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Abstract

We construct unitary representations of (1,0) and (2,0) superconformal algebras
in six dimensions by using superfields defined on harmonic superspaces with coset
manifolds USp(2n)/[U(1)]n, n = 1, 2.
In the spirit of the AdS7/CFT6 correspondence massless conformal fields corre-
spond to “supersingletons” in AdS7. By tensoring them we produce all short
representations corresponding to 1/2 and 1/4 BPS anti-de Sitter bulk states of
which “massless bulk” representations are particular cases.
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1 Introduction

Superconformal field theories in space-time dimensions d ≤ 6 have received
a lot of attention in recent time because of their connection to (d−1)-branes
and their near-horizon AdSd+1 geometries [1]. The most popular examples
are IIB string theory D3-branes and M-theory five- and two-branes related
to d = 4, 6 and 3 dimensional superconformal field theories.

A classification of a certain type of UIR’s (called highest-weight UIR’s)
of their algebras has been made in the literature in a variety of ways, either
by using the oscillator method [2]-[5] which is directly linked to the AdS
interpretation or by using superconformal fields defined on M̃d = ∂AdSd+1,
i.e. “Minkowski space” regarded as the boundary at infinity of anti-de Sitter
space.

The second approach has recently been employed [6, 7] for all four-
dimensional superconformal algebras SU(2, 2/N) to construct “massless”
and “short” representations. The latter are the generalization of the “chiral
superfields” of N = 1 supersymmetry [8]. The generalization of “chirality”
to N > 1 theories is made transparent by using superfields augmented with
“harmonic variables” [9], i.e. coordinates of coset spaces obtained as quo-
tients G/H where G is the R-symmetry group and H is a maximal subgroup
of G (with rank G = rank H). The most convenient choice is to take H
to be the maximal torus, i.e. the group related to the Cartan subalgebra
[U(1)]rank G of G. Such cosets are called “flag manifolds” [10] and an impor-
tant property is that highest-weight UIR’s of G defined on such manifolds
correspond to “analytic functions” with some degree of homogeneity. For the
algebras SU(2, 2/N) such manifolds are the cosets SU(N)/[U(1)]N−1.

In the present paper we extend the analysis to the N = (n, 0) (n =
1, 2) conformal supersymmetry in six dimensions, i.e. to the superalgebras
OSp(8∗/2n). In this case the flag manifolds in question are USp(2n)/[U(1)]n.
Accordingly, superconformal fields will be defined on “harmonic superspaces”
with space-time coordinates xµ (µ = 0, 1, . . . , 5), odd coordinates θα

i (left-
handed spinors of SU∗(4) ∼ SO(5, 1) and spinors of USp(2n)) and coordi-
nates uI

i on the flag manifold. A particular output of our investigation will
be the superfields describing massless conformal fields (“supersingletons” in
the AdS language [11]) which satisfy Dirac-type equations

∂αα1ω(α1α2...αk) = 0 (1)

(or �ω = 0 if k = 0) with ∂αβ = ∂µ(γµ)αβ and ω totally symmetric in their
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spinor indices, i.e. belonging to the (0, 0, k) representation of SU∗(4).
We will show that supersingleton superfields are of two kinds: (i) those

whose first component carries any spin label of the above type but is an
USp(2n) singlet; (ii) those which have an analytic structure in harmonic
superspace and are “ultrashort”; their first component is a Lorentz scalar but
carries USp(2n) indices. By tensoring the second kind of superfields we are
able to produce “short representations” which do not depend on one half or on
one quarter of the odd variables. In the AdS bulk language [12], these states
correspond to 1/2 or 1/4 BPS states, respectively. A particular example
of such states are the so-called “massless bulk states” which correspond to
tensoring two massless multiplets. Agreement is found for the classification
of such states as compared to the “oscillator method” [13].

Massive towers corresponding to 1/2 BPS states are the K-K states [5]
coming from compactification of M theory on AdS7 × S4 [14]-[16]. The de-
scription of such K-K states in terms of the (2, 0) superconformal field theory
was considered by several authors [17]-[21]. Extension of the analysis to (1, 0)
theories was also investigated [22].

The paper is organized as follows. In section 2 we list the six-dimensional
notations and conventions. In section 3 massless conformal supermultiplets
(supersingletons) are described by constrained superfields in ordinary super-
space. In section 4 most of these multiplets are reformulated in harmonic
superspace and it is shown that two of them are “ultrashort”. In section 5
the “short representations” of the N = (1, 0) and (2, 0) superalgebras are
constructed by tensoring the basic multiplets.

2 Notations

We use the six-dimensional notations of Ref. [23] with some minor modifi-
cations. The six-dimensional superspace has coordinates

xαβ = −xβα = xµγαβ
µ , θα

i . (2)

Here α, β are left-handed1 chiral spinor indices of SU∗(4) ∼ SO(5, 1) and
i is a spinor index of USp(2n) ∼ SO(2n + 1) in the case of N = (n, 0)
supersymmetry, n = 1 or 2. The latter can be raised and lowered with the

1Right-handed spinors are denoted, e.g., ψα which makes transparent the meaning of
the contraction θαψα.
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help of the USp(2n) matrix:

λi = λjΩji , λi = Ωijλj , ΩijΩ
jk = −δk

i . (3)

We choose Ω in the following standard form:(
0 I

−I 0

)
(4)

where I is the n×n identity matrix. The odd coordinates satisfy a Majorana-
Weyl pseudoreality condition:

θ̄i
α = Ωijθβ

j cβα (5)

where c is a 4 × 4 unitary “charge conjugation” matrix.
The spinor covariant derivatives

Di
α =

∂

∂θα
i

− i

2
θβi∂βα (6)

satisfy the supersymmetry algebra

{Di
α, D

j
β} = iΩijγµ

αβ∂µ . (7)

The generators of USp(2n) Lij = Lji form the algebra

[Lij , Lkl] = Ωi(kLl)j + Ωj(kLl)i (8)

and commute with an USp(2n) spinor as follows:

[Lij , Dk
α] = −Ωk(iDj)

α (9)

where the symmetrization has weight 1.

3 Massless supermultiplets (supersingletons)

There exist several types of massless multiplets in six dimensions correspond-
ing to UIR’s of OSp(8∗/2n), n = 1, 2. All of them can be described by
constrained superfields following closely the four-dimensional case [24].
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(i) The first type only exists in the case N = (2, 0) since the corresponding
superfield W {ij}(x, θ) is antisymmetric and traceless in the external indices
(5 of USp(4)). It satisfies the constraint

D(k
α W

{i)j} = 0 . (10)

One can also impose the reality condition

W {ij} = ΩikΩjlW
{kl} . (11)

Using the spinor derivative algebra (7), it is not hard to show that this
superfield has the following θ expansion:

W {ij} = φ{ij} + θα{iψj}
α + θα{iθβj}F(αβ) + derivative terms . (12)

Here one finds 5 scalars φ{ij}, 4 right-handed spinors ψi
α and a 10 of SU∗(4)

F(αβ) = γµνλ
(αβ)Fµνλ (a self-dual three-form), as well as a few more terms con-

taining derivatives of the above fields. These fields satisfy massless equations:

�φ{ij} = 0 , ∂αβψi
β = 0 , ∂αβF(βγ) = 0 . (13)

The latter equation implies that the three-form Fµνλ is the curl of a two-form,

Fµνλ = ∂[µBνλ] . (14)

One recognizes the content of the on-shell tensor N = (2, 0) multiplet in six
dimensions [25].

It is instructive to give the on-shell counting of degrees of freedom in a
six-dimensional massless multiplet. A massless field of non-vanishing spin
ω(α1α2...αn)(x) describes an irrep of SU∗(4) with Dynkin labels (0, 0, n). It is
subject to the Dirac-type field equation

∂αα1ω(α1α2...αn) = 0 (15)

which clearly implies �ω(α1α2...αn) = 0, i.e. the field is indeed massless. Thus
one can go to the Lorentz frame in which the momentum takes the form
pµ = (p0, 0, 0, 0, 0, p0). There the little group is SO(4) ∼ SU(2)×SU(2)′ and
an SU∗(4) spinor index is decomposed in a pair of SU(2) indices, α = (a, a′).
Then, in the appropriate basis for the gamma matrices the operator pαα1 =
pµγαα1

µ in eq. (15) becomes a projector onto, e.g., the indices a′. This means
that the only SU(2) × SU(2)′ irreducible part of the multispinor ω(α1α2...αn)
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surviving in eq. (15) is ω(a1...an), i.e. an n + 1-plet of the first SU(2). The
conclusion is that such a field describes n + 1 massless degrees of freedom
(in general complex, unless a reality condition can be imposed on the field).
Applied to eqs. (13), this counting results in 8 bosons (5 from the scalars
φ{ij} and 3 from the tensor F(αβ)) and 8 fermions (from the four spinors ψi

α).
Note that these degrees of freedom are real if the reality condition (11) is
imposed.

Concluding the discussion of the tensor multiplet we note that the SU∗(4)
and USp(4) quantum numbers and the dimensions (relative to the first com-
ponent) of the components found in the on-shell superfield expansion (12)
exactly match those of the states of the “doubleton” supermultiplet listed in
Table 1 of Ref. [13] 2

All other types of massless multiplets exist in both cases N = (n, 0),
n = 1, 2.

(ii) The second type is described by a superfield W i(x, θ) which is in the
fundamental UIR of USp(2n). The corresponding constraint is

D(k
α W

i) = 0 . (16)

In the case N = (1, 0) the superfield has a very short expansion

N = (1, 0) : W i = φi + θαiψα + derivative terms . (17)

The doublet of scalars φi and the spinor ψα satisfy the field equations

�φi = 0 , ∂αβψβ = 0 . (18)

This is theN = (1, 0) hypermultiplet [26] in six dimensions with 2+2 complex
on-shell degrees of freedom (note that one cannot impose a reality condition
on the superfield W i).

In the case N = (2, 0) the expansion of W i becomes

N = (2, 0) : W i = φi + θα
j ψ

[ij]
α + θα

k θ
β
l ε

klijF(αβ)j

+θα
j θ

β
kθ

γ
l ε

ijklχ(αβγ) + d. t. (19)

The components are scalars φi (4 of USp(4)), spinors ψ
[ij]
α (5 + 1 of USp(4)),

three-forms F i
(αβ) (4 of USp(4)) and a 20 of SU∗(4) χ(αβγ). These fields satisfy

the massless equations

�φi = 0 , ∂αβψ
[ij]
β = ∂αβF i

(βγ) = ∂αβχ(βγδ) = 0 (20)

2Note that, compared to Ref. [13], we use the Dynkin labels of the conjugate represen-
tations.
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and thus describe 16 bosons (4 from φi and 12 from F i
(αβ)) and 16 fermions

(12 in ψ
[ij]
α and 4 in χ(αβγ)) (all complex). The fields in (19) match the states

of the “doubleton” supermultiplet listed in Table 2 of Ref. [13].
(iii) The next multiplet stands apart since it is the only one described by

a superfield without external indices, W (x, θ) (it can be made real, W = W ).
The corresponding constraint is second-order in the spinor derivatives:

D(i
αD

j)
β W = 0 . (21)

In the case N = (1, 0) the superfield expansion is

N = (1, 0) : W = φ+ θα
i ψ

i
α + θαiθβ

i F(αβ) + d. t. (22)

where the fields satisfy the massless equations

�φ = 0 , ∂αβψi
β = ∂αβF(βγ) = 0 . (23)

This is the so-called “linear multiplet” of Ref. [25] describing 4 + 4 real (if
W is real) degrees of freedom.

In the case N = (2, 0) the components of the superfield are

N = (2, 0) : W = φ+ θα
i ψ

i
α + θα

i θ
β
j F

[ij]
(αβ) + θα

i θ
β
i θ

γ
kε

ijklχ(αβγ)l

+θα
i θ

β
j θ

γ
kθ

δ
l ε

ijklσ(αβγδ) + d. t. (24)

and they obey the massless field equations

�φ = 0 , ∂αβψi
β = ∂αβF

[ij]
(βγ) = ∂αβχi

(βγδ) = ∂αβσ(βγδε) = 0 . (25)

This amounts to 24 + 24 real (if W is real) degrees of freedom. The cor-
responding “doubleton” supermultiplet of Ref. [13] is listed in Table 3 for
j = 1.

(iv) Finally, there exists a series of multiplets described by superfields
with external Lorentz indices, W(α1...αn)(x, θ) in the SU∗(4) UIR with Dynkin
labels (0, 0, n). These superfields can be made real in the case n = 2k. Now
the constraint takes the form

Di
[βW(α1]...αn) = 0 . (26)

The resulting expansion is

N = (1, 0) : W(α1...αn) = φ(α1...αn) + θβ
i ψ

i
(βα1...αn) + θβiθγ

i F(βγα1...αn) + d. t.
(27)
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describing (2n+ 4) + (2n+ 4) massless degrees of freedom or

N = (2, 0) : W(α1...αn) = φ(α1...αn) + θβ
i ψ

i
(βα1...αn) + θβ

i θ
γ
j F

[ij]
(βγα1...αn) (28)

+θβ
i θ

γ
j θ

δ
kε

ijklχl(βγδα1...αn) + θβ
i θ

γ
j θ

δ
kθ

ε
l ε

ijklσ(βγδεα1...αn) + d. t.

describing (8n + 24) + (8n + 24) massless degrees of freedom. The corre-
sponding “doubleton” supermultiplet of Ref. [13] is listed in Table 3 for
j > 1.

The highest-weight UIR’s of the OSp(8∗/2n) algebras will be denoted by

D(`, J1, J2, J3; a1, . . . , an)

where ` is the conformal dimension, J1, J2, J3 are the SU∗(4) Dynkin la-
bels and a1, . . . , an are the USp(2n) Dynkin labels of the first component.
The analytic supersingletons for n = 2 correspond to D(2, 0, 0, 0; 1, 0) and
D(2, 0, 0, 0; 0, 1). The other supersingletons correspond to D(2+k, 0, 0, k; 0, 0)
for k = 0, 1, 2, . . .. In Section 5.2 we will show that the short representations
corresponding to analytic superfields are given by D(2p+4q, 0, 0, 0; p, 2q) for
p, q = 0, 1, 2, . . ..

4 Harmonic superspace formulation

The massless multiplets (i-iii) admit an alternative formulation in harmonic
superspace [9]. The advantage of this formulation is that the constraints (10),
(16) become simply conditions for Grassmann analyticity (i.e., independence
of the superfield of part of the odd coordinates) whereas the constraint (21)
becomes a linearity condition. This new simple form of the constraints greatly
simplifies the tensor multiplication of the multiplets.

Harmonic superspace is obtained by augmenting ordinary superspace
xµ, θα

i by an internal space (a coset of the automorphism group of the super-
symmetry algebra). In our case the relevant cosets are

N = (n, 0) :
USp(2n)

[U(1)]n
. (29)

These cosets can be parametrized by harmonic variables forming a matrix of
USp(2n):

u ∈ USp(2n) : uI
iu

i
J = δI

J , uI
i Ω

ijuJ
j = ΩIJ , uI

i = (ui
I)

∗ . (30)
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Here the indices i, j belong to the fundamental representation of USp(2n) and
I, J are two (four) labels corresponding to the U(1) charge(s). The harmonic
derivatives (the covariant derivatives on the coset (29)) are the operators

DIJ = ΩK(Iu
J)
i

∂

∂uK
i

. (31)

They are clearly compatible with the defining conditions (30) and act on the
harmonics as follows:

DIJuK
i = −ΩK(Iu

J)
i . (32)

In fact, it is easy to see that these derivatives form the algebra of USp(2n)
(see (8)) realised on the indices I, J of the harmonics. In particular, the
operators H = −2D12 in the case USp(2) and H ′ = −2D14, H ′′ = −2D23 in
the case USp(4) correspond to the U(1) charges:

USp(2) : Hu1
i = u1

i , Hu
2
i = −u2

i ; (33)

USp(4) : H ′u1
i = u1

i , H
′u2

i = 0 , H ′u3
i = 0 , H ′u4

i = −u4
i ,

H ′′u1
i = 0 , H ′′u2

i = u2
i , H

′′u3
i = −u3

i , H
′′u4

i = 0 . (34)

A key ingredient of the harmonic superspace approach of Refs. [9] is the
coordinateless realization of cosets like (29) on harmonic functions homoge-
neous under the action of the charge operators. Such functions are defined
by their USp(2n) invariant “harmonic” expansions. For instance, in the case
USp(2) the function f 1(u) carries charge +1 (like u1

i , see (33)) and has the
expansion

f 1(u) ≡ f (+1)(u) = f iu1
i + f (ijk)u1

iu
1
ju

2
k + f (ijklm)u1

iu
1
ju

1
ku

2
l u

2
m + . . . . (35)

In the case USp(4) the same function f 1(u) carries charges (+1, 0) (like u1
i ,

see (34)) and has the expansion

f 1(u) ≡ f (+1,0)(u) = f iu1
i + g(ij)ku1

iu
1
ju

4
k + hijku1

1u
2
ju

3
k + . . . . (36)

In other words, the expansion is formed by the various products of harmonics
carrying an overall index 1 (i.e., charge +1 in the case USp(2) or (+1, 0) in the
case USp(4)). The crucial point about this coordinateless parametrization
of the coset is that the coefficients in the harmonic expansion are manifestly
USp(2n) covariant. Another example of a USp(4) harmonic function is

f 12(u) ≡ f (+1,+1)(u) = f {ij}u1
iu

2
j + g(ij)u1

iu
2
j + . . . . (37)
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Note the absence of a singlet part (trace) in the coefficient f {ij}, since
Ωiju1

iu
2
j = 0 (see (30), (4)).

As one can see from the above examples, the harmonic functions are
infinitely reducible under USp(2n). An important point is that the “step-up”
operators (the positive roots) of USp(2n) can be used to impose irreducibility
conditions on the harmonic functions. In the case USp(2) this is the harmonic
derivative D11 and in the case USp(4) these are the harmonic derivatives D11,
D12, D13, D22. So, for example,

USp(2) : D11f 1(u) = 0

⇒ f 1(u) = f iu1
i ; (38)

USp(4) : D11f 1(u) = D12f 1(u) = D13f 1(u) = D22f 1(u) = 0

⇒ f 1(u) = f iu1
i ; (39)

D11f 12(u) = D12f 12(u) = D13f 12(u) = D22f 12(u) = 0

⇒ f 12(u) = f {ij}u1
iu

2
j . (40)

In fact, not all of the conditions (39), (40) are independent, since D11 =
2[D12, D13] and D12 = [D22, D13] (see (8)).

Let us now use the USp(4) harmonics to project the defining constraint
(10) of the N = (2, 0) tensor multiplet:

D(k
α W

{i)j} = 0 ×
{
u1

ku
1
iu

2
j ⇒ D1

αW
12 = 0

u2
ku

2
iu

1
j ⇒ D2

αW
12 = 0

. (41)

Here D1,2
α = Di

αu
1,2
i and W 12 = W {ij}u1

iu
2
j . In other words, the constraint

(10) now takes the form of a Grassmann analyticity condition:

D1
αW

12 = D2
αW

12 = 0 . (42)

In addition, the projected superfield W 12 clearly satisfies the USp(4) irre-
ducibility conditions (40). The equivalence between the two forms of the
constraint follows from the obvious properties of the harmonic products
u1

[ku
1
i] = u2

[ku
2
i] = 0 and Ωiju1

iu
2
j = 0.

Now it becomes clear that the constraints (42) can be solved in an ap-
propriate basis in superspace:

D1
αW

12 = D2
αW

12 = 0 ⇒ W 12 = W 12(xA, θ
1, θ2, u) (43)
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where

xαβ
A = xαβ − iθα(iθβj)(u1

iu
4
j + u2

iu
3
j) , θ1α = θα

4 = θα
i u

i
4 , θ

2α = θα
3 = θα

i u
i
3 .

(44)
We see that the superfield W 12 is independent of half of the odd coordinates,
θ3 = −θ2 and θ4 = −θ1 (hence the name “Grassmann analytic”). We call
such superfields “short” (compared to a generic N = (2, 0) superfield).

Having solved the constraints (42), we should not forget that the equiva-
lence with the initial form (10) is only achieved if the superfield W 12 satisfies
the USp(4) irreducibility conditions (40). This is not so trivial now, since in
the basis (44) the harmonic derivatives acquire space-time derivative terms:

D11 = ∂11 +
i

4
θ1αθ1β∂αβ

D12 = ∂12 +
i

4
θ1αθ2β∂αβ (45)

D22 = ∂22 +
i

4
θ2αθ2β∂αβ

D13 = ∂13

where ∂IJ include the harmonic and θ partial derivatives. Thus, in this basis
the USp(4) irreducibility conditions (40),

D11W 12 = D12W 12 = D13W 12 = D22W 12 = 0 (46)

not only eliminate the infinite towers of components in the harmonic expan-
sion of W 12 but also yield the field equations on the remaining physical fields.
As a result, the analytic superfield W 12 becomes “ultrashort” (i.e., shorter
than a generic analytic superfield):

W 12 = φ12 +
1

2
(θ1αψ2

α − θ2αψ1
α) + θ1αθ2βF(αβ) + d.t. (47)

where φ12 = φ{ij}(x)u1
iu

2
j , ψ1,2

α = ψi
α(x)u1,2

i and F(αβ) = F(αβ)(x) are the
massless fields. Thus we recover the component content of eq. (12).

One can treat the case (ii) in the same way. Projecting the constraint
(16) with u1

ku
1
i we obtain

D(k
α W

i) = 0 ⇔ D1
αW

1 = 0 . (48)
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This constraint of Grassmann analyticity is solved in the appropriate basis
in N = (1, 0) or N = (2, 0) superspace and yields

D1
αW

1 = 0 ⇒
{
W 1 = W 1(θ1) , N = (1, 0)
W 1 = W 1(θ1, θ2, θ3) , N = (2, 0)

. (49)

In addition, one has to impose the conditions of USp(2n) irreducibility (recall
(38) and (39))

N = (1, 0) : D11W 1 = 0 ; (50)

N = (2, 0) : D11W 1 = D12W 1 = D13W 1 = D22W 1 = 0 . (51)

The resulting superfield has the following “ultrashort” expansion:

N = (1, 0) : W 1 = φ1 + θ1αψα + d.t. (52)

with φ1 = φi(x)u1
i and ψα = ψα(x);

N = (2, 0) : W 1 = φ1 + θ1αψα − (θ1αψ23
α + cycle 123) (53)

−(θ1αθ2βF 3
(αβ) + cycle 123) + 6θ1αθ2βθ3γχ(αβγ) + d.t.

with ψ23
α = ψ

{ij}
α (x)u2

iu
3
j , F

3
(αβ) = F i

(αβ)(x)u
3
i , etc.

Finally, we turn to the case (iii) which is different since the constraint
(21) is second-order in the spinor derivatives. After projection with uI

iu
I
j (no

summation over I) it becomes

DI
αD

I
βW = 0 (54)

where I = 1, 2 in the case N = (1, 0) and I = 1, 2, 3, 4 in the case N = (2, 0).
This time we do not have Grassmann analyticity but just linearity in each
of the θI . As usual, the superfield W also satisfies the USp(2n) irreducibility
conditions. Here we only give the expansion of W in the case N = (1, 0):

N = (1, 0) : W = φ+
1

2
(θ1αψ2

α − θ2αψ1
α) + θ1αθ2βF(αβ) + d.t. (55)

5 Tensoring massless multiplets

Usually tensoring UIR’s is a very non-trivial procedure. The problem is to
decompose the reducible product into irreps. The interpretation of some of
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the massless six-dimensional multiplets as analytic (W 12 and W 1) or linear
(W ) superfields we gave above greatly facilitates this task. We are able to
single out the principal irreducible part of the various tensor products by just
imposing our usual harmonic conditions. We shall treat the cases N = (1, 0)
and N = (2, 0) separately.

5.1 The case N = (1, 0)

As we have shown in eq. (52), the superfield W 1 is ultra short in the sense
that its expansion ends at the top “spin” (i.e., SU∗(4) irrep) (0, 0, 1), as
compared to the top spin (0, 2, 0) of a generic N = (1, 0) “long” superfield.
Its square (W 1)2 still satisfies the same Grassmann and harmonic conditions,

D1
α(W 1)2 = D11(W 1)2 = 0 , (56)

but the content is now different. It is not hard to derive from (56) that the
superfield (W 1)2 has the following expansion:

(W 1)2 = φ11 + θ1αψ1
α + θ1αθ1βA[αβ] + d.t. (57)

Here we find a triplet of scalars φ11 = φ(ij)(x)u1
iu

1
j , a doublet of spinors

ψ1
α = ψi

α(x)u1
i and a vector (i.e., top “spin” (0, 1, 0)). All of these fields are

off shell and the vector is conserved,

∂αβA[αβ] = 0 . (58)

This amounts to 8 + 8 off-shell degrees of freedom. Note that unlike W 1

itself, the composite superfield W 11 = (W 1)2 can be made real. In the AdS
interpretation this is the bulk multiplet of massless gauge fields.

All higher powers of W 1, (W 1)p, p ≥ 3 are short superfields depending on
half of the odd variables. Their first component is a scalar in the (p+1)-plet
UIR of USp(2) and the expansion reaches the same top spin (0, 1, 0). This
time, however, there are no space-time constraints on the components. In
the bulk language these states are massive short vector multiplets.

The short superfield W (54) is linear in θ1,2, therefore its expansion (55)
terminates at the top spin (0, 0, 2). The square of W , (W )2 satisfies a weaker
constraint:

(DI
α)3(W )2 = 0 , I = 1, 2 (59)

which implies that it is bilinear in each θI . Consequently, the top spin appears
in the term θ1αθ1βθ2γθ2δA[αβ][γδ], so it is (0, 2, 0) (and a USp(2) singlet). In

12



fact, this is the maximal spin one can have in a generic N = (1, 0) “long”
superfield, so in this sense (W )2 is not “short”. Note, however, that the top
spin in (W )2 is conserved,

∂αβA[αβ][γδ] = 0 , (60)

whereas this is not the case for any higher power of W . The state in (60) is a
massless bulk graviton while higher powers of W correspond to the massive
graviton recurrences.

Finally, we have the possibility to tensor W with W 1. Comparing eqs.
(49) and (54), we see that the product W (W 1)p satisfies the linearity con-
straint

D1
αD

1
β(W (W 1)p) = 0 (61)

as well as the usual harmonic condition

D11(W (W 1)p) = 0 . (62)

This means that it is linear in θ2 but the dependence in θ1 is not restricted.
Consequently, the top spin appears in the term θ1αθ1βθ2γψ

(p−1)
[αβ]γ , so it is

(0, 1, 1) (and it also is a p-plet of USp(2)). The case p = 1 (i.e., the bi-
linear product WW 1) is again special, since the condition (62) implies that
the top spin is conserved,

∂αβψ[αβ]γ = 0 . (63)

In the bulk language the above state corresponds to a massless “gravitino”.

5.2 The case N = (2, 0)

In this case we shall restrict ourselves to the products of analytic superfields
of the type W 12 and W 1. The superfield W 12 is ultrashort (recall (47)),
its top spin being (0, 0, 2). The square (W 12)2 still satisfies the analyticity
constraints (43) (as well as the harmonic conditions (46)), so it only depends
on θ1,2

α and its expansion goes up to the top spin (0, 2, 0) found in the term

(W 12)2 = φ1122 + . . .+ θ1αθ1βθ2γθ2δA[αβ][γδ] + d.t. (64)

This is the maximal spin in an analytic N = (2, 0) superfield depending on
two θ’s only. However, this top spin satisfies a conservation condition, as is
always the case with bilinear (current-like) products. As to the higher powers
(W 12)p, p ≥ 3, the top spin there still is (0, 2, 0) but it is unconstrained.
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To summarize, tensoring W 12’s we obtain the following series of UIR’s of
OSp(8∗/4):

(W 12)p = φ

1. . . 1︸︷︷︸
p

2. . . 2︸︷︷︸
p

+ . . .+ θ1αθ1βθ2γθ2δA

1. . . 1︸︷︷︸
p−2

2. . . 2︸︷︷︸
p−2

[αβ][γδ] + d.t. (65)

having the first component in the (p, 0) and the top spin (0, 2, 0) in the
(p − 2, 0) UIR’s of USp(4). 3 These superfields do not depend on one half
of the odd variables and thus correspond to 1/2 BPS states in the AdS
language.

Besides W 12, we have another analytic superfield W 1 which is “interme-
diate short” since it depends on θ1,2,3

α (recall (49)) (or, to put it differently,
it does not depend on 1/4 of the odd variables). It is clear that by multiply-
ing the “short” W 12’s by “intermediate short” W 1’s we obtain “intermediate
short” composite objects. However, there exists an alternative way of con-
structing such objects [6, 7]. The choice of harmonic projections in eq. (41)
is not unique. Exchanging, e.g., 2 with 3 we could obtain another analytic
superfield W 13(θ1, θ3) which provides an equivalent description of the on-
shell tensor multiplet. Now, consider the product W 12(θ1, θ2)W 13(θ1, θ3). It
depends on θ1,2,3

α , just like W 1. In addition, we can impose on it the same
harmonic conditions (46) as on W 12 alone. The result is an “intermediate
short” superfield with top spin (0, 3, 0):

W 12W 13 = φ11 + . . .+ θ1αθ1βθ2γθ2δθ3κθ3σA[αβ][γδ][κσ] + d.t. (66)

It should be noted that the composite object (W 1)2 has exactly the same
content. Indeed, it depends on the same θ’s and has the same first component
(a scalar in the (0, 2) of USp(4)), so

W 12W 13 ' (W 1)2 . (67)

Generalizing the above tensor product we can construct a two-parameter
series:

(W 12)p+q(W 13)q = φ

1. . . 1︸︷︷︸
p+2q

2. . . 2︸︷︷︸
p

+ . . .+ θ1αθ1βθ2γθ2δθ3κθ3σA

1. . . 1︸︷︷︸
p+2q−2

2. . . 2︸︷︷︸
p

[αβ][γδ][κσ] + d.t.
(68)

3In the harmonic formalism the representation of USp(4) to which belongs each com-
ponent is identified by just counting the 1’s (2’s) which gives the number of cells in the
top (bottom) row of the corresponding Young tableau.
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having the first component in the (p, 2q) and the top spin (0, 3, 0) in the
(p, 2q− 2) UIR’s of USp(4). Note that, as usual, the top spin in the bilinear
combinations W 12W 13 is conserved. These superfields do not depend on one
quarter of the odd variables and thus correspond to 1/4 BPS states in the
AdS language.

We remark that the three bilinear cases (W 12)2, W 12W 1 and W 12W 13 '
(W 1)2 can be identified with the massless (in the AdS7 sense) supermultiplets
in Tables 4, 5 and 6, respectively from Ref. [13].

In conclusion we can say that the analytic series (W 12)p correspond to 1/2
BPS states in the sense that they preserve 1/2 of the original supersymmetry.
These are the operators which classify the K-K states of M-theory on AdS7×
S4 [5]. In superfield language these are the analytic superfields in harmonic
superspace which do not depend on two of the four odd variables inN = (2, 0)
superspace. The other short representations (W 12)p+q(W 13)q with q > 0
correspond to 1/4 BPS states. The one with p = 0, q = 2 is contained in the
two-graviton state.

The above results should be relevant for the analysis of n-point functions
in D = 6 and the correspondence with n-graviton amplitudes in M-theory
on AdS7 × S4 [27].
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