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Minimal Hadronic Ansatz to Large Nc QCD and Hadronic τ–Decay∗
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F-13288 Marseille Cedex 9, France

I report on some recent work done in collaboration with Santi Peris and Boris Phily [1] where, using the Aleph
data on vector and axial-vector spectral functions, we test simple duality properties of QCD in the large Nc

limit which emerge in the approximation of a minimal hadronic ansatz of a spectrum of narrow states. These
duality properties relate the short– and long–distance behaviours of specific correlation functions, which are order
parameters of spontaneous chiral symmetry breaking, in a way that we find well supported by the data..

1. INTRODUCTION

At first sight, the hadronic world predicted by
QCD in the limit of a large number of colours
Nc [2] may seem rather different from the real
world. The hadronic spectrum of vector and
axial–vector states, observed e.g. in e+e− annihi-
lations and in τ decays, has certainly much more
structure than the infinite set of narrow states
predicted by large Nc QCD [3] (QCD∞ ). There
are, however, many instances in Particle Physics
where one is only interested in certain weighted
integrals of hadronic spectral functions. In these
cases, it may be enough to know a few global
properties of the hadronic spectrum; one does
not expect the integrals to depend crucially on
the details of the spectrum at all energies. Typ-
ical examples of that are the coupling constants
of the effective chiral Lagrangian of QCD at low
energies, as well as the coupling constants of the
effective chiral Lagrangian of the electroweak in-
teractions of pseudoscalar particles in the Stan-
dard Model, which are needed to understand K–
Physics in particular, (see e.g. the review article
in ref. [4] and references therein.) It is in these
examples that the hadronic world predicted by
QCD∞ may provide a good approximation to the
real hadronic spectrum. If so, QCD∞ could then
become a useful phenomenological approach for
understanding non–perturbative QCD physics at
low energies.

∗Work supported in part by TMR, EC-Contract No.
ERBFMRX-CT980169(EURODAφNE).

There are indeed a number of successful calcu-
lations which have already been done within the
framework of QCD∞ , (see ref. [5–9] and refer-
ences therein.) The picture which emerges from
these applications is one of a remarkable simplic-
ity. It is found that, when dealing with Green’s
functions that are order parameters of sponta-
neous chiral symmetry breaking, the restriction of
the infinite set of largeNc narrow states to a mini-
mal hadronic ansatz which is needed to satisfy the
leading short– and long–distance behaviours of
the relevant Green’s functions, provides already a
very good approximation to the observables one
computes. The purpose of the work in ref. [1],
which I am reporting here, is to investigate this
minimal hadronic ansatz approximation in a case
where one can compare, in detail, the theoretical
predictions to the phenomenological results eval-
uated with experimental data.

2. THE LEFT–RIGHT CORRELATION
FUNCTION

Of particular interest for our purposes is the
correlation function (Q2 ≡ −q2 ≥ 0 for q2 space–
like)

Πµν
LR(q) = 2i

∫
d4x eiq·x〈0|T (Lµ(x)Rν(0)†

) |0〉 ,(1)

with colour singlet currents

Rµ (Lµ) = d̄(x)γµ 1
2
(1 ± γ5)u(x) . (2)
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In the chiral limit, (mu,d,s → 0 ,) this correlation
function has only a transverse component

Πµν
LR(Q2) = (qµqν − gµνq2)ΠLR(Q2) . (3)

The self–energy like function ΠLR(Q2) vanishes
order by order in perturbative QCD (pQCD) and
is an order parameter of SχSB for all values of
Q2; therefore it obeys an unsubtracted dispersion
relation

ΠLR(Q2) =
∫ ∞

0

dt
1

t+Q2

1
π

ImΠLR(t) . (4)

In QCD∞ the spectral function 1
π ImΠLR(t)

consists of the difference of an infinite number of
narrow vector and axial–vector states, together
with the Goldstone pole of the pion:

1
π

ImΠLR(t) =
∑
V

f2
VM

2
V δ(t−M2

V )

−F 2
0 δ(t)−

∑
A

f2
AM

2
Aδ(t−M2

A) . (5)

The low Q2 behaviour of ΠLR(Q2), i.e. the long–
distance behaviour of the correlation function in
Eq. (1), is governed by chiral perturbation theory:

−Q2ΠLR(Q2)|Q2→0 = F 2
0 +4L10Q

2+O(Q4) , (6)

where F0 is the pion coupling constant in the chi-
ral limit, and L10 is one of the coupling constants
of the O(p4) effective chiral Lagrangian. The high
Q2 behaviour of ΠLR(Q2), i.e. the short–distance
behaviour of the correlation function in Eq. (1),
is governed by the operator product expansion
(OPE) of the two local currents in Eq. (1) [10],

lim
Q2→∞

Q6ΠLR(Q2) =
[
−4π2αs

π
+O(α2

s)
]
〈ψ̄ψ〉2 , (7)

which implies the two Weinberg sum rules:∫ ∞

0

dtImΠLR(t)=
∑
V

f2
VM

2
V −

∑
A

f2
AM

2
A−F 2

0=0 , (8)

and∫ ∞

0

dttImΠLR(t)=
∑
V

f2
V M

4
V −
∑
A

f2
AM

4
A =0 . (9)

In fact, as pointed out in ref. [11], in QCD∞ ,
there exist an infinite number of Weinberg–like

sum rules. In full generality, the moments of the
ΠLR spectral function with n = 3, 4, . . .,∫ ∞

0

dt tn−1

[
1
π

ImΠV (t)− 1
π

ImΠA(t)
]

=∑
V

f2
VM

2n
V −

∑
A

f2
AM

2n
A , (10)

govern the short–distance expansion of the
ΠLR(Q2) function

ΠLR(Q2)|Q2→∞=

(∑
V

f2
V M

6
V −
∑
A

f2
AM

6
A

)
1
Q6

+

(∑
V

f2
V M

8
V −

∑
A

f2
AM

8
A

)
1
Q8

+ · · · . (11)

On the other hand, inverse moments of the ΠLR

spectral function, with the pion pole removed,
(which we denote by ImΠ̃A(t),) determine a class
of coupling constants of the low–energy effective
chiral Lagrangian. For example,∫ ∞

0

dt
1
t

[
1
π

ImΠV (t)− 1
π

ImΠ̃A(t)
]

=∑
V

f2
V −

∑
A

f2
A = −4L10 . (12)

Moments with higher inverse powers of t are as-
sociated with couplings of composite operators of
higher dimension in the chiral Lagrangian. Tests
of the two Weinberg sum rules in Eqs. (8) and (9)
and of the L10 sum rule in Eq. (12), in a different
context to the one we are interested in here, have
often appeared in the literature, (see e.g. refs. [12]
and [13] for recent discussions where earlier refer-
ences can also be found.)

3. THE MINIMAL ANSATZ

We shall now consider the approximation which
we call the minimal hadronic ansatz to QCD∞ .
In the case of the left–right two–point function
in Eq. (1), this is the approximation where the
hadronic spectrum consists of one vector state V ,
one axial–vector state A and the Goldstone pion,
with the ordering [11] MV < MA. This is the
minimal spectrum which is required to satisfy the
two Weinberg sum rules in Eqs. (8) and (9). In
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this approximation, ΠLR(Q2) has a very simple
form

−Q2ΠLR(Q2) =
F 2

0(
1 + Q2

M2
V

)(
1 + Q2

M2
A

) (13)

=
M2

AM
2
V

Q4

F 2
0(

1 + M2
V

Q2

)(
1 + M2

A

Q2

) . (14)

This equation shows, explicitly, a remarkable
short–distance ⇀↽ long–distance duality [14]. In-
deed, with gA defined so that M2

V =gAM
2
A and

z ≡ Q2

M2
V

, the non–local order parameters corre-
sponding to the long–distance expansion for z →
0, which are couplings of the effective chiral La-
grangian i.e.,

−Q2ΠLR(Q2)|z→0 = F 2
0 {1− (1 + gA)z

+(1 + gA + g2
A)z2 + · · ·} , (15)

are correlated to the local order parameters of the
short–distance OPE for z → ∞ in a very simple
way:

−Q2ΠLR(Q2)|z→∞=F 2
0

1
gA

1
z2

{
1−
(
1+

1
gA

)
1
z

+
(

1 +
1
gA

+
1
g2

A

)
1
z2

+ · · ·
}

; (16)

in other words, there is a one to one correspon-
dence between the two expansions by changing

gA ⇀↽
1
gA

and zn ⇀↽
1
gA

1
zn+2

. (17)

The moments of the ΠLR spectral function, when
evaluated in the minimal hadronic ansatz approx-
imation, can be converted into a very simple set of
finite energy sum rules (FESR’s), corresponding
to the OPE in Eq. (16)∫ s0

0

dt t2
1
π

ImΠLR(t) = −F 2
0M

4
V

1
gA

, (18)

∫ s0

0

dt t3
1
π

ImΠLR(t) = −F 2
0M

6
V

1+ 1
gA

gA
, (19)

∫ s0

0

dt t4
1
π

ImΠLR(t) = −F 2
0M

8
V

1+ 1
gA

+ 1
g2

A

gA
, (20)

· · · · · · .

where the upper limit of integration s0 denotes
the onset of the pQCD continuum which, in the
chiral limit, is common to the vector and axial–
vector spectral functions. It is important to re-
alize that s0 is not a free parameter. Its value is
fixed by the requirement that the OPE of the cor-
relation function of two vector currents, (or two
axial–vector currents,) in the chiral limit, have no
1/Q2 term, which results in an implicit equation
for s0 [15,16]. In the minimal hadronic ansatz ap-
proximation the onset of the pQCD continuum,
which we shall call s∗0, is then fixed by the equa-
tion

Nc

16π2

2
3
s∗0 (1 +O(αs)) = F 2

0

1
1− gA

. (21)

Also, the moments which correspond to the chiral
expansion in Eq. (15) are given by another simple
set of FESR’s:∫ s0

0

dt
1
π

ImΠ̃LR(t) = F 2
0 , (22)∫ s0

0

dt

t

1
π

ImΠ̃LR(t) =
F 2

0

M2
V

(1+gA) , (23)
∫ s0

0

dt

t2
1
π

ImΠ̃LR(t) =
F 2

0

M4
V

(1+gA+g2
A) , (24)

· · · · · · .
We propose to test these duality relations by com-
paring moments of the physical spectral func-
tion 1

π ImΠexp
LR (t) determined from experiment to

the predictions of the minimal hadronic ansatz
as shown in the r.h.s. of Eqs. (18) to (20) and
Eqs. (22) to (24).

4. EXPERIMENTAL MOMENTS VER-
SUS THE PREDICTIONS OF THE
MINIMAL HADRONIC ANSATZ AP-
PROXIMATION TO QCD∞

The ALEPH collaboration at LEP has mea-
sured the inclusive invariant mass–squared dis-
tribution of hadronic τ decays [17] into non–
strange particles. They have been able to extract
from their data, both, the vector current spectral
function 1

π ImΠexp.
V (t) and the axial–vector current

spectral function 1
π ImΠexp.

A (t) up to t ' 3 GeV2.
In fact, in the real world, the correlation func-
tion in Eq. (3) has a non–transverse term as well,
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which is dominated by the pion pole contribution
to the axial–vector component. The vector con-
tribution to the non–transverse term vanishes in
the limit of isospin invariance.

In order to compare the moments of the exper-
imental spectral function 1

π ImΠexp.
LR (t) to those in

Eqs. (18) to (20) and Eqs. (22) to (24) we still
have to correct for the fact that the FESR’s in
these equations apply in the chiral limit where
mu,d → 0. This we do by exploiting the analyt-
icity properties of the two–point function ΠLR in
the complex q2–plane. Integration over a stan-
dard contour relates weighted integrals of the
spectral function 1

π ImΠexp.
LR (t) in a finite interval

on the real axis to integrals of ΠLR(q2) over a
small circle |q2| = sth and a large circle |q2| = s0:

∫ s0

sth

dtf(t)ImΠLR(t) =
∮

|q2|=sth

dq2
1
2i
f(q2)ΠLR(q2)

−
∮

|q2|=s0

dq2
1
2i
f(q2)ΠLR(q2) , (25)

where the weight function f(q2) is a conveniently
chosen analytic function inside the contour; in our
case simple powers and inverse powers of q2. The
chiral corrections in the small circle are particu-
larly important in the evaluation of the inverse
moments. We have evaluated them by taking
into account the one loop expression of ΠLR(z)
in chiral perturbation theory [18]. The chiral cor-
rections in the large circle are rather small. They
appear as leading 1/Q2 and next–to–leading 1/Q4

power corrections in the OPE of ΠLR(Q2) at large
Q2 but their coefficients, proportional to quark
masses, are small [19]. With these corrections in-
corporated, we proceed now to the comparison
we are looking for. This is shown in Figs. 1 and
2 below where we show the various moments as a
function of s0. The three plots in Fig. 1 show the
experimental moments on the l.h.s. of Eqs. (18),
(19) and (20) as a function of s0, extrapolated
at the chiral limit as discussed above, and nor-
malized to the corresponding minimal hadronic
ansatz predictions given on the r.h.s. of these
equations.

)(

M

M

M

2

3

4

Fig. 1 Plot of the experimental moments in
Eqs. (26), (27) and (28) normalized to the mini-
mal hadronic ansatz predictions.

The three curves M2, M3 and M4 in Fig. 1 cor-
respond to the quantities:

M2=
−gA

F 2
0M

4
V

∫ s0

0

dtt2
1
π

ImΠexp
LR (t) , (26)

M3=
−gA

F 2
0M

6
V

(
1 + 1

gA

)∫ s0

0

dtt3
1
π

ImΠexp
LR(t) , (27)

M4=
−gA

F 2
0M

8
V

(
1+ 1

gA
+ 1

g2
A

)∫ s0

0

dtt3
1
π

ImΠexp
LR(t) . (28)
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On the other hand, the three plots in Fig. 2 show
the experimental inverse moments on the l.h.s. of
Eqs. (22), (23) and (24) as a function of s0, with
the pion pole removed, extrapolated at the chi-
ral limit as discussed above, and normalized to
the corresponding minimal hadronic ansatz pre-
dictions given on the r.h.s. of these equations.
The three curves M0, M−1 and M−2 in Fig. 2
correspond to the quantities:

M0=
1
F 2

0

∫ s0

0

dt
1
π

ImΠ̃exp
LR(t) , (29)

M−1=
M2

V

F 2
0 (1 + gA)

∫ s0

0

dt

t

1
π

ImΠ̃exp
LR(t) , (30)

M−2=
M4

V

F 2
0 (1+gA+g2

A)

∫ s0

0

dt

t2
1
π

ImΠ̃exp
LR(t) . (31)

The horizontal bands on the plots in Figs. 1 and
2 correspond to the induced error of the minimal
hadronic ansatz predictions from the input values:
F0 =87± 3.5 MeV, MV =748± 29 MeV and gA =
0.50 ± 0.06. These are the values favored by a
global fit of the minimal hadronic ansatz to low–
energy observables [16]. The moments Mn, with
the experimental error propagation included, are
the curved bands in the figures.

The remarkable feature which the curves in
Figs. 1 and 2 show is that, within errors, there
is a crossing of all the experimental moments
with the minimal hadronic ansatz band which
takes place in the same s0 region, i.e., around
s0 ∼ 1.4 GeV2, rather close indeed to the s∗0
value which follows from the duality relation in
Eq. (21): s∗0= (1.2 ± 0.2) GeV2. The same hap-
pens for the 2nd Weinberg sum rule in Eq. (9),
which we show in Fig. 3, where

M1=
1

F 2
0M

2
V

∫ s0

0

dtt
1
π

ImΠ̃exp
LR (t) . (32)

The 1st Weinberg sum rule is the equivalent of the
moment M0 in Eq. (29). In fact, the agreement
for the inverse moments is excellent. This is due
to the fact that inverse moments put more and
more weight on the low energy tail of the spectral
function, which is known to be dominated by the
ρ–resonance.

)(

M

M

M0

-1

-2

Fig. 2 Plot of the experimental moments in
Eqs. (29), (30) and (31) normalized to the mini-
mal hadronic ansatz predictions.

By contrast, the positive moments are very sen-
sitive to the cancellations between opposite par-
ity hadronic states; this is why the experimen-
tal curves show larger and larger oscillations as
one increases the power of the moment. In spite
of that, it is quite impressive that, when re-
stricted to the s0 region of duality, the experimen-
tal moments agree well with the minimal hadronic
ansatz prediction, even for rather large powers
which correspond to vacuum expectation values
of operators of higher and higher dimension.
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( )

M1

Fig. 3 Plot of the 2nd Weinberg sum rule in
Eq. (32).

We conclude that the experimental data from
ALEPH is consistent with the simple pattern
of duality properties between short– and long–
distances which follow from the minimal hadronic
ansatz of a narrow vector and a narrow axial-
vector states plus the Goldstone pion in large–Nc

QCD. At the phenomenological level, it would be
very interesting to see what the impact of the
choice of the upper limit s0 is in the empirical
determination of the QCD condensates, when s0
is restricted to the duality region.

Acknowledgements
I wish to thank Santi Peris and Boris Phily for a
very pleasant collaboration. I also wish to thank
Stephan Narison for organizing this interesting se-
ries of QCD conferences.

REFERENCES

1. S. Peris, B. Phily and E. de Rafael, Tests of
Large–Nc QCD from Hadronic τ decay, hep-
ph/0007338, (submitted to Phys. Rev. Let-
ters)

2. G ’t Hooft, Nucl. Phys. B72 (1974) 461; B75
(1974) 461.

3. E. Witten, Nucl. Phys. B79 (1979) 57.
4. A. Pich, in Les Houches Lectures, Session

LXVIII, Probing the Standard Model of Par-
ticle Interactions, eds. R. Gupta, A. Morel,
E. de Rafael and F. David, North–Holland

1999.
5. M. Knecht, S. Peris and E. de Rafael, Phys.

Lett. B443 (1998) 255.
6. M. Knecht, S. Peris, M. Perrottet and E. de

Rafael, Phys. Rev. Letters 83 (1999) 5230.
7. M. Knecht, S. Peris and E. de Rafael, Phys.

Lett. B457 (1999) 227.
8. M. Knecht, S. Peris and E. de Rafael, Nucl.

Phys. (Proc. Suppl.) B86 (2000) 279.
9. S. Peris and E. de Rafael, Phys. Lett. B490

(2000) 213.
10. M.A. Shifman, A.I. Vainshtein and V.I. Za-

kharov, Nucl. Phys. B147 (1979) 385, 447.
11. M. Knecht and E. de Rafael, Phys. Lett.

B424 (1998) 335.
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QUESTIONS

S. Narison, Montpellier
When you compare your large–Nc QCD approx-
imation with the τ–data, you find two solutions
for s0 and you choose the lowest value. Can you
explain the reason for that?
E. de Rafael, CPT-Marseille
This is a good question. I did not go through that
because of time limitations. What you call the
first solution, which I agree it is the one we con-
sider, corresponds to the minimal hadronic ansatz
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which I discussed. Higher solutions correspond,
very likely, to a more elaborated choice of the
spectrum: e.g., there is a second s0 of duality
if we also include another V–sate, and the data
seems to indicate that. (The detailed analyses
should appear in Boris Phily’s thesis.)

H. Fritzsch, München
I am not surprised that your minimal ansatz
works so well. In 1974, Leutwyler and I wrote
a paper studying such an ansatz and showing that
the coupling strengths of the lowest vector mesons
fix the number of colors to be three.
E. de Rafael, CPT-Marseille
Yes, vector meson dominance is a good old idea
which goes back to early work by Sakurai. What
we are doing now is to show how some of its phe-
nomenological good features are now naturally
incorporated within the framework of QCD at
large–Nc. Technically, in our language, the equa-
tion which you probably considered should be es-
sentially the same as our duality equation in (21).
You can certainly use this equation to fix Nc, pro-
vided you make an a priori guess of the onset of
the continuum s0. You probably took s0 ∼ 1 GeV
on phenomenological grounds and got Nc ∼ 3.


