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Abstract

The stochastic resonance of the coupled neuronal oscillators is studied using the sim-

ple model of one-dimensional overdamped oscillators subject to a subthreshold periodic

forcing. The stochastic characteristics of the system are shown by the SNR and the cross

correlations and its underlying deterministic dynamics are also analyzed which provide

an enlightment on the observed stochastic behaviors.
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I. INTRODUCTION

The nervous systems of the organisms provide an interesting example of the complex

systems. Recently attempts have been made to understand the behaviors of the systems

from the viewpoint of the nerve systems as assemblies of the coupled nonlinear oscillators

or the oscillator networks, in which temporal dynamics of the constituent neurons are

modeled with nonlinear oscillators [1]. As now being considered as a classical work in the

neurophysiology, Hodgkin and Huxley had proposed a model neuron that is capable of

exhibiting the realistic dynamic characteristics of biological neurons [2]. Various experi-

mental results have also supported the fact that a neuron is a dynamical unit capable of

displaying the various characteristics of nonlinear dynamics such as chaos [3].

The recent electrophysiological experiments on the visual cortex have revealed the

presence of the oscillatory rhythms in the measurement of the local �eld potential upon

the presentation of moving visual stimuli, whose dynamic behavior of synchronization

of the oscillations was shown to be closely related to the underlying mechanism for the

visual perceptions [4,5]. It has been also known that the olfactory cortex has an anatom-

ical structure and reveals dynamics similar to the one of an associative memory model.

Quite similar oscillatory behaviors including chaos have been observed to arise in the

network with an inhibitory feedback loop between the pyramidal cells and the inhibitory

interneurons, which has encouraged the speculations on the possible role of chaos in the

information processings of the brain [6]. Motivated by the physiological observations men-

tioned above a variety of the oscillator neural networks has been proposed and studied

to �nd the ways of understanding and predicting the behaviors of the nervous systems

[1,6{11].

Meanwhile, noise, which is unavoidable in the real-world environments, has been re-

garded as an object beyond the scope of a deterministic prediction and has been usually

described using statistical methods. As long as its strength is su�ciently weak, the e�ect

of noise is regarded not to be harmful to the otherwise noise-free situations even though

its role is still useless. Strikingly, however, it has been recently observed that a noise

may play a stunning role and could be utilized in detecting sensory signals that are too

weak to be detected otherwise. That is, when a weak subthreshold periodic force is ap-

plied to a nonlinear system with a threshold, it has been shown that the signal-to-noise

ratio(SNR), which is a measure of the system response, attains a maximal value for an

intermediate level of the noise intensity. This optimal performance is obtained when a

resonance occurs between the forcing period and the noise-induced time scale of a hop-

ping over the threshold. This phenomenon is referred to as the "stochastic resonance" in

the literatures [12,13]. Since its introduction of the idea by Benzi et al. [14] to explain

the periodicity of Earth's Ice ages, the stochastic resonance has been studied in a variety

of contexts including the ring lasers [15], the electronic circuit [16,17], and the sensory

neuronal systems [18{20]. The stochastic resonance has been studied also for the coupled

systems and it has been reported that the coupling enhances the stochastic resonance in

the arrays of nonlinear oscillators [21].

Both the views of the nervous system as an oscillator network and the active role
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of noise in the stochastic resonance encourage an attempt at studying the behaviors

of the nervous systems using nonlinear oscillator network models responding to noisy

input stimuli. Nevertheless, a systematic understanding of the complex behaviors of

the networks is still a formidable task. Prior to attacking the more complex network

problems, therefore, it would be useful to gain an insight into the underlying mechanisms

for the coupled dynamics using a simple system consisting of a smaller number of coupled

oscillators, which becomes rather tractable in analysing the behaviors. Thus, in the

present work we consider the two coupled stochastic oscillators. One may expect that the

behaviors of the coupled dynamics is underlied by an interplay between the determistic

dynamics and the stochastic noise with its active role in the context of the stochastic

resonance. The coupled stochastic dynamics is characterized using both the signal-to-

noise ratio (SNR) and the cross correlations. The present work focuses on the dependence

of those quantities on the coupling strength and the noise intensity. It is observed that

the behaviors of the coupled system are related to its underlying deterministic dynamics

part of which is viewed in terms of stability of the synchronized states. Related to the

present work, recent studies have shown how the stochastic resonance depends on the

system parameters such as the forcing period and the amplitude in the bistable systems

and the excitable systems as well [22{24]. However, previous studies are mainly for the

single oscillators and understandings for the coupled systems are still lacking.

The present paper is organized as follows. The stochastic neuronal oscillator and the

coupled system are introduced in section II. The details of the dynamical response of

the coupled oscillators against external stimuli with noise are presented in section III. In

section IV the underlying deterministic dynamics are analyzed and its implications to the

stochastic dynamics are sought. In section V we conclude.

II. STOCHASTIC NEURONAL OSCILLATOR

A neuron subject to a stimulus typically exhibits the 'all-or-none' response. That

is, if the stimulus is weak than the neuron in its resting state does not �re and the

membrane potential basically remains near the resting state. If the stimulus is strong

enough, however, the neuron �res the action potential that has the characteristic size

and shape independently of the stimulus. In this paper such an activation of a neuron

from the resting state to the �ring state is described by a one-dimensional overdamped

nonlinear oscillator:

dx

dt
= �dU(x)

dx
+ I(t) +

p
2D�; (1)

where x represents the membrane voltage and the potential function is given as U(x) =

�1=2x2+1=4x4. The potential has a barrier at x = 0 which plays the role of the crossover

threshold between two minima; the minima are regarded as the resting state (the left

minimum) and the �ring state (the right minimum) of the neuron. For a real neuron

the �ring state usually lasts only for a brief period and is followed by an inactivation
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process restoring the membrane potential back to the resting state. This mechanism of

the inactivation is introduced in our model by holding the activation variable x for a brief

time and then resetting it to x = x0 whenever x reaches a prescribed value xm; xm and

x0 in each minima can be chosen arbitrarily since their precise values do not lead to an

appreciable change in the results. We set xm = 0:9 and x0 = �2:0 in the present work.

The model can be regarded as a further simpli�ed version of the more realistic models

such as the Hodgkin-Huxley [2], the Morris-Lecar [25], or the Fitzhugh-Nagumo [26,27]

neuron models. The simpli�cation to the one-dimensional oscillator model greatly reduces

the computation complexity of the coupled neural oscillators system.

In the equation I(t) represents the periodic driving force I(t) = I0 sin(!0t): we set

!0 = 0:1. When the strength of stimulus I0 is larger than the threshold value, Ith � 0:42,

the model neuron exhibits sustained periodic �rings. When the input stimulus is below

the threshold value, x cannot reach the �ring state and just wobbles around the resting

state. In the present work, if not speci�ed otherwise, the input stimulus is assumed to

be at the subthreshold regime, I0 = 0:36, so that the input forcing does not su�ce to

excite the neuron by itself. However, in the presence of noise, as added in the last term of

Eq. (1), the model neuron can be driven to the �ring regime even with the subthreshold

I(t) stimuli; D is the noise intensity and � is the guassian white noise de�ned as

h�(t)i = 0; h�(t)�(t0)i = �t;t0 : (2)

As one tunes the level of the noise intensity, the system exhibits the well known

behavior of the stochastic resonance. That is, the SNR of the system response at the

driving frequency !0 attains its optimum at a certain intermediate level of the noise. The

stochastic resonance arises due to a resonance between the noise-induced time scale of

the hopping across the threshold and the forcing period. More details observed for the

stochastic resonance can be found elsewhere [11{13].

Now, let us introduce the coupled system as follows:

dx1
dt

= �dU(x1)

dx1
+ I1(t) +

p
2D�1 + 1(x2 � x1)

dx2
dt

= �dU(x2)

dx2
+ I2(t) +

p
2D�2 + 2(x1 � x2); (3)

where the white noises �1 and �2 to each oscillator are uncorrelated, that is, h�1(t)�2(t0)i =
0. The input currents I1(t) and I2(t) are set to be identical. The coupling constants 1
and 2 can be either positive or negative; the attractive force ( > 0) and the repulsive

force ( < 0) typically lead to an excitatory and an inhibitory coupling, respectively. To

understand the cooperative behavior between two oscillations under coupling of di�erent

nature, we consider in the followings the two cases: a) the mutual excitatory coupling

1 = 2 =  > 0, and b) the mutual inhibitory coupling 1 = 2 =  < 0.

In Fig's. 1, the temporal activities of the two oscillators are shown for each case of

coupling. In each �gure the �ring events of the oscillators are depicted in the upper two

plots. The sinusoidal graph at the bottom denotes the common periodic driving force.

The long vertical line across the graphs denotes the moment when the coupling is turned
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on. As one can see from these �gures, two oscillations are strongly synchronized for

the excitatory coupling case (Fig. 1(a)) and strongly desynchronized for the inhibitory

coupling case (Fig. 1(b)) as soon as the coupling is turned on. That is, the excitatory

coupling typically induces synchrony between two oscillations, whereas the inhibitory

coupling induces desynchrony. One may also notice a certain amount of synchrony present

even before the coupling is turned on, which is only due to the common driving force.

III. STOCHASTIC RESONANCE OF THE TWO COUPLED OSCILLATORS

To see the �ring response of the coupled oscillators to noise, the SNR for each coupling

case has been estimated. The SNR varies depending on the coupling strength as well as

the noise intensity as shown in Fig. 2. For the excitatory coupling case, as shown in

Fig. 2(a), the SNR at weaker noise intensities (D < D0) is reduced whereas it is enhanced

at larger noise intensities (D > D0) when compared to the single uncoupled oscillator

case; D0 � 0:1 is the optimal noise intensity for the single oscillator [11]. This is due to

the attractive force between two phases of oscillations, originating from the nature of the

excitatory coupling. Enhancement of the SNR due to the excitatory coupling has been

previously reported for coupled oscillator systems [21,28,29].

The mechanism for the coupling dependence of the SNR can be viewed in the level

of the neuronal activity as follows. The excitatory coupling tends to reduce the phase

di�erence of two oscillators. At a weak noise intensity, both oscillators have less chance

of �rings and hence it is more likely that they are in the resting state. Suppose now that

the phase of one oscillator manages to get closer to the threshold and is ready to �re.

The oscillator would �re only if a su�ciently strong noise kick occurs on it. However, the

amount of noise should be larger than the uncoupled oscillator case since the oscillator,

now coupled, should overcome the attraction from the other oscillator at the resting state

in addition to the pulling force by the nonlinear potential U(x). Therefore, it is more likely

that the �ring of the oscillator is suppressed and, consequently, the �ring rate is reduced

compared to the single oscillator case. Furthermore, this e�ect is evidently enhanced

as the coupling becomes stronger. On the other hand, when the noise intensity is large

(D > D0) both oscillators have more chance to be in the �ring state. Even when one

oscillator is yet in the resting state the other oscillator in the �ring state attracts the

oscillator and helps �ring. Consequently, the SNR will be enhanced and this e�ect also

becomes enhanced as the coupling is stronger.

A quite di�erent mechanism applies to the inhibitory coupling case since the nature

of the coupling now introduces the repulsive force instead of the attractive force.(See

Fig. 2(b)) It is noticeable that the change of the SNR for the inhibitory coupling case is

much more prominent, especially in the weak noise regime, compared to the excitatory

coupling case. This results mainly from the nature of inhibitory coupling that enhances

the coupling strength e�ectively. Namely, with the excitatory coupling a small deviation of

two oscillating phases tends to decrease and the e�ective coupling between two oscillators

becomes smaller as a result. Meanwhile, the deviation tends to increase for the inhibitory
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coupling case due to the repulsive force and, therefore, the e�ective coupling becomes

larger. The increase of the e�ective coupling strength for the inhibitory coupling case

can thus lead to a nontrivial result in the coupled oscillations, unlike for the excitatory

coupling case.

In fact, besides the noise and the driving force, the e�ective force between the coupled

oscillations comes from the combined e�ect of the potential U(x) and the coupling. Near

the left minimum of the potential (the resting state) the potential gradient tends to

synchronize the oscillations, while it tends to desynchronize the oscillations near the

threshold because of the reversed curvature of the potential. Therefore, in a simpli�ed

picture, one may describe a typical �ring of oscillators with inhibitory coupling in the

following three steps:

1. a periodic approach of both oscillators to the threshold driven by input force,

2. a small deviation in phase due to noise, and then

3. a mutual repulsion of the phases due to the combined e�ect of the potential gradient

and the inhibitory coupling.

In step 2, the order of the phases is randomly selected by noise and the oscillator of the

advanced phase will be �nally led to �re by the repulsive force of step 3, whereas the other

oscillator of the lagged phase is pushed back to the resting state. More detailed analysis

on the combined e�ect of the potential and the coupling will be given in the following

section.

The observation of the enhanced SNR at the weak noise intensity due to the inhibitory

coupling is very important for the purpose of the segmentation performance of the oscil-

lator network since this implies the increased average �ring rate of neurons [11].

The degree of coherency between two oscillations is measured by the cross correlations

de�ned as follow.

C =
1

N

k=NX
k=1

b1(kT ) ^ b2(kT );

CA =
1

N

k=NX
k=1

b1(kT )� b2(kT ) (4)

where T is the period of the input forcing, T = 2�=!0, and bi is the binary representation

of the activation variable; bi = 0 for x < 0 and bi = 1 for x > 0. bi(kT ) is measured

at the k-th peak of the input forcing within the time window of �nite width � centered

around the peak. The operations '^' and '�' denote the binary operations 'AND' and

'Exclusive OR', respectively. The degree of correlation is estimated using both measures

since either measure alone does not properly estimate two kinds of correlations of interest,

synchrony and desynchrony, simultaneously over a wide range of the noise intensity. The

cross correlation C measures the degree of synchrony, i.e., the occurrences of synchronous

�rings of two oscillators at the peaks of the input forcing, while the anticorrelation CA

measures the degree of desynchrony. Note that two measures are independent in de�nition
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and that the proposed de�nitions are di�erent from the conventional ones. However, it

is expected that these measures are more natural for the present purpose in that they

measure correlations of the �ring events only at the input forcing periods.

Fig. 3 shows that the correlations between two oscillations vary depending on the

noise intensity as well as on the coupling strength. When the noise intensity is su�ciently

weak, the oscillators hardly �re and hence the correlations would be almost zero. As the

noise intensity increases, �rings start to occur and the magnitudes of both correlations

rise due to the coupling between two oscillations. Note that the e�ect of the inhibitory

coupling is more prominent compared to that of the excitatory coupling, especially in the

weak noise regime. The inhibitory coupling induces strong anticorrelation at much lower

level of the noise intensity. This is, as pointed out above, due to the fact that repulsion of

oscillations originating from the inhibitory coupling becomes enlarged at the weak noise

level below D0. Note also that the anticorrelation attains its maximal value at the noise

intensity which is much lower compared to the peak position of the SNR curve. It is also

observed that the peak shifts to the lower level of noise intensity as the coupling strength

increases, which implies the important role of the inhibitory coupling at the low level of

the noise intensity.

As the noise intensity becomes too strong beyond D0, the magnitude of the cross

correlations becomes small since the �ring of each oscillator is now dominated by the

uncorrelated noise �1; �2 and thereby the �rings of two oscillators start to be uncorrelated.

In fact, this behavior at the high noise level is not reected properly with the present

de�nition of the cross correlation (Fig. 3(a)) which is supposed to be saturated at the

higher level of noise intensity. That is, as the noise intensity increases, the oscillators tend

to �re at most of the input forcing periods and this will in turn make the cross correlation

saturate even though �rings in the whole time range is uncorrelated on average. However,

this should not lead to confusions since this behavior can be correctly recognized from

the SNR data. Therefore, to understand more properly the cooperative behavior of the

coupled oscillations it is necessary to examine both measures of the SNR and the cross

correlations.

IV. DETERMINISTIC DYNAMICS ANALYSIS

The stochastic behaviors observed in the previous section are in part a reection

of the underlying deterministic dynamics. In this section, therefore, we examine the

deterministic dynamics for Eq. (3) and show its relation to the stochastic behaviors of the

previous section.

First, we introduce a coordinate transformationX = x+y

2
and Y = x�y

2
, or equivalently,

x = X + Y and y = X � Y . It turns out that the new coordinate system is useful in

describing the coupled dynamics in a collective way: X represents the center of phase of

the oscillations and Y represents the phase di�erence. Especially, the solution satisfying

Y = 0 corresponds to the synchronized oscillations. In the new coordinate system, Eq. (3)

is transformed into
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dX

dt
= X(1�X2 � 3Y 2) + I(t);

dY

dt
= Y f1� 4 � (3X2 + Y 2)g: (5)

Notice that the X equation in Eq. (5) is independent of coupling and also that X

is always driven by the periodic force; there is no �xed point of X. Meanwhile, the Y -

dynamics is autonomous and Y = 0 is the �xed point of Y regardless of the X value; the

line Y = 0 is an invariant line in the XY phase plane. The second factor of the r.h.s. of

the Y equation does not give any further �xed points because X always varies in time.

Therefore, in the followings we will focus on the stability of the synchronized states on the

invariant line. The dynamics on the invariant line is given by the X equation as follows:

dX

dt
= X(1�X2) + I(t); (6)

which is just the same as the single oscillator equation, Eq. (1).

The linear stability of a synchronized state across the invariant line is determined by

the sign of A � 1� 4 � 3X2; stable when A > 0 (the nearby trajectories are attracted

toward the line Y = 0) and unstable when A < 0 (the nearby trajectories are repelled

away from the line Y = 0). In turn, the sign of A is determined by the values of both 

and X. The possible cases can be classi�ed as follows:

1. When  � 1

4
:

A � 0 is satis�ed for all the range of X. The case of A = 0 implies the marginal

stability. However, this occurs only instantaneously when X = 0. Therefore, Y = 0

(the synchronized state) is always stable.

2. When  < 1

4
:

This provides the necessary condition for the existence of the unstable synchrony.

The case can be further divided into two subcases.

(a) 3X2 > 1� 4 case: A < 0 and Y = 0 is stable.

(b) 3X2 < 1� 4 case: A > 0 and Y = 0 is unstable.

Therefore, when  � 1

4
, the synchronized states are always stable for the whole range

of X. However, the synchronized state is unstable when the both conditions of  < 1

4
and

�
q

1�4
3

< X <
q

1�4
3

are satis�ed. That is, when  < 1

4
, the condition 2(b) implies the

existence of a repelling region in X where a small deviation between two phases tends

to diverge. This divergence is a direct consequency of the convexity of the potential

function around X = 0. The region of repelling where U(X) is convex is depicted in

Fig. 4. Evidently, the repelling region still exists even when there is no coupling ( = 0).

Namely, while the repulsive interaction of two oscillations derives from the combined e�ect

of the (repulsive) coupling and the convexity of the potential, the repulsion at  = 0 is

purely due to the latter e�ect. It is interesting to �nd that the region in the presence of

the coupling is altered in a way that is speci�ed as in the condition 2(b). That is, the
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range of the repelling region changes even though the convexity of the potential does not

change: as  increases from zero the range of repelling shrinks until it completely vanishes

at  = 1

4
.

One may notice at this point that the notion of the coupling nature is somewhat

misleading. That is, positive  does not mean that two oscillations are always excitatory

and the negative  does not mean that they are always inhibitory either. We have already

seen such a contradictory example as the above condition 2(b) implies that a positive 

for 0 <  < 1

4
may induce a mutual repulsion depending on the oscillation phases, which

is the sense of the inhibition. However, we think that the notion is still intuitive even

though we should admit that there is no precise correspondance between the sign of 

and the nature of the coupling.

Now, let us look in the nonlinear aspect of dynamics when Y does not remain near

the invariant line Y = 0. Then one should resort to the original equation, Eq. (5) instead

of Eq. (6). Let's consider the equation in a slightly di�erent arrangement:

dX

dt
= (1� 3Y 2)X �X3 + I(t): (7)

And attempt to follow the instantaneous change of the potential while neglecting the

e�ect of the periodic force for the moment. Notice that unlike the case of Eq. (6), the

equation is now dependent on Y . Let us denote the coe�cient of the linear term of Eq. (7)

as B � 1� 3Y 2. Suppose both X and Y are small initially: X = �X and Y = �Y . While

Y is small yet, B is positive and the potential is of the double-well shape as depicted in

Fig. 5(a) when jY j < 1p
3
. Then, since X = 0 is unstable the potential gradient pushes X

away from X = 0 toward the right minimum of the potential. However, due to the convex

potential near X = 0, Y also gets large. When Y becomes large enough (jY j > 1p
3
) the

potential loses the structure of the double well and the unstable equilibrium at X = 0

bifurcates to the stable one as depicted in Fig. 5(b). Consequently, X is now attracted back

toward X = 0. Now, if the consideration for I(t) is added to the above one can imagine

of more complex behaviors that can arise depending on its phase and the frequency as

well.

Similarly, the Y equation can be rewritten as

dY

dt
= (1� 4 � 3X2)Y � Y 3: (8)

When  � 1

4
, the coe�cient of the linear term in Eq. (8) is always negative for all

range of X. The potential U(Y ) just looks like the Fig. 6(b) and thus the synchronized

state of Y = 0 is the unique stable state. But when  < 1

4
, the potential changes its

shape depending on X. That is, when 3X2 < 1� 4, the potential is of the double-well

shape with two minima at Y = �pA and the synchronized state at Y = 0 is unstable.

Meanwhile, when 3X2 > 1 � 4 as X increases, the local maximum at Y = 0 becomes

a global minimum, and thus the synchronized state becomes a unique stable state. The

change of U(Y ) as X is depicted in Fig. 6.

Let us now take a speculative view to a combined dynamics of X and Y in the context

of neuronal behaviors. Also let us consider the e�ect of I(t) and noise together. The case
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of  � 1

4
is rather trivial. That is, the synchronized state is stable and two oscillations

remain synchronized over all range of X however they are driven by I(t). Therefore, let

us consider the other case of  < 1

4
. Assume that both oscillators are initially near the

resting state with a small amount of phase di�erence probably induced by noise: X � �1
and Y = �Y . As long as X remains near the resting state (large value of X) Y remains

to be small since Y = 0 is stable (Fig. 6(b)). However, if X moves toward the threshold

driven by I(t) and/or noise, U(Y ) changes the shape for small X and the Y = 0 becomes

unstable (Fig. 6(a)). Then, Y increases. Unless Y becomes too large, X keeps increasing

with the aid of the potential gradient (Fig. 5(a)) and probably also of I(t). When Y

becomes large enough (� 1p
3
), the potential U(X) becomes concave (Fig. 5(b)) and the

center of phase moves back to the thershold. The last step does not really play a role in

our case since there is the reset mechanism which brings the oscillator back to the resting

state once it has �red.

In the case of the subthreshold forcing as we are mainly concerned about in the present

work we can think of the role of coupling as follows. For the excitatory coupling ( � 1

4

more precisely), each oscillator has a chance of �ring when it is kicked by noise when it is

driven near the threshold by I(t). However, they tend to be synchronized as we saw above

and, therefore, to be bound, which implies that a larger impact of noise kick on average

would be required, as described in detail in section III. This explains the reduction of

SNR in the low noise intensity as shown in Fig. 2(a).

For the inhibitory coupling, the oscillators tend to be synchronized when they are near

the resting state. However, once they are driven to the repelling region of Fig. 4 they

diverge. Then, this divergence, in turn, induces the one oscillator to �re with the aid of the

other's repulsion which is itself repelled to the resting state. Therefore, a small amount of

noise kick may su�ce to lead �ring. As the inhibition gets stronger even smaller amount

of noise would su�ce since the range of the repelling region of Fig. 4 extends as the

condition 2(b) above implies. This explains not just the enhancement of the SNR in the

low noise intensity as shown in Fig. 2(b), but one can also notice, compared to the e�ect

of the excitatory coupling, that the inhibitory coupling is even more e�ective especially

in the low noise intensity regime. The enhanced cross anticorrelation of Fig. 3(b) in the

low noise intensity also reects the �ring activities of the oscillators that are enhanced

due to the inhibitory repulsion.

V. CONCLUSIONS

The stochastic resonance of the coupled neuronal oscillators is studied using the sim-

ple one-dimensional overdamped oscillators. The stochastic behaviors of the system are

characterized with the SNR and the cross correlations.

The excitatory(inhibitory) coupling induces synchrony(desynchrony) between stochas-

tic nonlinear oscillators. But unlike the deterministic case, the degree of correlation de-

pends on the noise intensity as well as on the coupling strength. Also the �ring rate of the

coupled oscillator, the SNR, shows a strong dependence on both quantities. Especially,
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the e�ect of the inhibitory coupling is prominent at the regime of the low noise intensity.

The deterministic part of the coupled dynamics is analyzed to examine the role of the

deterministic dynamics that may underlie the observed stochastic behaviors. It is found

that the stability of the synchronized states and the dynamic changes of the potential

functions are closely related to the variations of the SNR and the cross correlations of the

coupled stochastic oscillators. Especially, one is able to get an intuitive understanding on

the enhancement of the SNR and the cross anticorrelation as well at the regime of the

low noise intensity.

While concentrated on the simple systems consisting of only a small number of the

coupled nonlinear oscillators, the present work still provides fundamental understandings

on the coupled stochastic nonlinear oscillators and some insights into the behaviors of

more complex systems.
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FIGURES

(a)

(b)

FIG. 1. Temporal activities of two coupled oscillators. The common sinusoidal forcing is

depicted at the bottom of the plots. The long vertical bar across the graphs denotes the moment

when the coupling is turned on. (a) The excitatory coupling ( = 0:3, D = 0:02), and (b) the

inhibitory coupling case ( = �0:3, D = 0:004).
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(b)

FIG. 2. SNR for two coupled oscillators with respect to the noise intensity for various magni-

tudes of the coupling strength: (a)the excitatory coupling and (b)the inhibitory coupling cases.
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(b)

FIG. 3. Cross correlations between two coupled oscillations with respect to the noise intensity

for various magnitudes of the coupling strength: (a)the cross correlation C and (b)the cross

anticorrelation CA.
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FIG. 4. Repelling region. For  < 1

4
, the designated region represents the range

�1�4
3

< X < 1�4
3

. Within this region two oscillations diverge as schematized by the diverging

two solid balls denoting each oscilllator's phase.
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U(X)
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U(X)

as Y increases

X

FIG. 5. Change of the potential U(X). (a) When jY j is small, jY j < 1p
3
, the potential has

the double-well shape and the X = 0 is unstable. (b) As Y increases, X = 0 becomes a global

minimum. The solid ball denotes the center of phase of two oscillators.
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Y
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FIG. 6. Change of the potential U(Y ). (a) When  < 1

4
and 3X2 < 1�4, Y = 0 is unstable.

(b) When X increases and 3X2 > 1� 4, Y = 0 is globally stable. The solid ball represents the

phase di�erence of the two oscillators. For  > 1

4
, U(Y ) looks the same as (b).
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