). In each sense of
circular polarization, a 5 MHz passband was mixed to
baseband wusing local oscillators in phase quadrature.
The four resulting signals were low-pass filtered at
2.35MHz, sampled at 5 MHz, quantized to 4 bits, and
stored on disk or tape. Upon playback, these voltages
were coherently dedispersed using software techniques.
Self- and cross-products of the complex voltages were
calculated, giving power measurements in four Stokes
parameters. These were summed synchronously with
the pulse period with integration times of 190 seconds,
yielding pulse profiles with full polarimetry. The
profiles were calibrated by measurement of a pulsed noise
calibration signal injected at the telescope receiver at the
start or end of each observation; the noise calibration
signals themselves were calibrated against continuum radio
sources.

2.2. Twme of arrival measurements

We derived TOAs by fitting a standard template to the
total intensity de-dispersed profiles. Separate standard
templates were used for the Mark III and Mark IV
data sets. The locations of the pulse peak measured in
the fit were added to the scan start times to produce
TOAs. For pre-upgrade observations, the start times were
referenced to an observatory clock, which we corrected
to UTC(NIST) and, ultimately, UTC. For post-upgrade
observations, start times were referenced to GPS time,
which tracks UTC within tens of nanoseconds, sufficient
precision for our purposes.

We fit for an arbitrary offset between the Mark III and
Mark TV TOAs. The measured offset, 43 £ 3 us, results
from a combination of differences in signal propagation

time through the hardware and differences in the standard
templates used for measuring TOAs.

The set of TOAs from each day of observations were
combined into a single effective TOA for that day. Days
with very high uncertainties or few measurements were
eliminated. The final data set consisted of 78 TOAs, of
which 58 were taken with Mark IIT (1991-1994) and 20
were taken with Mark TV (1998-2000).

2.3. TOA uncertainties

An uncertainty was calculated for each daily TOA based
on the scatter of the arrival times within that day. The
root-mean-square of the uncertainties thus calculated was
1.4 us for both the Mark IIT and Mark IV data. (While
the time resolution of the Mark IV data was much higher
than that of the Mark III data, the Mark III observations
had a larger bandwidth and, usually, a substantially longer
on-source time, resulting in similar overall precision.) In
the timing analysis described below, we found the y?
values to be systematically high, x?/v = 3.3, where v
is the number of degrees of freedom of the fit. There
was no evidence of long-term or orbit-dependent trends
in the pulse arrival times, suggesting the high y? values
are day-to-day jitter in our measurements, or systematic
underestimates of our uncertainties, of unknown origin.
We compensated for this by adding 2.4 us in quadrature
to the statistical uncertainty calculated on each day, which
yielded fits with x?/v ~ 1. By varying this systematic
term independently for the Mark III and Mark IV data
while analyzing separate y? statistics for these two subsets
of the data, we found that similar quadrature terms were
needed for both subsets.

3. TIMING ANALYSIS
3.1. Twming model and z

We used the TEMPO? software package to fit a pulse
timing model to the observed TOAs. A standard

2 http://pulsar.princeton.edu/tempo



TABLE 1
PARAMETERS OoF PSR J2019+42425 SYSTEM?®

Right ascension, o (J2000) ... 20019m31594900(3)
Declination, & (J2000) ... vvvoeeeeeeeeeeee e +24°25'15"3038(5)
Proper motion in R. A.| pgs = (da/dt) cosé (mas/yr)... —9.41(12)

Proper motion in Dec., pts = dd/dt (mas/yr)............ —20.60(15)

POriod (IS) -« vveeeeeee oo 3.93452408033124(11)
Period derivative (1072Y) ... ... o 7.0237(12)

Epoch (MID) ..o oo 50000.0000

Orbital period, Py (days) ..........coooiiiiiiiiiian. 76.51163479(2)
Change rate of orbital period, Py, ...................... —3(6) x 1071

Projected semi-major axis, z (It-s).......
Change rate of projected semi-major axis, &
Eccentricity .............. ..
Longitude of periastron, w...............
Time of periastron passage?(MJD).......
Dispersion measureS(pcem™2) ...........
Mass function, fi (Mg) ...,

38.7676297(8)

5.1(8) x 10714
0.00011109(4)
159203(2)
50054.6439021 4 0.004
17.203
0.0106865005(6)

%Values in parentheses are “2¢” uncertainties (95% confidence) in the last digit quoted.

bHighly covariant with longitude of periastron; value corresponds to w = 159°0300000.
“Held fixed at the value found by Nice, Fruchter, & Taylor (1993).

timing model incorporating spin-down (period and period
derivative), astrometric parameters (position and proper
motion), and five Keplerian parameters of the pulsar orbit
(orbital period, semi-major axis projected into the line
of sight, eccentricity, angle of periastron, and time of
periastron passage) is not adequate to fully describe the
observed TOAs. It is necessary to also allow a secular
change in the projected semi-major axis, = da/dt, where
z = (ays8ini)/ec, and a; is the semi-major axis of the pulsar
orbit, 7 is the inclination of the angular momentum vector
of the orbit relative to the earth—pulsar line-of-sight, ¢ is
the speed of light, and the dot indicates a time derivative.
The need for a nonzero z is illustrated in figure 1. The
measured value of & 1s

&= (5.14£08) x 107! (1)
The full set of parameter values from the best timing
model fit is listed in table 1. Uncertainties were calculated
by a bootstrap procedure. Values given in the table are
twice the formal uncertainties. Since all observations were
made at a single radio frequency, the dispersion measure
was held fixed in the timing analysis.

3.2. Interpretation of

The nonzero & = (1/¢) d(aysini)/dt could, in principle,
result from a change in orbital size, a1, or inclination angle,
i, or a combination. First we will consider (and reject) the
possibility of a change in a;. Then we will analyze the
implications of a change in inclination angle.

Peters (1964) calculates the change in orbital size of a
system of two point masses under general relativity,

64,5 mimy 1 1
— — X
5 Q(ml—l—mz)?’ azl)’(l_ 2)7/2

73 37 ,
1 2 2
<+24 +56° ) (2)

where Ty, = GMg/c® = 4.925 x 107%s, m; and m»
are the pulsar and white dwarf masses expressed in

Clllz—

solar masses, e 18 the eccentricity, and a; 1s expressed
in light-seconds. While my, ms, and a; are not
unambiguously known, we can estimate the magnitude
of a; by using m;~14Mg, ms~0.35Mg, and
a; ~ 401t-sec, from which d; ~ 3 x 10723, This is many
orders of magnitude below the observed # =5 x 10714,

More generally, for typical astrophysical processes
within a binary system, |d1/aq| will be the same order
of magnitude as |P,/Py|, where P, is the orbital period.
Interpreting the observed value of Pb (table 1) as an upper
limit, [Py] < 9 x 10711, we have |P,/Py| < 1.4 x 10717,
This is two orders of magnitude smaller than the observed
|#/x] = 1.3 x 10715, so we conclude that the observed
nonzero & is not caused by orbital evolution.

The nonzero & must arise because of a change in
the observed inclination of the orbit. Kopeikin (1996)
discusses how apparent changes in orbital parameters arise
due to the relative motion of the binary and the observer.
The situation 1s sketched in figure 2. A component of the
proper motion lies in the plane formed by the line-of-sight

observatory l _\_
\u*

7
+
<= pulsar orbit
+—>
&
Fic. 2.— Geometry relevant to the observation of . See section

§ 3.2.
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to the binary and the angular momentum vector of the
binary. We write this as p* = psin 8, where p is the total
proper motion and # = @, — €2 is the difference between the
position angle of proper motion, ,,, and the position angle
of the ascending node, €2. It is clear that this component
of proper motion equals the change in inclination angle,
p* = di/dt (figure 2). From the definition of #,

T 4t cot i sin 6. (3)
x

The orientation of the binary, #, 1s not known. However,
requiring |sin 6| < 1 in equation 3 gives a firm upper limit
on i. Using p = 22.62+ 0.15mas/yr, z = 38.76761t-s, and
& = 4.3 x 107 (the lower limit of allowed values from
table 1) in equation 3 yields

i < tan~! (ﬂg) = 72°. (4)

The distribution of inclination angles within this
constraint can be studied using Monte Carlo analysis. We
make the a priori assumption that all orientations of the
binary system in space are equally likely. Under this
assumption, @ is a uniformly distributed random variable
and ¢ i1s a random variable distributed with uniform
probability in cos ¢. We select values of # and 7 from these
distributions and retain only those combinations which
satisfy equation 3 within the measurement uncertainties.
In the resulting data set, the distribution of ¢ is somewhat
peaked towards the highest allowed values. The median
likelihood inclination angle within this distribution is 63°.
We discuss the implications of this in §4.

3.3. Shapiro delay

According to general relativity, the pulse signal is
delayed as 1t propagates through the gravitational
potential well of the secondary. This “Shapiro delay” for
a pulsar in a circular orbit 1s

At = —2Tgms In[l — sinisin ¢y, (5)
where ¢ 1s the orbital phase measured from the ascending
node. For small inclination angles, the variation of At over
the orbit is nearly sinusoidal, so it is indistinguishable from
a slight increase in the (a priori unknown) orbital size, a;.
For edge-on orbits (¢ &2 90°), the variation in At becomes
strongly peaked at ¢y & 90°, when the pulsar i1s behind the
secondary; this breaks the covariance with the Keplerian
orbital model and allows measurement of the Shapiro delay
(and hence measurement of ms and 7).

We did not detect the Shapiro delay in the
PSR J2019+42425 TOAs. We can use this non-detection
to place limits on allowed inclination angles. We analyzed
the TOAs of PSR J201942425 using a grid of timing
models, each of which incorporated the Shapiro delay
signal appropriate for some inclination angle 0° < i < 90°
and secondary mass 0 < ms < 0.8Mg. The fits to
most such models yielded x? values similar to a model
with no Shapiro delay. However, models with high
inclination angles and/or high secondary masses fared
poorly—meaning that the Shapiro delay would have been
detected had these been the true values of ¢ and ms.
Figure 3 shows the parameter space excluded by models
with Ax? > 4 (i.e., 20) relative to the base model. For
modest secondary masses, the inclination angle limit is
i < 73°, very similar to the limit from the # measurement.

4. MASS

The observational limits on the inclination angle,
combined with binary evolution theory, constrain the
mass of the pulsar. Like all wide neutron star—white
dwarf binaries, the PSR J2019+2425 system underwent an
extended period of mass transfer, during which the pulsar
was spun up to its short period. A straightforward model
of this mass transfer gives a unique relation between the
orbital period, Py, and secondary mass, ms at the end
of this phase of evolution (see Rappaport et al. 1995 and
references therein.). Key elements of this model include (i)
stable mass transfer, with the secondary filling its Roche
lobe in the giant phase; (ii) well-defined dependence of
the radius of the giant secondary on its core mass; and
(iii) dissipation of almost all of the outer envelope of the
secondary, so that the present day secondary mass, ms, 1s
only slightly more than the secondary core mass.

In a numerical analysis of systems which evolve into
neutron star—white dwarf binaries, Tauris and Savonije
(1999) found the relation between orbital period (in days)
and secondary mass (in solar masses) to be

P 1/a
my = (76) + c, (6)

where a, b, and ¢ depend on the chemical composition of
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The “median likelihood” inclination angle, indicated by a dashed
vertical line, is based on an a prior: uniform distribution in the
direction of the orbital angular momentum vector. The horizontal
dashed lines indicate the companion mass values expected from the
Py, —m» relation for population I and II secondaries. The solid curves
indicate contours of constant neutron star mass, mi, calculated
using the observed mass function for a given value of ¢ and ms.



the secondary,

450 1.2x10% 0.120 Pop. I
(a,b,c) =< 4.75 1.1x 10> 0.115 Pop. I+ (7)
5.00 1.0x 10° 0.110 Pop. IIL
For the orbital period of PSR J2019+2425, P, = 76.512d,
this yields masses ranging from ms = 0.31 Mg for a

population I donor to mas = 0.35Mg for a population II
donor. These values are indicated in figure 3. In a similar
analysis, Rappaport et al. (1995) found 0.26 < my < 0.35.

The pulsar 1s likely very old. Its characteristic
age, calculated after correcting the observed period
derivative for bias due to the translational Doppler
effect, is 27 Gyr (see the discussion in Nice & Taylor
1995). Optical observations of the white dwarf secondary
(Lundgren, Foster, & Camilo 1996) give a cooling
age of 7.6 to 13.9Gyr, assuming it is a helium core
(Hansen & Phinney 1998). Thus the population IT value
of ma = 0.35 Mg, is likely to be appropriate for this system.

The observed mass function of the pulsar is

(ma sin ¢)3 Ar?ed 23

fi= (mi+m2)2 G P!
For ms = 0.35 M and ¢ < 72°, this constrains the mass
of the pulsar to be

= 0.010685 My, (8)

my < 1.51 Mg (9)

(see figure 3). This limit is conservative, in that it
holds not just for a population II companion but for any
secondary mass mas < 0.35Mg, 1.e., the full range of
masses considered by Rappaport et al (1995) and Tauris &
Savonije (1999). For the particular case of ms = 0.35 Mg,
at the median likelihood value of i = 63°, the pulsar mass

is my = 1.33Mg.

5. POLARIMETRY

Since the angular momentum of the spun-up pulsar
is almost entirely due to mass transferred from the
orbital companion, the angular momentum vector of
the pulsar must be aligned with that of the binary
system. Measurement of the geometry of the pulsar could,
therefore, give the inclination of the orbit. The standard
picture of pulsar radio emission along dipole magnetic
field lines, the “rotating vector model” (RVM), yields a
well known expression for the position angle of linearly
polarized radiation, ¢, as a function of pulse phase, ¢:

¥ o = sin asin(¢ — ¢o)

sin ¢ cos a — cos ¢ sin a cos(¢p — ¢g)’

where « is the angle between the rotation and magnetic
axes of the pulsar,  is the angle between the rotation
axis and the line of sight, and ¢y and ¥y are the pulse
phase and position angle at the point with the steepest
change in position angle. We expect ( = i or { =
180° —1 for pulsar rotation aligned with the orbital angular
momentum vector.

As discussed in §2, our Mark IV data includes full
polarization information. Figure 4 shows a polarization
profile of PSR J2019+42425 created by summing all strong
Mark IV integrations. The pulsar has emission over a
substantial fraction of the period and is highly linearly
polarized. (An exception is that the weak component at
¢ = 60° is unpolarized.) Unfortunately, there is only
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FiGc. 4.— Pulse profile of PSR J2019+42425 at 430 MHz. The
upper plot shows total intensity (upper trace), linearly polarized
intensity (middle trace), and circularly polarized intensity (lower
trace) as a function of pulse phase, ¢. The lower plot shows the
position angle of linear polarization, ¥. (Position angle is defined
as increasing counterclockwise on the sky, with an arbitrary zero
point.) The solid curve in the lower plot shows the overall best fit
of the rotating vector model. The dashed curve shows the best RVM
fit when restricted to ¢ = 90°. The RVM fits were performed on a
1024-bin profile, but a 256-bin profile is shown here for clarity.

modest variation in the position angle. This is indicative
of alignment between the rotation and magnetic axes of
the pulsar (small «), and in practice makes it difficult
to discern (. We performed a grid search in { and «,
finding the best RVM fit for each combination of these
angles. The best overall fit had o« = 4° and ¢ = 12° with
a y2 = 326 for 268 degrees of freedom; this fit is plotted
in figure 4. This value of {, 12°, is surprisingly small, and
would imply a very small neutron star mass (figure 3).
Though the formal significance of this fit is reasonably
good, RVM fits with values of { ranging from 0° to 90°
can be found with only a modest increase in y?, as shown
in figure 5. The best RVM fit with ¢ = 90° is also shown
in figure 4; qualitatively, it does not appear very different
from the overall best-fit RVM model. Tt should also be
noted that millisecond pulsars often show deviations from
the rotating vector model (e.g., Xilouris et al., 1998; Stairs,
Thorsett & Camilo, 1999). Because of this, we conclude
that the data cannot be used to place tight limits on (,
although within the context of the RVM we can say with
confidence that a < 30°.

6. CONCLUSION

Using two different methods, our timing observations
of PSR J2019+4-2425 constrain the orbital inclination to
be ¢ < 72°. Combined with a model for evolution of
the system, this limits the neutron star mass to m; <
1.51 Mg, with the median likelihood m; = 1.33Mg for a



6

population II secondary. For a population I secondary the
mass values would be lower.

The use of # to place an upper limit on m; based
on a measurement of & has been used for one other
pulsar. PSR J0437—4715 has # = 8 x 10712 z =
3.3671t-s, p = 141 mas/yr, which gives a limit i < 43°
(Sandhu et al. 1997). When combined with the P, — mg
relation of Rappaport et al., this gives m; < 1.51 Mg
(Thorsett & Chakrabarty 1999), coincidentally the same
value as we find for PSR J2019+2425.

Our finding adds to the growing body of evidence that
neutron stars in neutron-star—white dwarf orbits are not
much more massive than those in neutron star—-neutron
star binaries. (See Thorsett & Chakrabarty 1999 for
a comprehensive review of pulsar mass measurements).
It 1s somewhat surprising that the neutron stars in
these systems are not more massive, as the secondaries
in these systems must lose several tenths of a solar
mass as they evolve towards white dwarfs. Much of
this mass could, in principle, be accreted onto the
neutron stars during the low-mass X-ray binary (LMXB)
phase. To keep the neutron star mass low, most of
the transferred mass must leave the system, perhaps
being ejected from the vicinity of the neutron star via
the “propeller effect” (Tllarionov & Sunyaev 1975). Taam,
King & Ritter (2000) suggest that wide (P, > 2 days)
LMXBs are likely to be transient, with accretion occurring
in short, super-Eddington outbursts that expel most of the
transferred mass in a wind. Low neutron star masses such
as that of PSR J201942425 lend strong support to this

scenario.

The Arecibo Observatory 1s part of the National
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