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1 Perspective

A linear electron-positron collider was first proposed by Tigner in 1965 [1] and later by Amaldi
in 1975 [2]. Meanwhile, the Stanford Linear Collider (SLC) [3] has become a successful proto-
type. During the course of its operation from 1987 to 1998, the SLC performance was continually
improved, as numerous advanced beam quality control techniques were invented and implemented
[4, 5, 6, 7]. We may take for granted that many of the techniques developed for the SLC will also be
utilized at the next-generation linear colliders.

All future linear colliders will bring into collision highly energetic electron or positron beams,
which are accelerated in two diametrically opposed linear accelerators (linacs). The first and only
linear collider so far, the SLC, operated at a centre-of-mass energy of about 100 GeV with rms
interaction-point (IP) beam spot sizes of several hundred nanometers vertically and more than a
micron horizontally. The next generation linear colliders aim for roughly 10 times higher energies
and 100 times smaller vertical spot sizes. Table 1 compares IP beam parameters for the SLC with
those proposed for various future projects. TESLA [8] coordinated by DESY is a superconducting
(s.c.) linear collider, NLC [9] designed at SLAC uses a normal-conducting linac at 4 times the SLC
rf frequency (11.4 GHz instead of 2.8 GHz), and CLIC [10, 11] studied at CERN operates at 30 GHz
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and its power source is based on two-beam acceleration (see below). The differences between the
projects reflect different design choices and emphases.

A linear accelerator (linac) consists of many successive arrays (structures) of coupled rf cavities
(cells). In these cells a longitudinal rf electric field accelerates the electron or positron bunches to
high energy. A larger accelerating field, or voltage gradient, is desirable, since it implies a shorter
linac length for the same final beam energy. The accelerating gradientG (in units of volts per meter)
can be written as

G =
√
RP (1)

with P the supplied rf power andR the so-called shunt impedance, both per unit length. The shunt
impedance in turn may be expressed asR = (R/Q)Q, whereR/Q is a quantity that depends purely
on the geometry of the accelerating cavity. Values ofR/Q equal to 200Ω per cavity length are
common.R/Q is reduced for larger iris radii, where the term ‘iris’ refers to the opening hole between
successive cavity cells, through which both the beam and the rf wave propagate. The quality factor
Q is roughly equal toV/(Sδ(ωrf)) with V the volume of the cavity,S its surface area, andδ(ωrf)
the skin depth at the rf frequency [12]. For cavities in a superconducting linac, such as TESLA, the
Q value can be extremely high, even larger than1011 [13]. That means it is possible to increase the
iris apertures, so as to reduce the beam-induced ‘wake’ fields and, unavoidably, in parallel also the
value of(R/Q), but still retain a large shunt impedanceR and a modest rf power. On the other hand,
theQ value of normal-conducting cavities is much smaller, typically several times103 at 30 GHz
[14], and therefore it is important to preserve a largeR/Q, even if this implies enhanced wake-field
effects.

The higher frequencies chosen for the normal-conducting accelerating structures are based on
the assumption that the achievable accelerating gradient increases roughly in proportion to the rf
frequency, as would be the case if the field gradient is limited by rf breakdown or trapping of dark
current generated by field emission [15, 16, 17].

In conventional linacs, the rf energy is produced in devices called klystrons, which are powered
by other devices called modulators. A klystron uses the bunching of a low-energy electron beam in
response to a weak input rf signal to amplify the rf energy. The modulators among other components
contain an energy storage unit, a fast switch, and a pulse-forming network. Usually the rf pulse
generated by the klystrons is a factor 6–10 longer and weaker than required, and, therefore, it must
be compressed. This is done by properly combining either parts of an rf pulse generated at different
times from the same klystron or pulses from adjacent klystrons. The various rf compression schemes
are known by their acronyms, such as SLED (‘SLAC energy doubler’), SLED-II, or DLDS (delay
line distribution system). In some of the proposed colliders, several thousands of klystrons and
modulators are necessary to reach 1 TeV centre-of-mass energy.

The number of klystrons and modulators is reduced drastically in the two-beam approach studied
for CLIC. Here a low-energy intense ‘drive beam’ is employed to transport and compress the rf power
which is initially produced in a separate low-frequency drive-beam linac. An attractive feature of
CLIC is that there are no active rf components in the main linac, and that the high rf frequency
chosen (30 GHz) may allow reaching multiple TeV energies with a linac length comparable to that
of the lower-energy lower-frequency designs. The overall layout of a 3-TeV CLIC is shown in Fig.
1. The figure also illustrates the generation of the drive beam and its distribution along the main
linac.

The remainder of this report is structured as follows. In the next section, we discuss the con-
straints arising from the beam-beam interaction and the resulting luminosity scaling for linear col-
liders. We then describe design concepts, beam dynamics, operation, measurement challenges, and
tuning methods for the various subsystems, proceeding against the beam direction from interaction
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Table 1: Beam and interaction-point parameters for various proposed linear colliders compared with
those of the SLC. Note that some numbers may have changed since publication, and that,e.g.,
TESLA now contemplates an alternative parameter set with higher luminosity. [†The SLC spot sizes
quoted refer to the 1998 average values.]

parameter symbol SLC TESLA NLC CLIC

c.m. energy [TeV] E 0.1 0.5 1 3
luminosity [1034 cm−2 s−1] L 0.0002 0.84 1.3 10
repetition rate [Hz] frep 120 4 120 100
bunch charge [1010] Nb 3.7 1.8 1.0 0.4
bunches/rf pulse nb 1 2260 95 154
bunch separation [ns] ∆b — 354 2.8/1.4 0.67
av. beam power [MW] Pb 0.04 13 9 14.8
bunch length [mm] σz 1 0.5 0.12 0.03
hor. emittance [µm] γεx 50 12 4.5 0.68
vert. emittance [µm] γεy 8 0.03 0.1 0.02
hor. beta [mm] β∗

x 2.8 25 12 8
vert. beta [mm] β∗

y 1.5 0.5 0.15 0.15
hor. spot size [nm] σ∗

x 1700† 783 235 43
vert. spot size [nm] σ∗

y 900† 5.5 4 1.0
Upsilon Υ 2 × 10−3 0.02 0.3 8.1
pinch enhancement HD 2.0 1.6 1.45 2.24
beamstrahlung δB [%] 0.06 1.0 10 31
photons pere− (e+) Nγ 1 0.9 1.4 2.3
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Figure 1: Schematic layout of the CLIC 3-TeV linear collider [10, 11].
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point and final focus over collimation and linac towards damping rings and rf gun. Five illustrative
case studies are presented in detail.

2 Beamstrahlung and Luminosity

Assuming Gaussian bunch distributions and ignoring the variation of the beam sizes during the
collision,e.g.,due to hourglass effect (depth of focus) or due to beam-beam forces (‘pinch enhance-
ment’), the luminosity of a linear collider can be written as

L =
frepnbN

2
b

4πσ∗
xσ

∗
y

(2)

wherefrep denotes the repetition rate at which beam and rf are sent through the linac,nb the number
of bunches per rf pulse,Nb the number of particles per bunch,σ∗

x the rms horizontal beam size, and
σ∗

y the rms vertical beam size at the interaction point.
During the collision, individual electrons or positrons emit synchrotron radiation in the strong

field of the opposing beam. This radiation is called beamstrahlung. To preserve a decent energy
spectrum of the luminosity, the number of beamstrahlung photons emitted per electron,Nγ , must
be limited to a value of the order of one. Considering this constraint and assuming flat beams with
σ∗

x � σ∗
y the luminosity formula above can be re-expressed as [18]

L ≈
(

5

re

)
Pwall

Eb
Nγ

η

σ∗
y

(3)

wherere is the classical electron radius,Pwall the wall-plug power,Eb the final beam energy, andη
the conversion efficiency of wall-plug power into average beam power (Pbeam = frepEbNbnb). The
beam energy is fixed by the physics requirements and the wall plug power limited by economical
reasons. Hence, there are only two free parameters which can be optimized for maximum luminosity:
the conversion efficiencyη and the vertical spot sizeσ∗

y .
At the SLC the parameterη was much smaller than 1%. For all future projects it is raised to

roughly 10%, for example, by increasing the number of bunches per rf pulse from 1 to about 100,
and by improving the efficiency of all rf components. Clearly, the optimization ofη is being pushed
to its limits.

The vertical spot size is the second free parameter. In all proposed designs, it is more than 100
times smaller than at the SLC. Such tiny spot sizes are achieved both by much reduced emittances
and by interaction-point beta functions that are squeezed down to 150µm, as is illustrated in Table 1.

Many beam-dynamics challenges for the linear collider are related to the small spot size, for
example, the design of the final-focus optics, stability tolerances, emittance preservation, and pro-
duction of the low-emittance beam.

Let us now take a closer look at the beamstrahlung. The typical energy of the beamstrahlung
photons is characterized by the parameterΥ. This is equal to two thirds the classical critical energy
divided by the beam energyEb [19],

Υ =
2

3

h̄ωc

Eb
≈ 5

6

γr2
eN

ασz(σx + σy)
, (4)

whereα denotes the fine structure constant. For synchrotron radiation emitted from a dipole magnet
the critical freqency isωc = 3

2
cγ3/ρ [20] and, usually, the energy of synchrotron radiation photons

is much smaller than the beam energyh̄ωc � Eb. For the beamstrahlung emitted during the beam-
beam collision, this need not be the case. Typical values ofΥ at the interaction point are2 × 10−3
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for the SLC,0.3 for the NLC, and almost 10 for CLIC. IfΥ becomes comparable to 1 or larger, a
significant portion of beamstrahlung photons convert into real electron-positron pairs in the strong
electro-magnetic fields of the two beams. Unfortunately, linear colliders at multi-TeV energies can
hardly avoid operating in this regime.

BesidesΥ, there is a second parameter of interest, namely the number of beamstrahlung photons
emitted per electron. It reads [19]

Nγ ≈ 5

2

ασz

γλ̄e

Υ

[
1

(1 + Υ2/3)1/2

]
≈ 2

αreNb

σx + σy

. (5)

The last approximation applies ifΥ is small. For example, choosingN = 1010 andNγ = 1, we
obtain(σx + σy) ≈ 400 nm, consistent with the NLC parameter set.

Note that by reducing the bunch lengthσz, one can reach a parameter regime whereΥ is large
and the spot size small, but where we can still ensure thatNγ ≤ 1, thanks to the quantum correction
term — the square brackets — of Eq. (5). This is sometimes referred to as the quantum suppression
of beamstrahlung. It arises, roughly speaking, from the fact that the electrons cannot radiate photons
of energy higher than the beam energy. The classical spectrum of synchrotron-radiation photon
energies is modified in this extreme quantum regime [19].

Two further quantities characterizing the beamstrahlung are the average energy loss per electron
[19],

δB ≈ 1

2
NγΥ

[
(1 + Υ2/3)1/2

(1 + (1.5Υ)2/3)2

]
, (6)

and the fraction of luminosity at the nominal energy [21],

∆L

L
≈ 1

N2
γ

(
1 − e−Nγ

)2
, (7)

which depends only onNγ . The value of∆L/L drops rapidly for increasingNγ , e.g., forNγ = 1, it
is 81%, forNγ = 2 only 25%, and forNγ = 3 a bare 11%.

Introducing the aspect ratior ≡ σy/σx, the number of beamstrahlung photons scales asNγ ∝
Nb/(σx(1 + r)) and the luminosity asL ∝ NbNγ(1 + r)/r. Hence, in order to maximize the
luminosity while at the same time constraining the number of beamstrahlung photons, it is best to
operate with flat beams wherer � 1.

Flat-beam parameters have been adopted for all future linear collider designs. Various other
methods to overcome the beamstrahlung problem were proposed in the past, such as 4-beam col-
lisions [22, 23] (2 electron beams colliding with 2 positron beams, so that the net electric and
magnetic fields are zero), plasma [24] (where the plasma return current cancels the beam fields),
and photon-photon collisions [25, 26] (here the beam energy is converted into photon energy by
Compton scattering off a high-power laser).

3 Final Focus

The small beta functions at the collision point are achieved by focusing the beam with strong
quadrupole magnets located a few meters upstream. The normalized focusing strength of a
quadrupole,K (in units of m−2), depends on the particle momentum as

K =
BT

a(Bρ)
=

eBT

ap0(1 + δ)
(8)
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whereBT is the pole tip field,a the pole-tip radius,Bρ ≡ p/e the magnetic rigidity of the particle,p0

the design momentum, andδ ≡ (p−p0)/p0 the relative momentum deviation. Typical values for the
final quadrupole areBT/a ≈ 300–500 T/m andK ≈ 0.1–0.3 m−2. Since the focusing strength is en-
ergy dependent, particles with different momentum deviations will be focused at different distances
behind the quadrupole. The change in focal length with particle energy is called the chromaticity of
the final focus. It can be computed as an integral over the final quadrupolesξ ≈ ∫

dsβ(s)K(s). If
the chromaticity is not corrected the vertical spot size at the interaction point becomes

σ∗
y ≈ σ∗

y,0

√
1 + ξ2

yδ
2
rms (9)

with σ∗
y,0 (=

√
β∗

yεy) the ideal linear design spot size andδrms the rms energy spread. Since typ-
ically ξ ≈ 30000 andδrms ≈ 0.28%, if uncorrected, the chromaticity would increase the IP spot
size by several orders of magnitude. Therefore, chromatic correction is indispensable. As in a stor-
age ring, this correction is performed by placing sextupoles at locations with nonzero dispersion.
Typically two pairs of sextupoles are used, for the horizontal and vertical chromatic correction, re-
spectively. The sextupole pairs are placed a multiple ofπ in betatron-phase advance away from
the final quadrupoles. Figure 2 illustrates the basic layout of a final-focus system with chromatic
correction.

w i r e  2

∆ ψ = π
" - I "

n

I P
d i p o l e d i p o l e d i p o l es e x t u p o l e s e x t u p o l e

w i r e  1

b e a m

     f i n a l
q u a d r u p o l e s

b e a m  e n v e l o p e

d i s p e r s i o n  f u n c t i o n

Figure 2: Schematic representation of a final-focus system. The beam moves from right to left. It
passes the chromatic correction section and then a final demagnifier, before it finally reaches the
interaction point, where it collides with an opposing beam. Only one pair of sextupoles is shown.
A similar set of sextupoles and bending magnets would be located further on the right. Two pairs
of sextupoles (4 sextupoles in total) are necessary in order to compensate the quadrupole chromatic-
ity in both transverse planes and to globally cancel all unwanted low-order nonlinear aberrations
induced by a single sextupole (quadratic kicks with amplitude and second-order dispersion) [27].
Wire scanners located near the two sextupoles, as indicated, can measure the energy-position corre-
lation within the bunch; see case study I.
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The dispersion at the sextupoles is generated by bending magnets. Thus, we are faced with the
undesirable situation that we need bending magnets at the highest energy of the linear collider. Al-
though the bending magnets in the final focus are much weaker than those in a ring collider, the
synchrotron radiation in these magnets is important and imposes severe design constraints. In par-
ticular, this synchrotron radiation is responsible for a dramatic increase in the length of conventional
SLC-type final-focus systems, when extrapolated to TeV energies.

The linear beam transport in a single-pass system is often expressed by a (6 × 6) matrix relating
the initial (subindex ’i’) and final (subindex ’f ’) phase-space coordinates [28]:




x
x′

y
y′

z
δ




f

=




R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66







x
x′

y
y′

z
δ




i

. (10)

In general we can express the position of a particle or of the beam centroid as the sum of betatron
oscillation,xβ , dispersionD and higher order dispersion,D(k) (k = 2, ...), as

x = xβ +Dδ +
∑
k≥2

D(k)δk. (11)

Often the higher-order dispersion terms (D(k) with k ≥ 2) are ignored, as we will do in the following
analysis.

As already mentioned, in a conventional final focus, two pairs of sextupoles are used for chro-
matic correction, one pair for the horizontal plane, and the other for the vertical plane. We now
consider one such pair in more detail. We assume that at the location of the first sextupole the dis-
persion is finite,Di 6= 0, but that the slope of dispersion iz zero,D′

i = 0, and that there are no
vertical bending magnets, henceR36 = 0 andR46 = 0. The (2 × 2) submatrices in the vertical
and horizontal plane are commonly chosen as−I (minus identity) transformations [27]. The fullR
matrix between the two sextupoles forming a pair then has the form




−1 0 0 0 0 R16

0 −1 0 0 0 R26

0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 R56

0 0 0 0 0 1



. (12)

We write the initial position of a particle on a dispersive trajectory asxi = xβ,i + Diδ, and the
corresponding final position asxf = xβ,f+Dfδ. From Eqs. (10) and (12) it follows thatxβ,f = −xβ,i

and that the dispersion at the second sextupole is equal to

Df = −Di +R16. (13)

This illustrates that without bending magnets (i.e., with R16 = 0) the dispersion propagates exactly
like a betatron oscillation. If there are bending magnets between the initial and final positions, in
general the(1, 6) matrix element is not zero,i.e., R16 6= 0, and, in particular, the strengths of the
bending magnets between the sextupoles can be adjusted so thatR16 = 2Di, whenceDf = Di. In
addition, it is possible to design the optics such thatR26 = 0, and henceD′

i = D′
f = 0. The last
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nonzero element,R56, describes the change in path length for different momentum deviations. It is
the analogue of the momentum compaction factor in a storage ring. Usually,R56 in the final focus
is so small, that its effect can be ignored.

What exactly is the idea behind the−I transform? We try to illustrate its merits. For simplicity
we consider the horizontal plane only. We assume that the sextupoles are thin, so that their effect
may be represented by a single nonlinear deflection, and we denote their integrated strengths byKs,1

andKs,2. The integrated strength of a sextupole in units of m−2 is defined as

Ks = ls
1

Bρ

∂2

∂x2
B(x)

∣∣∣∣∣
x=0

= ls
BT

(Bρ)a2
, (14)

wherels denotes the length of the sextupole,a its inner radius,BT the pole tip field at the radius
a, andBρ (= p/e) the magnetic rigidity. As before, the dispersion at the sextupoles is taken to be
equal toDi 6= 0 and the slope to be zeroD′

i = 0. We denote the particle coordinate just prior to the
first sextupole byxi, the associated trajectory slope byx′i, and the relative momentum deviation by
δ. Behind the first sextupole the slope of the particle trajectory becomes

x′1 = x′i +
1

2
Ks,1x

2
i = x′0 +

1

2
Ks,1x

2
β,i +Ks,1xβDiδ +

1

2
Ks,1D

2
i δ

2. (15)

In addition to the initial slope, we here recognize three nonlinear dependencies introduced by the
thin sextupole. The term proportional tox2

β represents a geometric aberration and the component
quadratic inδ a second order dispersive term. The mixed product proportional toxβδ is the chro-
matic term, which we want to generate in order to compensate the chromaticity of the final-focus
quadrupoles.

Now applying the−I transform, Eq. (12), withR26 = 0 andR16 = 2Di, we obtain the particle
coordinates and slopes just prior to the second sextupole:

x2 = −xβ −Diδ +R16δ = −xβ +Diδ (16)

x′2 = −x′β − 1

2
Ks,1x

2
i . (17)

Insertingxi = xβ,i + Diδ and applying the kick from the second quadrupole,∆x′ = Ks,2x
2
2, we

obtain

x′2 = −x′β − 1

2
Ks,1(x

2
β + 2xβDiδ +D2

i δ
2) +

1

2
Ks,2(x

2
β − 2xβDiδ +D2

i δ
2) (18)

For equal sextupole strengths,Ks,1 = Ks,2 ≡ Ks, the geometric aberrations and the second-order
dispersion terms cancel exactly, and all that is left is the chromatic component:

x′2 = −x′β − 2KsxβDiδ. (19)

The important conclusion is that a−I pair of sextupoles, as considered here, only generates chro-
maticity but no other low-order aberrations [27]. This conclusion still holds true if the vertical motion
is also included in the analysis. Of course, in reality the−I transform is not perfect, but itself varies
with the momentum deviation. This gives rise to higher-order chromo-geometric aberrations, which
ultimately limit the energy bandwidth of the final-focus system.

In circular accelerators dispersion is usually measured by sampling off-energy orbits with beam-
position monitors. In linear colliders, however, varying the energy at some point in the beam line
and observing the induced change in orbit measures theR16 matrix element between the point of
energy change and the BPMs downstream. In general this is not equal to the energy-position cor-
relation within the bunch [29]. The energy-position correlation in the bunch is a result of changes
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in the individual particle energies,—due to acceleration, synchrotron radiation or wake fields,—and
subsequent energy-dependent path lengths all along the beam line, whereas theR16 measurement
probes the effect of a change in acceleration at one particular location only.

Case Study I: Beam Dispersion
Conceive a scheme by which the horizontal and vertical energy-position correlation in the bunch

can be monitored. Hint: one possibility is to use two sets of wire scanners, each with three wires
tilted at different angles, e.g., at 90◦, 45◦ and 135◦ with respect to the horizontal plane, and separated
by a−I optical transform with bending magnets as in Eq. (12). [29]. A wire scanner is a device
which measures the horizontal or vertical or diagonal beam size. It is equipped with thin filaments
of, e.g., W or C, which are moved in small steps through the beam. Recording the scattering rate as
a function of wire position and correcting for the finite size of the wire, one can determine the rms
beam size at the wire location in the direction orthogonal to the wire filament.

Why could it be important to minimize such correlations in the beam?
Solution:We consider the−I transform of Eq. (12), and place two wire scanners at the initial

and final locations. The90◦ (vertical) filament of the wire measures the horizontal spot size. The
latter consists of a betatron part and a dispersive part, added in quadrature:

σx =
√
βxεx + (Dxδ)2. (20)

We refer to the first wire by the subindex1 and to the second wire by2. The particle position at wire
1 is

x1 = xβ +Dxδ + ∆Dxδ. (21)

It transforms into
x2 = −xβ +Dxδ − ∆Dxδ (22)

at the second wire. The term∆Dxδ is the incoming beam dispersion mismatch (or, more precisely,
the undesired energy-position correlation) which we want to measure and ultimately correct. This
term propagates like a free betatron oscillation.

The rms horizontal beam sizes are computed by averaging over the beam distribution. The beam
sizes at the two wire scanners are

σ2
x1 = 〈x1〉2 = 〈x2

β〉 + (Dx + ∆Dx)
2〈δ2〉, (23)

σ2
x2 = 〈x2〉2 = 〈x2

β〉 + (Dx − ∆Dx)
2〈δ2〉, (24)

with 〈x2
β〉 = βxεx and 〈δ2〉 = σ2

δ . The angular brackets indicate an average over the beam distri-
bution. Without horizontal dispersion mismatch (∆Dx = 0), the horizontal beam size measured on
the two wires is identical. The difference in the squared beam sizes thus provides a measure of the
mismatch,

σ2
x1 − σ2

x2 = 4Dx∆Dxσ
2
δ (25)

or [29]

∆Dx =
σ2

x1 − σ2
x2

4Dxσ
2
δ

, (26)

whereDx is the (matched) design dispersion at the wire, and the rms momentum spreadσδ must be
obtained from another measurement, typically from an additional wire scan at a location with large
dispersion.

Next we look at the situation in the vertical plane. The vertical particle position at the first wire
is

y1 = yβ + ∆Dyδ, (27)
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which, at the second wire, transforms into

y2 = −yβ − ∆Dyδ, (28)

where∆Dy denotes the vertical dispersion mismatch. Due to the absence of vertical bending, the
vertical beam sizes at the two wires are always equal, independent of the amount of vertical disper-
sion mismatch. The reason is that both terms on the right-hand side of Eq. (27) change sign, and
that a constant term, such asDx horizontally, is missing. However, beam sizes measured on wire
filaments tilted at 130◦ and 35◦ depend on the product of the vertical dispersion mismatch and the
horizontal design dispersion, and, thereby, they allow us to determine the vertical dispersion. A wire
scanner of this type is sketched in Fig. 3. The tilted wires measure the beam size in theu and v

x

y

x  w i r e
u  w i r e

v  w i r e

d i r e c t i o n  o f  w i r e  m o t i o n

Figure 3: Horizontal wire-scanner mount equipped with 3 filaments, which measure the beam size
in thex, u andv directions
.

directions defined by

u =
x+ y√

2
, (29)

v =
x− y√

2
. (30)

Computing the rms beam sizes at these tilted wires we find

σ2
u = 〈u2〉 =

1

2
(σ2

x + σ2
y) + 〈xy〉, (31)

σ2
v = 〈v2〉 =

1

2
(σ2

x + σ2
y) − 〈xy〉, (32)

so that, for each wire scanner,
σ2

u − σ2
v = 2〈xy〉. (33)

Inserting the expressions forx and y, Eqs. (21), (22), (27), and (28), the correlation〈xy〉 can be
written

〈x1y1〉 = 〈xβyβ〉 + ∆Dy(Dx + ∆Dx)σ
2
δ , (34)

〈x2y2〉 = 〈xβyβ〉 + ∆Dy(−Dx + ∆Dx)σ
2
δ . (35)
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Subtracting these two expressions, the terms〈xβyβ〉 (betatron coupling) and the terms proportional
to the horizontal mismatch,∆Dx, cancel, and it remains

〈x1y1〉 − 〈x2y2〉 = 2Dx ∆Dy σ
2
δ . (36)

Re-expressing〈xy〉 in terms of1
2
(σ2

u − σ2
v), and using Eq. (33), the vertical dispersion mismatch is

found [29]:

∆Dy =
σ2

u1 − σ2
v1 − σ2

u2 + σ2
v2

4Dxσ
2
δ

. (37)

The dispersion in a transport line is not uniquely defined. The dispersion mismatch we have
considered here is related to the energy-position correlation within the initial bunch distribution.
This can me made explicit by writing, e.g., the vertical dispersion mismatch as

∆Dy =
〈y1δ〉
〈δ2〉 . (38)

Correction of the mismatch implies that we remove the correlated component, so as to obtain the
new position coordinate

ycor = y1 − ∆Dyδ = y1 − 〈y1δ〉
〈δ2〉 δ. (39)

Squaring and averaging over the distribution we find

〈y2
cor〉 = 〈y2

1〉 −
〈y1δ〉2
〈δ2〉 ≤ 〈y2

1〉. (40)

Hence, the beam size after correction,〈y2
cor〉1/2, is always smaller than a beam size with some resid-

ual correlations,〈y2
1〉1/2.

In our example, the wire scanners are located a betatron-phase advance of 90◦ or an integer
multiple thereof away from the interaction point (IP). In this case, minimizing the beam size at the
wires amounts to minimizing the IP beam divergence.

There are many design constraints for a conventional final focus system:
1) The additional energy spread due to synchrotron radiation emitted in a bending magnet is

δ2
sr ≈

55

24
√

3
reλ̄eγ

5 θ
3

l2b
(41)

with γ = E/(mec
2), re the classical electron radius,θ the bending angle andlb the length of the

dipole magnet. If the radiation occurs after the (first) sextupoles, this energy spread is not chromati-
cally corrected and it increases the IP spot size as

∆σ∗
y

σ∗
y0

= ξyδsr. (42)

The term in Eq. (42) must be added in quadrature to the design spot sizeσy0, yielding a total spot
size

σ∗
y =

√
σ∗

y0
2 + ∆σ∗

y
2. (43)

2) Since the chromaticity is proportional to the beta function at the final quadrupoles, it grows
roughly inversely with the IP beta function,

ξy ≈ l∗/β∗
y , (44)
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wherel∗ denotes the effective free length from the last quadrupole to the IP.
3) The condition for the chromatic correction of the final quadrupoles by upstream sextupoles

with integrated strengthKs, in units of m−2, reads

|2DsKsβs| = ξy (45)

whereDs andβs are the horizontal dispersion and vertical beta function at the two sextupoles.
4) The dispersion scales with bending angle and length as

Ds ∝ lbθ (46)

5) A quadrupole gradient error∆K in the final focus will shift the waist position longitudinally
away from the collision point. This will cause a spot-size increase

∆σ∗
y

σ∗
y

= ∆K β, (47)

whereβ is the beta function at the location of the perturbation and we have assumed a phase advance
to the IP equal to an odd multiple ofπ/2, as is the case for most final-focus magnets. Again,∆σ∗

y is
added in quadrature; see Eq. (43).

In particular, changes in the horizontal orbit,∆x, at the second sextupole of a pair,e.g. due to
vibration or position drifts of quadrupoles located between the two sextupoles, induce a quadrupole
component,∆K = Ks∆x, and, thus, increase the IP beam spot size. The tolerance on the orbit
stability at the second sextupole, with regard to orbit perturbations generated between the pair of
sextupoles, is

∆x <
1

5Ksβs
, (48)

corresponding to a 2% increase in the absolute spot size.

Case Study II: Length Scaling of Final-Focus Systems
Assuming that the length of the final focus,lFF, increases in proportion to the length of the

bending magnets, derive a scaling law forlFF as a function ofγ, β∗ and∆x.
Solution:Combining Eqs. (41) and (46), we find that

δrms ∝ D3/2
s

l
5/2
FF

γ5/2. (49)

Together with Eqs. (42) and (44), and limiting the blow up∆σ∗
y/σ

∗
y to, e.g., a value of 0.2, this

translates into
D3/2

s γ5/2

l
5/2
FF

l∗

β∗
y

< constant. (50)

Solving Eqs. (48) and (45) forDs and using Eq. (44), one finds

Ds >
5

2
∆x ξy =

5

2
∆x

l∗

β∗
y

. (51)

Inserting this into Eq. (50), we obtain the desired scaling law [30]

lFF ∝ γ∆x3/5 l∗

β∗
y

. (52)
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This scaling law predicts many kilometers or even tens of kilometers of final-focus lengths for a
few-TeV collider. Therefore, novel final-focus concepts which may allow for a shorter system are
presently under investigation. One approach is to perform the chromatic correction with sextupoles
near the final quadrupole, accepting a nonzero slope of dispersion at the collision point [31]. Another
approach is the use of a high-frequency rf quadrupole, which can compensate for the correlated
energy spread across the bunch [32].

4 Collimation

Collimators are special elements which are positioned closest to the beam. Located somewhere
between the linac and the interaction point, their primary function is to remove beam halo at large
amplitudes, typically corresponding to 10–20 times the horizontal or 50–80 times the vertical rms
beam size. Additional collimation may be required also before or in the linac.

The removal of the halo particles is necessary, since, if lost at aperture restrictions in the final
focus or near the collision point, they can produce electromagnetic showers, muons and neutrons,
or, if traversing the final quadrupoles with a large transverse offset, they can emit wide-angle syn-
chrotron radiation. In either case, the halo particles may cause unacceptable background in the
particle-physics detector. For an ideal linear collider there are only a few unavoidable sources of
beam halo, such as scattering off residual gas or thermal photons (blackbody radiation). According
to conservative estimates, the known scattering sources result in only about102–104 halo particles
per bunch train [33, 34].

On the other hand, at the SLC, a large number of collimators were added over the first years
of operation in an attempt to render the experimental conditions acceptable. Occasionally, more
than 10% of the beam had to be scraped at the collimators over periods of hours. There was little
quantitave understanding or modeling of the observed halo at the SLC, but the suspected culprits
include magnet nonlinearities in the bunch compressor, longitudinal microwave instability in the
damping rings, beam dynamics in the linac, and higher-order dispersion.

It is expected that at future colliders an improved design of damping rings and ring-to-linac
transfer lines as well as a pre-collimation stage in front of the linac will reduce the halo reaching the
end of the linac by several orders of magnitude compared with the SLC value.

The collimators do not only remove halo, but they also serve a second purpose. In case of a failure
(e.g., mis-firing of ring extraction kicker or missing drive beam), they are the elements first hit by
a mis-steered beam. Therefore, a common collimator design requirement is that the collimators
should survive the single impact of one entire bunch train. After the loss of a mis-steered bunch train
and prior to the next linac pulse, the accelerator can be switched off, and then restart with a smaller
number of low-charge bunches.

For the parameters of all future linear colliders, guaranteeing the collimator survival is a major
challenge. Already at the SLC, which should have operated in a safe regime, many collimators were
damaged by the beam [35]. The collimator survival condition can be written as a lower limit on the
beam size at the collimator [36]

σxσy >
αTY

σUTSCp

dE
dx

(
nbNb

2π

)
(53)

with σUTS the ultimate tensile strength,αT the linear thermal expansion coefficient,Cp the heat
capacity,Y the elastic modulus,dE/dx the specific energy loss per unit length,nb the number of
bunches in the train, andNb the bunch population.
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As an example, taking material properties of copper,α = 1.7 × 10−5 K−1, E = 120 GPa,
Cp = 0.385 Jg−1K−1, dE/dx ≈ 1.44 MeV cm2/g, andσUTS = 300 MPa, we find

(σxσy)
1/2 ≥ 200 µm or βx,y ≥ 1000 km,

where, in the last step, we have assumed normalized emittances ofγεx = 0.68 µm andγεy =
0.02 µm at 1.5-TeV beam energy. Such enormous beta functions imply a long system and tight
tolerances.

Fortunately, the above estimates are too pessimistic. For many conceivable failure modes, the
emittance will blow up considerably before the beam hits the collimator. An example is shown in
Fig. 4. In the simulation of a mis-steered beam, rapid filamentation due to large energy spread leads
to an emittance increase by two or three order of magnitude. This suggests that the nominal beta
functions at the collimators could be reduced accordingly. The required values then would appear
more reasonable.

Figure 4: Emittance growth of a beam deflected in the early (bottom curve) or late part (top curve) of
the linac as a function of induced oscillation amplitude in units of the rms beam size [37]. Because
of rapid filamentation an unstable beam is accompanied by significant emittance blow up.

The development of a workable collimator system is still a matter of active research. The final
design will depend on the answers to the following questions:

• How large is the beam halo?

• How many muons produced per bunch train are acceptable for the detector?
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• Which are the failure modes that can mis-steer the beam, and what is the resulting emittance
increase for each of these?

The NLC design is considering the deployment of replacable or renewable collimators [38].

5 Linac

The linac is the heartpiece of a linear collider. It should not only accelerate the beam to high energy,
but in addition preserve the transverse emittance and also supply the beam stably to the downstream
final-focus and collimation systems. There are many perturbation sources which can cause pulse-to-
pulse variation in the linac trajectory, for example, mechanical vibration of magnet supports, ground
motion, small changes in the initial beam distribution from the damping ring, or drifts or fluctuations
in the rf systems. Most dangerous are changes which occur from one rf pulse to the next, because it
is extremely difficult to counteract these by feedback.

5.1 Dispersion

We will now look more closely at the beam dynamics in the linac, in order to understand how the
emittance growth can occur. Both the beam centroid and the individual beam particles perform
betatron oscillations along the linac. If we ignore the energy change due to acceleration, the betatron
oscillation for arbitary momentum errorδ is a solution of Hill’s equation

x′′ +
K(s)

1 + δ
x = 0, (54)

where the quadrupole focusing strengthK(s) in units of m−2 is a function of the longitudinal po-
sition s, and the prime denotes the derivative with respect tos. In the presence of dipole magnets
or quadrupole misalignments, the right hand-side of this equation would contain an inhomogeneous
term1/ρ, but we will ignore this for the moment. We next use a smooth approximation and replace
thes dependent force by a constant average. Instead of Eq. (54), we thus write

x′′ +
K

1 + δ
x = 0 (55)

where we may identifyK = 〈K(s)〉s with 1/β2, the inverse square of the smoothed beta function.
The solution can be written as an expansion inδ:

x = xβ +Dδ +D(2)δ2 + ... (56)

whereD is called the dispersion andD(2) the second order dispersion. Inserting this solution into
Eq. (55) and equating terms with equal powers ofδ, we obtain an equation for the on-energy betatron
motion

x′′β +Kxβ = 0 (57)

and, from the terms of first order inδ, an equation for the dispersion,

D′′ +KD = Kxβ . (58)

According to Eqs. (57) and (58) a betatron oscillation propogating through the linac resonantly
drives the dispersion: the natural oscillation frequencies ofxβ andD are identical andxβ enters as
an excitation on the right-hand side of Eq. (58).
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Dispersion in a linac arises from deflections by misaligned quadrupoles or by wake fields excited
by a beam passing off-centre through an accelerating structure. We can estimate the magnitude of
these effects considering a two-particle model, where the bunch is represented by a leading and
a trailing (macro-)particle, denoted by ‘1’ and ‘2’, each with half the bunch charge and separated
by, e.g., twice the rms bunch length. For simplicity, we will ignore acceleration and use a smooth
approximation for the betatron motion. We first look at the leading particle.

Case Study III: Linac Dispersion
(1) Dispersion for free betatron oscillation. Consider a beam deflected by an angleθ at s = 0.

The betatron motion of the leading particle is described by

x′′1(s) +
k2

β

1 + δ1
x1(s) =

θ

1 + δ1
δ(s) (59)

whereδ(s) is the Dirac delta function, indicating a single deflection of strengthθ at locations = 0,
andkβ =

√
K is the wave number of the betatron oscillation. Equation (59) describes the motion of

an individual off-momentum particle in the head of the bunch, as well as the centroid motion of the
bunch head if the latter experiences a centroid momentum offsetδ1. The equality of the particle and
centroid motion (for small bunch charges) is an advantage, since the single-particle dispersion can
be measured by observing the response of the centroid motion to an energy error.

Solve Eq. (59), linearize the solution inδ1 and determine the dispersion forkβsδ1 � 1.
Solution:This is the equation of a harmonic oscillator. The solution reads [39]

x1(s) =
θ

kβ

√
1 + δ1

sin
kβs√
1 + δ1

≈ θ

kβ

√
1 + δ1

[
sin kβs− 1

2
kβsδ1 cos kβs

]
(60)

or

x1(s) ≈ θ

kβ
sin kβs− 1

2

[
θs cos kβs +

θ

kβ
sin kβs

]
δ1 + O(δ2

1). (61)

From the term linear inδ1 we infer the dispersion at the bunch head,

D1(s) = −1

2

[
θs cos kβs+

θ

kβ
sin kβs

]
. (62)

The solution is illustrated in Fig. 5. The linear increase withs reflects that the dispersion is reso-
nantly driven [39].

(2) Dispersion behindπ bump. Orbit correction can be thought of as a superposition ofπ bumps.
Calculate the dispersion generated by a bump, represented by two kicksθ, at s1 = 0 ands2 = π/kβ.

Solution:The dispersion generated by a single kick ats = 0, D1(s), was computed in Eq. (62).
The dispersion generated by the second kick is obtained by simply shifting the argument bys2, i.e.,
it is given byD1(s − π/kβ). The dispersion arising from theπ bump is then the sum of the terms
generated by the two kicks [39]:

Dπ = D1(s) +D1(s− π/kβ) = − θπ

2kβ
cos kβs. (63)

The solution is illustrated in Fig. 6. While the orbit after theπ bump is zero, the dispersion prop-
agates at a constant amplitude. A perfectly centred orbit in the downstream linac section does not
imply that the dispersion is zero as well.

The linearly growing dispersion component in a linac arises from the energy dependence of the
oscillation frequency (chromaticity). Note that the definition of the linac dispersionD1 differs from
the periodic dispersion in a storage ring. Nevertheless, also the latter can be efficiently controlled by
‘resonant’ orbit bumps [40].
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Figure 5: Trajectory oscillation,x1kβ/θ for δ1 = 0, and resonantly growing dispersion at the bunch
head,D1kβ/θ, induced by a deflection ats = 0, according to Eqs. (61) and (62).

5.2 Pulse-To-Pulse Stability

Consider the situation where the vertical positions of the linac quadrupoles vary from one pulse to
the next. Each of the misaligned quadrupoles will induce a betatron oscillation travelling down the
linac. These betatron oscillations in turn give rise to dispersion. Due to the resonant excitation the
dispersion grows much faster than the betatron motion. For this reason, the blow up of the final
beam size at the end of the linac due to energy spread and accumulated dispersion may cause a
larger luminosity loss than the beam-beam separation induced by the centroid betatron motion.

If the ith quadrupole at locationi is misaligned by an amount∆y, the beam is deflected byθi =
Ki

q∆y, whereKq denotes the integrated strength of the quadrupole (in units of m−1). From the above
solution, the amplitude of the resulting dispersion at the end of the linac isDi = 1

2
θi(L − si), with

L denoting the full linac length andsi the position of the quadrupole. If a total ofNq quadrupoles
randomly shift in position by an rms value∆yrms the expectation value for the final dispersion is the
incoherent sum of the individual contributions, and a rough estimate for the rms dispersion at the
end of the linac reads [43]

Drms =
1

4
√

2
θrmsL

√
Nq =

1

4
√

2
KqL

√
Nq∆yrms. (64)

The factor1/
√

2 is the rms value of the cosine function in Eq. (62), where we have assumed a
uniform distribution of phase advances between the quadrupoles and the IP. In order to re-express
Kq in terms of the average beta function, we note that the betatron phase advance over a linac FODO
cell of lengthLcell is φcell ≈ Lcell/β ≈ π/2. The relation is strictly true for a 90◦ lattice. In addition,
the cell length and the quadrupole strength are roughly related asLcell ≈ 2

√
2/Kq, and we thus
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Figure 6: Trajectory perturbation,xπkβ/θ, and subsequent constant dispersion,Dπkβ/θ, induced by
aπ bump, according to Eq. (63).

approximateKq ≈ 2/β. Note that again we have considered a constant beam energy and a smooth
beta function.

Typically we require that the absolute beam size increase due to the additional dispersion gener-
ated between two linac pulses,

∆σy =
(√

σ2
y + (Drmsδrms)2 − σy

)
, (65)

should be less than 2%, orDrmsδrms < σy/5, whereσy =
√
εyβy is the rms beam size. We then

obtain the following tolerance on the pulse-to-pulse quadrupole stability:

∆yrms <
2
√

2σyβ

5
√
NqδrmsL

. (66)

Inserting parameters that approximately correspond to the CLIC linac,βy ≈ 7 m, γεy ≈ 5 × 10−9

m, L = 15 km, δrms ≈ 1%, γ ≈ 2 × 104, andNq = 1500, we find a tight tolerance:δyrms ≤ 1
nm, i.e., between two pulses the rms quadrupole motion in the CLIC linac should be less than 1
nanometer! The example parameters were chosen such that this estimate agrees with the result of
an elaborate simulation [41], which includes the actual energy profile along the bunch, wake fields
and acceleration. Refined analytical formulae and many other details on emittance preservation for
linear colliders can be found in Ref. [42].

5.3 Wake Fields

Until now we have only looked at dispersion. Dispersion increases the emittance because of the
nonzero energy spread across the bunch. A second important effect which degrades the linac emit-
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tance are transverse wake fields. The effect of the single-bunch wake field can be illustrated using
the two-particle model [12]. For simplicity, we consider only the case without momentum deviation
(δ1 = δ2 = 0). We have seen already that the bunch head performs the usual betatron motion

x′′1 + k2
βx1 = 0 (67)

and that the solution of Eq. (67) isx1 = x̂ cos kβs. In the two-particle model, the equation of motion
for the trailing macro-particle reads

x′′2 + k2
βx2 = −NbreW1

2γ
x1. (68)

The term on the right-hand side represents the wake field excited by the leading particle with a charge
of Nb/2. The strength of the wake,W1, in units of inverse cubic length, depends on the distance of
the bunch head and tail, hence on the rms bunch length. Typically, for short bunches,W1 < 0 and
the wake is ‘defocusing’,i.e., the tune shift for a rigid coherent betatron oscillation is negative.

Since the oscillation frequencies ofx1 andx2 are the same, the trailing particle is resonantly
driven. The solution of Eq. (68) becomes

x2 = x̂ cos kβs− ΥBBU
s

L
x̂ sin kβs (69)

where

ΥBBU = −NbreW1L

4γ
√
K

(70)

is called the beam break up parameter, andL denotes the total length of the linac. We have chosen
the initial conditionsx1(0) = x2(0) andx′1(0) = x′2(0) = 0.

5.4 Acceleration

So far we have completely ignored the main task of a linac, which is to accelerate,i.e., to increase
the beam energy. If we include acceleration, Eq. (67) for the head particle is replaced by

d

ds

[
γ(s)

dx1

ds

]
+ k2

βx1 = 0 (71)

whereγ(s) = γi(1 + αs) is the relativistic factor, withγi = γ(0) andα is a constant proportional to
the acceleration gradient. We here again assumeδ1 = δ2 = 0. The solution to Eq. (71) depends on
the way the betatron wavenumber varies along the linac. Most future designs assume a scaling close
to

kβ ≈ constant (72)

which implies
β ≈ γ1/2. (73)

This scaling can be realized by increasing the lengths of all elements as
√
γ and keeping the

quadrupole pole-tip fields constant. Introducing the new independent variablez =
√

1 + αs, Eq.
(71) is rewritten as

z2 d
2

dz2
x1 + z

d

dz
x1 + 4

k2
β

α2
z2x1 = 0. (74)
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This is a Bessel equation. For the initial conditionx1(0) = x̂, x′1(0) = 0 the solution for the head of
the bunch reads

x1 = −πkβ

α
x̂

[
Y1

(
2kβ

α

)
J0

(
2kβ

α

√
1 + αs

)

−Y0

(
2kβ

α

)
J1

(
2kβ

α

√
1 + αs

)]
.

A useful relation exists between the modified Bessel functionsY0,1 andJ0,1,

Y0(w)J1(w) − Y1(w)J0(w) =
2

πw
, (75)

and, for large arguments,w � 1, these Bessel functions may be further approximated as

J0(w) ≈ −Y1(w) ≈
√

2

πw
cos

(
w − π

4

)
, (76)

J1(w) ≈ Y0(w) ≈
√

2

πw
sin

(
w − π

4

)
. (77)

Using the above relations, we can rewrite our solution as

x1(s) ≈ x̂

[
1

(1 + αs)1/4
cos

(
2kβ

α
(1 −√

1 + αs)

)]
. (78)

Note that the oscillation amplitude decreases as|x1| ∝
√
β/γ ∼ γ−1/4, due to the combined effect

of adiabatic damping and variation in focusing strength along the linac.
The equation of motion for the tail particles again includes the wake field:

x′′2 +
dγ/ds

γ
x′2 + k2

βx2 = −Nr0W1

2γ
x1 (79)

with z =
√

1 + αs. The solution is

x2(z) = x1(z) − 2Nr0W1

γα2

∫ z

1
dz′G(z, z′)y1(z

′) (80)

with the Green function

G(z, z′) =
π

2
z′
{
J0

[
2kβ

α
z′
]
Y0

[
2kβ

α
z

]
− Y0

[
2kβ

α
z′
]
J0

[
2kβ

α
z

]}
. (81)

In the limitα � kβ this simplifies to

G(z, z′) ≈
√
z′

z

α

2kβ
sin

(
2kβ

α
(z − z′)

)
(82)

where againz =
√

1 + αs. The final solution is

x2(s) ≈ x̂
1

(1 + αs)1/4

[
cos

(
2kβ

α
(
√

1 + αs− 1)

)

−Nr0W1(σz)

2γiαkβ

(√
1 + αs− 1

)
sin

(
2kβ

α
(
√

1 + αs− 1)

)]
.
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Hence, fors = L andαL� 1, the beam break up parameter with acceleration is

ΥBBU = −NW1r0L

2kβ

1√
γfγi

. (83)

It can be obtained from the no-acceleration result by simply replacing1/γ with 2/
√
γfγi.

Assuming a constant beta function along the linac instead ofβ ∝ γ1/2, a similar expression is
found; see Ref. [12]. In this case, the factor1/γ in the no-acceleration version ofΥBBU must be
replaced by1/γf ln(γf/γi).

Thus, it is often convenient to perform calculations first without acceleration and then to include
the latter at the end using the appropriate substitution rule.

For the Stanford Linear Collider (SLC),ΥBBU ≈ 15, which means that if the beam was injected
with a certain betatron oscillation, the oscillation of the tail increased by a factor of 15 along the
linac. For the proposed 3-TeV CLIC linac, we computeΥBBU ≈ 5.

(3) Dispersion with wake field. The equation of motion for the tail of the bunch includes the effect
of the wake generated by the bunch head as an additional excitation term on the right-hand side,

x′′2(s) +
k2

β

1 + δ2
x2(s) =

θ

1 + δ2
δ(s) − Nr0W1

2γ(1 + δ2)
x1(s). (84)

Solve this equation forδ1 = 0, determine the trajectory forδ2 = 0, and, by linearizing inδ2, the
additional dispersion arising from the wake field, possibly using the beam break up parameterΥBBU.
Acceleration can be approximately included ‘a posteriori’ by inserting the correctly modified value
of ΥBBU. The motion of the head particle was calculated above. Forδ1 = 0 it reads

x1(s) =
θ

kβ

sin kβs. (85)

Solution:The solution is the sum of an oscillation at the natural frequency of the tail particle,
kβ/

√
1 + δ2 and a response to the head driving force at frequencykβ. We thus make the ansatz

x2(s) = A sin kβs+B sin
kβ

1 + δ2
+ C cos

kβ

1 + δ2
s. (86)

Inserting this ansatz into Eq. (84) and also considering the two initial conditionsx2(0) = 0 and
x′2(0) = x′1(0) = θ, we can solve for the three constants of integration,A, B andC. We then obtain
the solution of Eq. (84) as [39]

x2(s) =
θ

kβ

(
1√

1 + δ2
sin

kβs√
1 + δ2

− ΥBBU2

Lkβδ2

(
sin kβs−

√
1 + δ2 sin

kβs√
1 + δ2

))
.

For kβsδ2 � 1 we can again expand inδ2. We find

x2(s) =
θ

kβ
sin kβs− ΥBBUθ

kβL

(
s cos kβs− 1

kβ
sin kβs

)

−ΥBBUθ

4kβL

(
kβs

2 sin kβs− s cos kβs+
1

kβ

sin kβs

)
δ2

−1

2

(
θs cos kβs+

θ

kβ
sin kβs

)
δ2. (87)
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We identify the term linear inδ2 with the tail dispersion

D2(s) = −ΥBBUθ

4kβL

(
kβs

2 sin kβs− s cos kβs+
1

kβ
sin kβs

)

−1

2

(
θs cos kβs +

θ

kβ

sin kβs

)
. (88)

The solution is sketched in Fig. 7. Note that the wake-induced dispersion is doubly resonantly driven,
and grows quadratically with distance!

Figure 7: Growing oscillation of the trailing macroparticle,x2kβ/θ, due to beam break up, and the
doubly resonantly driven tail dispersion,D2kβ/θ/10, induced by a deflection ats = 0 according to
Eq. (87), forΥBBU/(kβL) = 0.08 (SLC value).

At the end of the linac the amplitude ratio of the wake-induced dispersion and the regular disper-
sion (without the wake-field effect) generated by a deflection early in the linac isΥBBU/2. Hence, at
the SLC, withΥBBU ≈ 15, the wake-induced dispersion was about 7 times larger.

(4) BNS damping. The effect of the wake field on the tail of the bunch can be partially com-
pensated by increasing the focusing strength for the tail particles, fromkβ to kβ + ∆kβ [44]. For
a free betatron oscillation propagating through the linac, the additional focusing counteracts the
wake-field ‘defocusing’ for a coherent betatron oscillation. To this end either rf quadrupoles with
rapidly varying field can be used [45] or the position of the bunch can be adjusted with respect to
the crest of the rf wave so that the tail acquires less energy than the head.

With BNS damping the equation of motion for the trailing macroparticle is

x′′2(s) +
(k2

β + ∆k2
β)

1 + δ1
x2(s) =

θ

1 + δ2
δ(s) − Nr0W1

2γ(1 + δ2)
x1(s) (89)
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where againx1(s) = θ
kβ

sin kβs assumingδ1 = 0. BNS damping is achieved if

(
1 +

∆kβ

kβ

)2

= 1 +
2ΥBBU

kβL0
. (90)

Show that under this condition and withδ2 = 0 the orbit of a trailing particle is identical to that of
the bunch head:x2(s) = x1(s).

Evaluate the dispersion of the trailing particlex1 with BNS damping, assuming∆kβ � kβ,
δ � 1, kβsδ � 1, ΥBBU/(kβL) � 1, andδ � 2ΥBBU/(kβL0).

Solution:The solution to Eq. (89) is [39]

x2(s) =
θ

(kβ + ∆kβ)
√

1 + δ2
sin

(kβ + ∆kβ)s√
1 + δ2

− 2ΥBBUθ

kβL
(
1 + δ2 −

(
1 +

∆kβ

kβ

)2
) ×

[
1

kβ

sin kβs−
√

1 + δ2
kβ + ∆kβ

sin
(kβ + ∆kβ)s√

1 + δ2

]
. (91)

Eliminating(kβ + ∆kβ) using the BNS condition, Eq. (90), this solution simplifies to [39]

x2(s) = x1(s) +
θδ2

kβ

(
δ2 − 2ΥBBU

kβL

)


√√√√1 + 2ΥBBU

kβL

1 + δ2
sin


kβs

√√√√1 + 2ΥBBU

kβL

1 + δ2




− sin kβs] = x1(s) +D2(s)δ2 + O(δ2
2) (92)

with

D2(s) = − θL

2ΥBBU

[
sin

(
kβs+

ΥBBU

L
s
)
− sin kβs

]
. (93)

Note that with BNS damping the tail particle experiences no regular dispersion, and the wake-
induced dispersion is suppressed by a factor1/ΥBBU. The solution is illustrated in Fig. 8.

(5) Dispersion from a misaligned structure. The kickθ discussed above affected both head and
tail particles. If a structure, e.g., an rf accelerating cavity, is misaligned, only the tail receives a
kick θs while the head orbit is unperturbed, and we can write the centroid motion of head and tail
asx1(s) = 0, andx2(s) = θs

kβ
sin kβs, assuming that the centroid momentum errors are zero. Orbit

correction will apply a kickθ = −θs/2 to both the head and tail particles in order to correct the
centroid motion.

Compute the dispersion for a particle in the bunch tail after orbit correction, assuming that the
BNS condition is fulfilled. Compare the result with the dispersion generated by aπ bump through a
misaligned quadrupole given by Eq. (63).

Solution:After correcting the centroid orbit behind the misaligned structure, the particle motion
for the head and tail of the bunch is roughly given by (see Eq. (60)):

x1(s) ≈ − θs

2kβ

√
1 + δ1

sin
kβs√
1 + δ1

(94)

x2(s) ≈ θs

kβ

√
1 + δ2

sin
kβs√
1 + δ2

− θs

2kβ

√
1 + δ2

sin kβs. (95)

Dispersion generated by the second term in the equation forx2 will not be significant if the BNS
condition is fulfilled; see Eq. (93). Thus the dispersion in the tail comes mainly from the first term
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Figure 8: Oscillation of the trailing macroparticle,x2kβ/θ, with wake fields and BNS damping, and
the tail dispersion,D2kβ/θ, induced by a deflection ats = 0, according to Eqs. (92) and (93), for
ΥBBU/(kβL) = 0.08 (SLC value).

on the right hand side, which represents the deflection by the wake field. It is approximately given
by Eq. (62) withθ = θs/2 [39]:

D2(s) ≈ −θs

4

[
s cos kβs+

1

kβ

sin kβs

]
. (96)

The dispersion for the head particles is also obtained from Eq. (62), but withθ = −θs/2. It thus is of
the same magnitude, but of opposite sign:D1(s) = −D2(s). Therefore, even after perfectly steering
the orbit through the centre of all BPMs and quadrupoles, there can still be significant dispersion
across the bunch. This solution is illustrated in Fig. 9.

5.5 Quadrupole and Structure Misalignment

Note that, for a quadrupole misalignment, orbit correction viaπ bumps leads to a constant residual
dispersion, whereas in case of a misaligned structure the orbit is corrected essentially by a single
deflection and as a result the dispersion grows resonantly.

We can evaluate the magnitude of the deflection which is expected from a single structure mis-
alignment, using again the two-particle model. Traversing a structure which is misaligned by∆xacc,
the tail will experience a kick

θs =
Nbre(W1lacc)

2γ
∆xacc (97)
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Figure 9: Dispersion for particles in bunch head and tail,Dkβ/θs, induced by a misaligned structure
at s = 0 deflecting the tail byθs and subsequent orbit correction, according to Eq. (96). The
dispersion functions at the head and the tail are of opposite sign and both grow linearly along the
linac, after Ref. [43].

wherelacc denotes the length of the misaligned accelerator structure, andW1 the transverse wake
field per unit length in the structure, at a distance of 1–2σz. With γ = 2 × 104, N = 4 × 109,
W1 ≈ 4 × 106 m−3, lacc = 0.5 m, we findθs ≈ 6 × 10−4 ∆xacc[m].

On the other hand, approximating the integrated quadrupole strength asKq ≈ 2/β, for a
quadrupole misaligned by∆xquad we estimate the deflection from a displaced quadrupole as

θ = Kq∆xquad ≈ 2

β
∆xquad, (98)

or θ ≈ 2 × 10−1 ∆xquad[m]. For equal displacement (∆xacc = ∆xquad), the deflections from a
quadrupole are 300 times stronger.

5.6 Dispersion-Free Steering

To detect and correct the residual dispersion and the wake field effects, special steering algorithms
have been developed. The main idea is that not only the nominal orbit is corrected, but simulta-
neously also the orbits measured for different bunch charges, bunch lengths or linac-quadrupole
strengths. Since the orbit difference is proportional to the dispersion or wake-field effects, the latter
are then minimized as well.

One of the most important and fruitful algorithms is thedispersion-free steering[46]. Look again
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at the equation of betatron motion in the linac:

x′′ +
K

1 + δ
x =

∑
i

Ki∆xi

1 + δ
δ(s− si), (99)

where on the left we used a smooth approximation for the focusing, and on the right we introduced
the deflections from off-centre quadrupoles. The displacement of the quadrupole with respect to the
nominal beam position is denoted∆xi.

If we change the strength of all quadrupoles by∆K, or ∆Ki, the on-momentum trajectory
(δ = 0) becomes

x′′ +K
(
1 +

∆K

K

)
x =

∑
i

(
1 +

∆Ki

Ki

)
∆xi δ(s− si). (100)

We observe that Eq. (99) for a particle trajectory withδ 6= 0, is formally identical to Eq. (100) for a
trajectory withδ = 0 and modified quadrupole strength

∆K

K
=

δ

1 + δ
. (101)

The idea of dispersion free steering is then, rather than to change the beam energy, to vary the relative
strength of all quadrupoles, and to minimize the resulting change in beam orbit. In addition, as for
conventional orbit correction also the absolute orbit readings are reduced.

The principle and benefit of dispersion-free steering is illustrated schematically in Fig. 10 [43].
Standard orbit correction will steer the beam through the centre of all BPMs, which are assumed to
be fixed to the quadrupole centres. A misaligned quadrupole will provoke a bump. Although the
orbit perturbation is localized, this bump will generate dispersion. The dispersive trajectory becomes
visible as a change in beam orbit, when the strengths of all dipole and quadrupole correctors are
scaled. Subsequent minimization of the difference trajectory results in a more efficient compensation
of the misalignment, which no longer generates dispersion.

In the following we briefly outline the mathematical algorithm of dispersion-free steering [43].
The orbit generated at thejth BPM by all upstream deflectionsθi (due to misalignments and steering
coils) is

xj =
j−1∑
i=1

Ri→j
12 θi (102)

where

Ri→j
12 =

√
Ei

Ej

√
βi

xβ
j
x sin

[
ψi

x − ψj
x

]
(103)

and we used the beam energies, beta functions, and betatron phases at correctori and monitorj.
Scaling all quadrupoles and dipoles in the lattice byκ = 1 + ∆K/K results in the orbit change

∆xj(κ) = xj(0) − xj(κ) =
j−1∑
i=1

(Ri→j
12 − Ri→j

12,κ)θi (104)

whereRi→j
12,κ denotes theR matrix for the scaled lattice.
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c o r r e c t o r  k i c k  o r  r e a l i g n m e n t

f o c u s i n g  q u a d r u p o l e s  
w i t h  B P M s( a )

 ( c )

( b ) e x t r a  q u a d r u p o l e  
d e f l e c t i o n

c o r r e c t o r  k i c k s

Figure 10: Schematic of dispersion-free steering, after Ref. [43]: (a) standard orbit correction which
minimizes BPM readings at misaligned quadrupole thereby generating dispersion; (b) an extra de-
flection induced by the misaligned quadrupole which becomes apparent when quadrupoles and
dipole correctors are scaled; (c) the result of the dispersion-free correction, which eliminates or
compensates the kick from the misaligned quadrupoles.
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We introduce vectors for the BPM measurements and the associated weights:

~B =




x1

∆x1(κ1)
∆x1(κ2)
∆x1(κ3)

x2

∆x2(κ1)
∆x2(κ2)
∆x2(κ3)

...
∆xn(κ3)




and ~W =




W 1

∆W 1
∆(κ1)

∆W 1
∆(κ2)

∆W 1
∆(κ3)
W 2

∆W 2
∆(κ1)

∆W 2
∆(κ2)

∆W 2
∆(κ3)
...

∆W n
∆(κ3)




. (105)

The weights for the nominal orbit are a combination of the statistical variation,σ2(xj), and the BPM
misalignment or electronic offset,σ2

BPM:

W j =
1

σ2(xj) + σ2
BPM

. (106)

The weight for the difference orbit includes the statistical contributions,σ2(xj) andσ2(xj, κ), for
the two orbits whose difference is computed, as well as a systematic error representing orbit or BPM
drifts between the measurements,σ2

sys:

W j
∆(κi) =

1

σ2(xj) + σ2(xj, κi) + σ2
sys

. (107)

After averaging over many orbits the statistical contributions become negligible and theχ2 of the
measurement reads

χ2 ≈∑
j


 xj2

σ2
BPM

+
∑
κi

∆xj2
(κi)

σ2
sys


 . (108)

Finally we define a correlation matrix

A =




R1→1
12 0 ... 0

R1→1
12,κ1

0 ... 0
R1→1

12,κ2
0 ... 0

R1→1
12,κ3

0 ... 0
R1→2

12 R2→2
12 ... 0

R1→2
12,κ1

R2→2
12,κ1

... 0
...




(109)

where theR12s are the transport-matrix elements between the correctors and BPMs. The dispersion-
free trajectory is obtained by solving for the vector~X of corrector settings which simultaneously
minimizes the trajectory offsets and the dispersion:

min
X

|| ~W ( ~B + A ~X)||2. (110)

Several variations of this method have been tried successfully at the SLC. For example, instead
of changing the strength of the quadrupoles, one could compare the orbits of electron and positron
beams (the opposite charge is equivalent to a−200% change in focusing strength), and the least-
square minimization was replaced by a singular-value decomposition [47, 48]. In addition, it is
possible to extend the dispersion-free algorithm so that it also minimizes the wake-field effect for
coherent betatron oscillations [49].
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5.7 Computer Simulations

Complementing the analytical treatment described above, dedicated computer programmes like
LIAR [50], MUSTAFA [51], or PLACET [52] can provide improved estimates of emittance growth
and beam stability in linear-collider linacs. These computer simulations include acceleration, magnet
and structure misalignments, BPM errors, realistic steering procedures, correction algorithms, orbit-
feedback systems, and both single and multi-bunch wake fields. It is reassuring that the measured
emittance growth along the SLAC linac was reproduced in a simulation [53].

6 Damping Rings

The purpose of the damping rings is to reduce the phase space volume of a beam produced by a
positron source or an electron gun so that the design beam emittances are obtained. The transverse
emittances typically must be decreased by several orders of magnitude. The damping ring accom-
plishes this via radiation damping. The latter is characterized primarily by two parameters: the
damping time and the equilibrium emittance.

6.1 Synchrotron Radiation

The equation describing the horizontal emittance evolution in the damping ring is

τx
dεx
dt

= −2(εx − εx,∞) (111)

with the solution
εx(t) = εx,0e

−2t/τx + εx,∞
(
1 − e−2t/τx

)
(112)

whereτx is the horizontal radiation damping time,εx,0 the initial emittance of the injected beam and
andεx,∞ the equilibrium emittance. If the ring is large enough, several bunch trains can be stored
simultaneously, and an individual bunch train may stay in the ring for a correspondingly longer time.
What matters for the performance is the effective damping timeτeff = τx/ntrain with ntrain denoting
the number of trains stored. If the effective damping time is1/(3frep), or smaller,—wherefrep is
the repetition rate of the collider,—the initial emittance can be reduced by a factore−6 ≈ 0.002
(depending on the values ofεx,0 andεx,∞), or more.

The expression for the horizontal damping time is

τx =
1

CdJxE3〈1/ρ2〉 (113)

whereE is the beam energy,ρ the bending radius,Jx ≈ 1 the damping partition number, and
Cd = cr0/(3m

3
ec

6) ≈ 2 × 103 m2 GeV−3 s−1, whereme ≈ 9.11 × 10−31 kg denotes the electron
mass. For example, withE = 2 GeV andρ ≈ 10 m, we findτx ≈ 6 ms. We will see that for
obtaining smaller equilibrium emittances it is desirable to increase the bending radius, and, hence,
the circumference. In order to keep the effective damping timeτeff ∝ ρ/E3 constant, the beam
energy then must also be increased asE ∝ ρ1/3. This constraint could be relaxed if most of the
energy loss occurs in special damping wigglers and not in the arcs [54]. We will not make that
assumption.

After a sufficiently long store time the beam loses the memory of the injection conditions, and
its emittance acquires an equilibrium value [20, 55]

εx,∞ =
Cq

Jx
γ2θ3F (114)
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whereθ denotes the bending angle per dipole, assuming all dipoles are identical, andCq = 3.83 ×
10−13 m. The functionF is determined by the lattice,

F ≡ ρ2

l3
〈H〉ρ, (115)

with l the length of a dipole, and

〈H〉ρ =
1

l

∫ l

0
(γxD

2
x + 2αxDxD

′
x + βxD

′
x
2
)ds. (116)

HereDx is the dispersion,βx the beta function, andαx = −1
2
β ′

x, andγx = (1 + α2
x)/βx. In the

following exercise we drop the subindexx. The normalized emittance,γε∞, increases as the third
power of energy and bending angle. If the length per cell is held constant, and assumingE ∝ ρ1/3, so
as to maintain a constant effective damping time, the normalized emittance decreases inversely with
the square of the radius,i.e., γε ∝ ρθ3 ∝ 1/ρ2, where we consideredF ≈ constant andθ ∝ 1/ρ.

Case Study IV: Minimum Emittance Lattice
Assume thatD = D′ = 0 at one end of a dipole, so as to produce a dispersion-free straight

section, and that the beta function has a minimumβ0 at some positions0. Determine the values
of β0 and s0 which minimize the functionF . Recall that inside the dipole magnet the equations
describing beta function and dispersion are2ββ ′′ − β ′2 − 4 = 0, andD′′ = 1/ρ.

Solution: the general form of Twiss parameters and dispersion functions in a region without
quadrupoles and with bending radiusρ (ignoring the weak focusing from the dipole) is

β = β0 +
(s− s0)

2

β0
(117)

α = −1

2
β ′ (118)

γ =
1

β0
(119)

D′ =
s

ρ
(120)

D =
1

2

s2

ρ
(121)

(122)

Inserting this into Eq. (116), we find [55]

〈H〉ρ =
1

l

∫ l

0

(
1

β0

s4

4ρ2
− (2 − s0)

β0

s3

ρ2
+

(s− s0)
2

β0

s2

ρ2
+ β0

s2

ρ2

)
ds

=
1

3

l3

ρ2

[
β0

l
+

l

β0

(
s2
0

l2
− 3

4

s0

l
+

3

20

)]
. (123)

This expression becomes minimum fors0/l = 3/8 andβ0/l =
√

3/320, whereF = 0.065 [55].

As an example, consider a damping ring accommodating 100 bending magnets, each with angle
θ = 2π/100 ≈ 0.06 rad, lengthl = 0.6 m, ρ = 10 m, andE = 2 GeV (γ ≈ 4000). ForF = 0.065
the equilibrium emittance would be

γεx ≈ 3.4 × 10−7 m, (124)
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Table 2: Example damping ring parameters for 3-TeV linear collider, scaled from the 1-TeV lattice
of Ref. [56]

variable symbol value
energy E 3.0 GeV
circumference C 700 m
hor./vert. emit. γεx,y 5/0.1 × 10−7 m
hor. beam size σx 30 µm
vert. beam size σy 4 µm
hor./vert. half ap. hx,y 2 cm
av. beta function βx,y ∼ 10 m
bunch length σz 1.8 mm
train length ltrain 154 ns
no. of bunches nb 154
bunch population Nb 4 × 109

bunch spacing Lsep 0.2 m

close to the requirements of a future multi-TeV collider (see Table 1).
However, in practice it is not easy to design a lattice with the optimum parameters calculated

above. For a more realistic lattice, composed of a symmetric achromatic bend connecting two
dispersion-free straight sections, the minimum value ofF turns out to be 0.1054 [55]. Then, in
order to still achieve the desired horizontal emittance, in our example the number of bending mag-
nets must be increased by a factor(0.1054/0.065)1/3, or 20%, namely from 100 to 120.

Table 2 lists a crudely scaled tentative parameter set for the damping ring of a 3-TeV CLIC
collider. Later on we will use these parameters for estimating various instability growth rates. Note
that the rms bunch length in the ring is a few millimeters, whereas in the linac and at the collision
point bunch lengths of the order 30–150µm are required. A similar situation is encountered for NLC
and TESLA. Therefore, all linear-collider designs foresee a bunch compression after extraction from
the damping ring and prior to injection into the main linac.

6.2 Intrabeam Scattering

Hitherto, we have calculated only the ideal horizontal emittance due to synchrotron radiation alone.
For small beam sizes, multiple scattering of particles inside the bunch off each other will increase
all three emittances. This effect is known as ‘intrabeam scattering’.

The equilibrium emittance with intrabeam scattering can be obtained from a balance of two
excitations and one damping term as [57]

εx =
1

4
τx
[
QSR

x +QIBS
x

]
(125)

where

QSR
x =

55

24
√

3

r2
ec

α
γ5
〈
Hx/ρ

3
〉

(126)

refers to the quantum excitation and

QIBS
x =

〈
Nr2

ecβx

8πγ3σ2
xσyσz

f(χm)Hx

〉
(127)
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to the intrabeam scattering. The latter occurs all around the ring, whereas the former comes
only from the dipoles (since1/ρ ≈ 0 at other places, if the beam has no large offsets in
the quadrupoles). In Eq. (127) we used the following symbols [57]:χm = reβ

2
x/(bmaxγ

2σ2
x),

bmax = (N/((2π)3/2σxσyσz))
−1/3, Hx = 1

βx

[
D2 + (βD′ − 1

2
β ′D)2

]
, andf(χm) ≈ 50 − 200 for

χm ≈ 10−5 − 10−9. The angular brackets indicate an average over the ring:〈(...)〉 ≡ 1/C
∮
(...)ds.

Combining the above expressions we obtain

εx =
τx
4

[
55

24
√

3

r2
ec

α
γ5

〈Hx

ρ3

〉
+

Nr2
ecf(χm)

8πγ3ε
3/2
x

√
κσz

〈 Hx

β
1/2
y

〉]
(128)

with κ = εy/εx, andσz the increased bunch length [57]

σz ≈ σz0

(
1 +

Nr2
ecβτδf(χm)

σ2
δ,032πγ3σ2

x0σy0σz0

)1/2

. (129)

The subindex0 denotes the beam sizes and rms energy spread without intrabeam scattering, andτδ
the longitudinal damping time.

The equilibrium emittance with intrabeam scattering can be estimated by solving Eqs. (128)
and (129) numerically, or it can be calculated more accurately using computer codes such as ZAP
[58, 59]. Typically, intrabeam scattering increases the equilibrium emittance of a linear-collider
damping ring by 20–50%.

6.3 Emittance Measurements

How can one verify that the expected emittance has been achieved? The Accelerator Test Facility
(ATF) [60] at KEK in Japan is a prototype damping ring, which was built to stably produce a low
emittance beam as required by a future 1-TeV linear colliders, and to develop adequate tuning tech-
niques. Over the last few years a large part of the ATF machine studies were devoted to measuring
the vertical emittance. Unlike the horizontal emittance, the vertical emittance is not determined by
the design accelerator optics, but arises from residual vertical dispersion and linear coupling.

In light sources often the image from a synchrotron light monitor is used to infer the beam size
σy (or the beam divergenceσy′) and from this the emittance viaεy = σ2

y/βy (or εy = σ′
y
2βy), taking

into account possible corrections for the depth of field and diffraction [61]. This approach is not
directly feasible for the small emittances in the linear collider damping ring. Using standard devia-
tions for a Gaussian distribution, the diffraction-limited photon beam emittance isεγ ∼ λγ/(4πγ),
from Heisenberg’s uncertainty principle, whereλγ denotes the photon wavelength. If no other in-
formations are available, it is not possible by conventional imaging techniques to resolve electron
beam emittances smaller than the diffraction-limited photon-beam emittance. However, often,e.g.,
when the photon divergence is much larger than the beam divergence, the beam emittance can still
be determined from a photon image, using the known optical functions at the light emission point.

For soft x-rays withλ ≈ 5 nm as monitored at the LBNL ALS, the photon-beam diffraction limit
is reached atεγ ≈ 400 pm, still much larger than the ATF design vertical emittance of 10 pm. Two
possibilities to measure the ATF beam emittance would be x-ray imaging with compound refractive
lenses (CRL) or using a pin-hole camera at sub-Angstrom wavelengths [62]. At the ESRF, CRLs
provide a beam-size resolution of 4µm for a photon energy of 23 keV [63], and an x-ray pin-hole
camera may diagnose emittances down to 5 pm, at typical photon energies of 40 keV [64].

One can also take advantage of the closeness to the diffraction limit and infer the beam size
from the visibility of an interference pattern [65, 66]. At the KEK ATF a stellar interferometer
is employed for this purpose. A simplified schematic is shown in Fig. 11. Quasi-monochromatic
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synchrotron light atλ = 500 nm is sent through a double slit, and the interference pattern observed
on a screen behind. An ideal point source creates a perfect interference pattern. If the source has a
finite vertical extent, the contrast of the interference is reduced. This can not only be used to measure
the emittance, but has also proven to be a valuable online tuning tool for optimizing the emittance,
e.g., by varying bumps or skew quadrupoles in the ring. The most precise emittance values are
obtained by measuring the interference contrast as a function of distance between the two slits. The
resolution is presently limited by vibrations of the interferometer support platform and the required
exposure time (several ms).

s c r e e n

b e a m

p o i n t

d o u b l e  s l i t

Figure 11: Schematic of ATF beam size measurement using stellar interferometer [65, 66].

In addition to the interferometer, the ATF team has developed three other procedures for measur-
ing the vertical beam emittance in the damping ring.

The rms energy spread can be inferred from the beam size at a high-dispersion point, either in
the ring or after extraction. Because of intrabeam scattering the energy spread increases with bunch
current. The intrabeam-scattering blow up depends on the transverse and longitudinal emittances. If
horizontal and longitudinal emittances are known, the vertical emittance may be obtained by fitting
the measured increase in energy spread to theoretical expressions [57, 67, 68].

A similar technique can be applied to the beam lifetime, which for small emittances is limited
by the Touschek effect [69]. This refers to binary collisions of particles within a bunch, by which so
much energy is transferred from transverse into longitudinal phase space, that the scattered particles
leave the stable rf bucket. Since it is caused by a particle-particle collision, the loss rate due to the
Touschek effect is quadratic in the bunch population, and inversely proportional to the bunch volume.
Again, if horizontal emittance and bunch length are known, the measured beam lifetime as a function
of current can be used to estimate the vertical emittance by fitting to the analytical expressions [70].
Since the theory of the Touschek lifetime is simpler than the theory for intrabeam scattering, and
since, in addition, an increase of the energy spread could also be caused by longitudinal instabilities,
the lifetime method appears to be the most reliable of the two.
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The clearest verification of the ring emittance is to extract the beam from the ring and to measure
the beam sizes at various wire scanners. Note that conventional wire scanners cannot be employed
inside the ring, as the beam would break the wires within a few turns. Therefore, for the ATF ring
an unbreakable laser wire is under development [71].

It is rather straightforward to compute the beam emittance from wire-scanner measurements. We
define a reference points0 and denote theR matrix betweens0 and wire numberi by R(i); see the
illustration in Fig. 12.

s 0 w i r e  1
w i r e  2 w i r e  3

R

R

R

( 1 )

( 3 )

( 2 )

Figure 12: Schematic of emittance measurement using multiple wires.

Considering purely horizontal or vertical motion, theR matrix reads

R(i) =

(
R

(i)
11 R

(i)
12

R
(i)
21 R

(i)
22

)
. (130)

The measured squared beam sizes, the Twiss parameters at points0 and the emittance are related as
follows: 


σ(1) 2

x

σ(2) 2
x

. . .
σ(n) 2

x


 =



R

(1) 2
11 −2R

(1)
11 R

(i)
12 R

(1) 2
22

R
(2) 2
11 −2R

(2)
11 R

(i)
12 R

(2) 2
22

. . . . . . . . .

R
(n) 2
11 −2R

(2)
11 R

(n)
12 R

(n) 2
22






β0ε
−α0ε
γ0ε


 . (131)

The recipe is now to determine a least-square solution for the vector(β0ε, −α0ε, γ0ε), and then to
solve for the initial Twiss parameters and the emittance. Note thatγ0 = (1 + α2

0)/β0, and, hence,
all variables can be calculated. Evidently, for a meaningful measurement at least 3 wire scanners at
different betatron phases are required. This is called a multiwire emittance measurement.

Alternatively, if only one wire is available, one can measure the beam size at this wire for different
strengths of an upstream quadrupole magnet. This is known as a quadrupole scan. Mathematically
it can also be described by Eq. (131). The only difference is that now theR matrices do not refer to
different wires but to different settings of the quadrupole.

Timing and pulse-amplitude jitter of the extraction kicker may affect the beam stability and hence
impair the quality of the wire scans, since the latter are not single-shot measurements but require of
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the order of 50 beam pulses during which the wire is moved across the beam. It took some effort
to sufficiently stabilize the ATF extraction, but in spring 2000 an extremely small vertical emittance
close to the design value was demonstrated with good scan quality. Figure 13 shows recent wire
scans in the ATF extraction line and illustrates the high degree of stability that has been achieved.
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Figure 13: Vertical wire scans in the ATF extraction line, using W filaments with10 µm diameter.
(Courtesy J. Urakawa.)

6.4 Momentum Compaction Factor

There are of course many other effects which must be carefully considered in the design of the
damping rings. Some are related to the small value of the momentum compaction factor. This
factor, denotedαC , quantifies the change in electron path length,Ce, as a function of relative energy
deviation,

αC =
∆Ce/Ce

∆p/p
, (132)
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Table 3: Momentum compaction factor for existing and proposed rings.

ring αC

SLC 1.8 × 10−2

ATF 2.1 × 10−3

NLC 4.7 × 10−4

TESLA 3.4 × 10−4

1–TeV CLIC 2.4 × 10−4

LEP 1.9 × 10−4

3–TeV CLIC 4.0 × 10−5

or, vice versa, if the rf frequency and thus the electron path lengthCe stay constant,αC gives the
change in electron momentum as a function of the circumferenceC,

∆p/p =
1

αC

∆C

C
. (133)

The momentum compaction factor can be calculated from the dispersion functionDx and the local
bending radiusρ as

αC =
1

C

∮
D

ρ
ds. (134)

It is often convenient to approximate the momentum compaction factor as [20]αC ≈ 1/ν2
x, suggest-

ing thatαC ∝ 1/ρ2 for constant cell length.
In future damping rings, a small equilibrium emittance is achieved by reducing the dispersion in

the bending magnets. According to Eq. (134), we expect that the momentum compaction factor will
also decrease. Table 3 shows that this is indeed the case. The values ofαC in future designs are two
orders of magnitude smaller than at the SLC.

If the ambient temperature changes by an amount∆T , the floor and magnet supports will expand
or contract by∆l/l ∝ αT ∆T , whereαT denotes the thermal expansion coefficient of the tunnel-
floor or magnet-support material. The average path length of the electron beam is determined by
the rf frequency, and unchanged by the temperature variation. However, if the quadrupole magnets
move inwards or outwards due to thermal expansion, the beam will experience additional bending
fields from the resulting off-centre orbit in the quadrupoles, and its energy will change.

Combining the two equations above, the beam energy change is given by

∆p

p
=
αT

αC

∆T. (135)

For example, taking a typical value ofαT ≈ 10−5, the CLIC damping ring temperature should
be stabilized to 0.5 mK, in order to maintain a constant beam energy to within 10% of the rms
energy spread. This tight tolerance could be relaxed by means of an automatic path-length feedback
employing chicanes. Such a scheme might be tested at the ATF damping ring [72]. It is noteworthy
that, despite of an extremely small momentum compaction factor, temperature variation does not
appreciably affect the LEP circumference. The largest relative energy excursions at LEP, of the
order of10−4, are caused by tidal effects [73].

Aside from the increased sensitivitiy to temperature, the low momentum compaction also in-
creases the likelihood of longitudinal single-bunch instabilities. The current threshold for the lon-
gitudinal microwave instability, with growth times much shorter than a synchrotron period, can be
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estimated from the so-called Boussard criterion [74, 75]:

Ne2c|Z/n|
(2π)3/2αCEσ

2
δ

≈ 1. (136)

The termZ/n refers to the longitudinal impedance, withZ denoting the impedance atnω0 (ω0 is the
angular revolution frequency), andn the number of revolution harmonics.

Assuming a constant number and size of strong inductive impedance sources, such as rf cavities,
the longitudinal impedance decreases inversely with the bending radius [12],Z/n ∝ 1/ρ. On the
other hand,αC decreases more strongly, asαC ∝ 1/ρ2 (sinceD/ρ ∝ 1/ρ2). Recalling the assumed
energy scalingE ∝ 1/ρ1/3, we can stay below the threshold, if the current per bunch decreases as
1/ρ2/3.

Again, we consider some example parameters for CLIC. Using Eq. (136) withαC = 2.4× 10−3,
N = 4 × 109, σz = 1.8 mm,E = 2.15 GeV,σδ = 8.2 × 10−4, an upper bound for the acceptable
impedance is|Z/n| < 0.05 Ω. This appears feasible, since for the smaller damping ring of the NLC
[9] a more detailed evaluation predicts|Z/n| ≈ 0.03 Ω.

6.5 Novel Instabilities

The performance of the recently commissioned B factories, at SLAC and KEK, is affected by new
types of instabilities, in which electron beams interact with ions created from the residual gas, and
positron beams with photo- and secondary electrons.

6.5.1 FAST BEAM-ION INSTABILITY

Thefast beam ion instability[76, 77] is a single-pass coupled-bunch instability occurring in electron
beams; see the schematic in Fig. 14. It is driven by ions which are created from the residual gas
during the single passage of a bunch train. It was first observed at the LBL ALS [78], and, shortly
thereafter, confirmed at the Pohang Light Source [79]. Recently, it has been observed also at the
ESRF when operated with a low-emittance optics and degraded vacuum pressure [80].
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Figure 14: Schematic of fast beam-ion instability [76, 77], which can arise due to ion trapping ine−

bunch train.

The linear theory [76] predicts a quasi-exponential rise time,y ∝ exp
√
t/τc, with a characteristic
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growth rate
1

τc
=

4dgasσionβyN
3/2
b n2

brer
1/2
p L1/2

sepc√
33γσ

3/2
y (σx + σy)3/2A1/2

(137)

at the end of the bunch train. A refined theory [81], taking into account the decoherence due to
ion frequency spread within the bunch and around the ring, predicts an exponential growth,y ∝
exp(t/τe), with growth rate

1

τe
≈ 1

τc

5c√
2ltrainω̃i

(138)

for the last bunch in the train, where

ω̃i ≡ c

(
4Nbrp

3ALsepσy(σx + σy)

) 1
2

(139)

denotes the coherent angular ion oscillation frequency,ltrain the length of the bunch train (in meters),
Lsep the bunch spacing in meters,dgas the gas density (in molecules per cubic meter),nb the number
of bunches,Nb the bunch population,σion the ionization cross section, andσx,y the average horizontal
and vertical rms beam sizes.

Assuming an ionization cross section ofσion ≈ 2 Mbarn,e.g., for carbon monoxide, a gas density
of dgas ≈ 3×1013 m−3, and an atomic massA = 28 (carbon monoxide or nitrogen), a pressurep = 1
nTorr and the 3-TeV ring parameters discussed above, we findω̃i ≈ 7 × 108 s−1, τc ≈ 1 µs, and
τe ≈ 20 µs. The latter growth rate corresponds to about 10 turns, so that a bunch-by-bunch feedback
system may be effective.

6.5.2 ELECTRON-CLOUD INSTABILITY

Positron or proton beams can suffer from a different kind of instability. Because of their opposite
charge they may interact with the electron cloud created by photoemission or secondary emission.
Figure 15 shows a schematic of the electron cloud build up during the passage of a bunch train in
the LHC beam pipe.
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Figure 15: Schematic of electron-cloud build up in the LHC beam pipe. (Courtesy Francesco Rug-
giero.)

So far two different manifestations of electron-cloud instabilities have been observed with multi-
bunch positron beams. The so-calledOhmi effect[82] refers to a coupled-bunch instability caused
by the electron cloud. This instability was first seen at the KEK photon factory [82, 83] and later
verified at BEPC [84].

39



The second electron instability, potentially more harmful, is ahead-tail instability driven by
electron cloud, where the cloud produced by previous bunches acts like a short range wake field
[85]. The resulting single-bunch instability was observed with positron beams at KEKB LER [86]
and SLAC PEP-II, and, possibly, with the LHC proton beam at the CERN SPS [87].

We can derive a rough analytical estimate for the strength of this instability [85]. According to
simulations, after a few bunches the electron cloud reaches a saturation density which is roughly
equal to the neutralization density, defined as

ρe ≈ Nb

πhxhyLsep

. (140)

At this density the time average of the electric field on the chamber wall vanishes. Herehx and
hy are the horizontal and vertical chamber half apertures andLsep the bunch spacing (in meters).
Note that, unlike the beam, the electrons are distributed almost uniformly across the entire vacuum
chamber, and only a small portion is in the vicinity of the beam at the moment of a bunch passage.
This fraction of electrons is responsible for the single-bunch instability. Considering a flat beam, and
using a two-particle model (due to the peculiar nature of the electron-cloud ‘wake’, the head particle
is not chosen to be pointlike but to have a finite longitudinal extent of the order of the bunch length),
an approximately constant vertical wake function can be derived [85]:

W1 ≈ 8C

hxhyLsep

. (141)

This transverse wake function has the remarkable property that it depends only on the vacuum cham-
ber dimensions and on the bunch spacing.

The wake function of Eq. (141) is a good approximation as long as the bunches are longer than
σxσy/(Nbre), with re the classical electron radius, andNb the bunch population. For short bunches
the formula must be modified [85].

By inserting the wake functionW1 into the standard expressions for instability growth rates [12],
we can estimate the growth rates for fast beam break up (ignoring the synchrotron motion) as

1

τ
≈ 2πρrec〈βy〉

γ
, (142)

and the growth rate for thel = 1 head-tail mode of the regular head-tail instability as

1

τ (1)
≈ 64

3

ρ〈βy〉reσzQ
′
y

T0αCγ
. (143)

In addition, we can compute the threshold density for the strong head-tail instability. It reads

ρthr =
2γQs

reCβy
(144)

whereβy is the average beta function, weighted with the local electron cloud density.
Using our example parameters for the positron damping ring and applying these approximate

relations, the saturated electron density is aboutρe,neutr ≈ 1.6 × 1013 m−3, the wake functionW1 ≈
7 × 107 m−2, the growth rate for beam break up1/τBBU ≈ 1.4 × 105 s−1, the growth rate for the
l = 1 head-tail instability1/τ (1) ≈ 1.6×104Q′

y s−1, and the threshold density for the strong head-tail
instability (also called TMCI instability)ρthr ≈ 3×1012 m−3. Note that the estimated neutralization
electron density,ρe,neutr is about 5 times higher than the TMCI threshold, a clear warning sign.

The electron cloud also induces coherent and incoherent tune shifts of about∆Q = 2reβρ/γ,
which, for our parameters, evaluates to∆Q ≈ 0.1. This can be useful for diagnostics purposes, since
measuring the tune shift allows us to monitor the electron-cloud build up and the average electron
density [86].
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6.6 Coherent Synchrotron Radiation

Another potentially harmful effect is coherent synchrotron radiation (CSR). At wavelengths longer
than the bunch length, the bunch may radiate like a single macroparticle of chargeNbe. Since the
synchrotron radiation is proportional to the charge squared, at these wavelengths the radiated power
is enhanced by a factorNb compared with normal synchrotron radiation. This enhanced radiation is
the coherent synchrotron radiation. The shorter the bunch, the larger the frequency range in which it
is observed and the larger the overall effect.

The rms energy spread induced by CSR in a bend of lengthLd and radiusR is [88]

∆δCSR
rms ≈ 0.2

NreLd

γρ2/3σ
4/3
z

. (145)

The CSR is unimportant at ultra-high energies.E.g., for a bending section in the CLIC final focus
(Nb = 4×109,E = 1.5 TeV,Ld ≈ 176 m, θd ≈ 244 µrad,σz ≈ 30 µm) we have∆δCSR

rms ≈ 2×10−8,
much smaller than the energy spread due to incoherent synchrotron radiation,∆δSR

rms ≈ 10−5.
However, CSR can be important for a damping ring. CSR effects are larger for smaller bending

radius and lower beam energy. In order to examine the worst case, we take numbers typical of the
damping-ring lattice for a 1-TeV collider [56] rather than 3 TeV. Specifically, we assumeE = 2.15
GeV, σz = 1.8 mm,B = 1.4 T, Ld,tot ≈ 30 m. We find an additional induced energy spread of
∆δCSR

rms ≈ 2.6 × 10−5 per turn. Further assumingC = 283 m, α = 2.4 × 10−4, τδ ≈ 10.4 ms,
σδ0 ≈ 8.2 × 10−4, and considering regular synchrotron radiation as the only source of damping, we
estimate the equilibrium energy spread due to CSR alone:

σCSR
δ ≈

√
1

4
τE

(∆δCSR
rms )2c

C
≈ 1.3 × 10−3, (146)

whereτδ is the longitudinal damping time. In this example, the energy spread induced by CSR is
larger than the natural energy spread!

The low-frequency CSR will be shielded by the vacuum chamber, if the latter has a full aperture
smaller than thecritical aperture [89]

hcrit =
(
πσz

√
R
)2/3

. (147)

An empirical formula for the shielding efficiency obtained by fitting to a large number of computer
calculations [90] is [91]

δCSR
rms (h) ≈

(
1 − e

− 2h
hcrit

+0.8
)
δCSR
rms (∞), (148)

whereδCSR
rms (∞) denotes the energy spread induced without the shielding, Eq. (145).

As an example, with a bending radius ofR = 5 m and a full chamber apertureh = 60 mm
(a = h/2 = 30 mm), the CSR is shielded for bunch lengthsσz > 2 mm. If the full aperture can
be reduced toh = 20 mm, the CSR is shielded already for bunch lengthsσz > 400 µm. However,
small apertures like this may be impractical with respect to vacuum, beam lifetime, or impedance.
Perhaps one may want to control the bunch length in the ring via the inductive impedance (without
entering the turbulent bunch-lengthening regime) [92].

7 RF Gun and Positron Source

Challenges for the source design are posed by all the beam parameters required: small emittances,
high charge, repetition rate, and electron polarization.
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Electron beams can be generated in a variety of ways. Accordingly a number of different devices
exist which can serve as electron sources for linear colliders: thermionic guns, dc guns with laser
photocathodes (used at the SLC), or rf guns. In the future, also polarized rf guns may become
available.

For example, in a laser-driven rf gun, or rf photoinjector, a high-power pulsed laser illuminates a
photocathode placed on the end wall of an rf cavity. The emitted electrons are accelerated immedi-
ately in the rf field. The time structure of the electron beam is controlled by the laser pulse, and the
rapid acceleration minimizes the effect of the space-charge repulsion.

Several effects contribute to the normalized emittance attainable by such rf gun [93]:

(1) Thethermalemittance is determined by the initial transverse momenta of the electrons at the
moment of their emission,

γεthx,y[mm mrad] ≈ 1

4

√
kBT⊥
mec2

σx,y[mm],

wherekBTe ≈ 0.1 eV represents the thermal emission temperature.

(2) An rf emittancearises from the time-dependent transverse focusing at the exit of the cavity,

γεrfx,y[mm mrad] ≈ eErf√
8mE

σ2
x,yσ

2
zω

2
rf ,

whereErf is the peak accelerating field.

(3) The residual space-charge emittance is due to the repelling force between the equally charged
beam particles [94],

γεscx,y[mm mrad] ≈ 2Nbre

7σx,yW
exp

(
−3
√
Wσy

) √σy

σz

,

whereW = eErf sinφ0/(2mec
2) andφ0 the rf phase at the beam center. Since the transverse

space-charge force depends on the local charge density of the bunch, it disorients in phase
space the transverse slices located at different longitudinal positions along the bunch. For
round beams this dilution can be almost fully inverted by properly placed solenoids [95].

Linear colliders require flat electron beams at the collision point, in order to maximize the lu-
minosity for a certain amount of beamstrahlung. However, electron guns usually produce round
beams.

Case Study V: Flat RF Gun
Conceive a scheme by which one can transform a round beam (εx = εy) into a flat beam (εx �

εy). Hint: one possibility starts with the beam from an rf gun immersed in a solenoid field, which is
followed by a set of linear transformations.

Solution:A scheme for flat-round conversion was proposed by R. Brinkmann, Y. Derbenev, K.
Floettmann in 1999 [96, 97]. We describe the idea following Ref. [98]. The basic scheme consists
of two parts:

(1) the beam from a cathode which is immersed in solenoidal field develops an angular momentum
at exit from solenoid;

(2) subsequently this beam is passed through a quadrupole (or skew quadrupole) channel with
90◦ phase advance difference between the two planes, and length scale defined by the solenoid
field.
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Consider electrons moving parallel to a solenoid field whose axis is oriented inz direction.
Maxwell’s equations imply the presence of a radial magnetic field at the exit of the solenoid. This
radial field gives rise to a transverse deflection, which depends on the distance from the solenoid
axis. For example, the vertical deflection at the solenoid exit reads

∆y′ =
1

Bρ

∫
Bxdz =

1

Bρ

x0

2
Bz, (149)

whereBz is the longitudinal field inside the solenoid andx0 the horizontal offset. A similar expres-
sion holds for∆x′. Abbreviating we write∆y′ = kx0, ∆x′ = −ky0 with k = Bz/(2Bρ). After
leaving the solenoid, the beam takes on a clock-wise rotation



x
x′

y
y′




0

=




x0

−ky0

y0

kx0


 .

We have neglected any initial uncorrelated momenta, assuming that these are much smaller than
kx0 or ky0. Actually, these terms are important, as they do determine the final flat-beam emittance.
We will see this below.

Suppose now the quadrupole channel behind the solenoid produces anI matrix in x and an
additional90◦ phase advance iny:



x
x′

y
y′




1

=




1 0 0 0
0 1 0 0
0 0 0 β
0 0 −1/β 0






x0

−ky0

y0

kx0


 =




x0

−ky0

kβx0

− 1
β
y0


 .

If we chooseβ = 1/k, the final phase-space vector becomes



x
x′

y
y′




1

=




x0

−ky0

x0

−ky0


 .

This is a flat beam inclined at 45◦. If one uses a skew quadrupole channel instead of quadrupole
channel, the beam can be made flat in the vertical plane, as shown next.

The 4x4 transport matrix from the end of the solenoid through the skew quadrupole channel can
be written

M = R−1TR with R =
1√
2

(
I2 I2
−I2 I2

)
,

whereI2 is 2 × 2 identity, and the matrixT represents a normal quadrupole channel:

T =

(
A 0
0 B

)
.

Combining the above, we writeM as

M =
1

2

(
A+B A− B
A− B A+B

)
.

43



The initial state after the solenoid exit is

X ≡
(

x0

−ky0

)
and Y ≡

(
y0

kx0

)
,

which we write more elegantly as

Y = SX using S ≡
(

0 − 1
k

k 0

)
.

The final state is then (
X
Y

)
1

=
1

2

( {A+B + (A−B)S}X
{A− B + (A+B)S}X

)
,

and the condition for a flat beam readsY1 = 0, or I = −(A− B)−1(A+B)S.
Using the Courant-Snyder parametrization [100]A = exp(Jµ), B = exp(J(µ+ ∆)), whereJ

denotes the matrix

J =

(
α β
−γ −α

)
,

the flat-beam condition becomes

I = −cos(∆/2)

sin(∆/2)

(
kβ α/k
−kα γ/k

)
.

This is fulfilled for∆ = −π/2, α = 0 andβ = 1/k.
Finally, adding a random component to the slope to the initial vector(x, x′, y, y′)0 =

(x0, −ky0 + x′0, y0, kx0 + y′0) one can apply the same transformationM and, assuming that
the initial beam is round withσx0 = σy0 andσ′

x0 = σ′
y0, one finds [96]

εy,1 =
1

2

σ′
x,y

2

k

and

εx,1/εy,1 = 1 + 4k2 σ
2
x,y

σ′
x,y

2 .

The largerk, i.e., the stronger the solenoid field, the flatter the beam becomes.
First experimental tests of a flat beam electron source at Fermilab have demonstrated the viability

of this scheme [99].

The conventional approach to produce positron beams is to hit a high-Z target with a several-GeV
e− beam. An electro-magnetic shower of bremsstrahlung and pair creation develops, in the course of
which a large number of positrons are produced. In order to get sufficiently many positrons, a thick
high-Z material is chosen as a target. This method was used at the SLC and it is the preferred option
for NLC.

The TESLA project considers an alternative approach of generating the positron beam. Here,
a high-energy electron beam passing through a wiggler emits hard synchrotron-radiation photons
which impact on a thin target downstream and produce positrons via pair creation [8, 101, 102]. A
schematic of the TESLA positron source is shown in Fig. 16. In this design, a thin low-Z target is
sufficient to produce the desired number of positrons. Main advantages are, firstly, the lower heat
capacityCp, and hence, the smaller target temperature rise, and, secondly, the reduced scattering.
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Figure 16: Schematic of TESLA positron source, consisting of a wiggler, a thin low-Z target, and a
capture section with adiabatic matching [8].

The latter implies a smaller positron divergence and a better capture efficiency. The TESLA source
is even capable of producing polarized positrons if the wiggler is replaced by a helical undulator.

The positron capture section behind the photon target consists of acceleration units embedded in
a strong solenoid field. The acceptance of the solenoid channel is well suited for a large spot size and
small angles, whereas the positrons emerge from the target with a small spot size and large angles.
A tapered solenoid with adiabatically increasing field strength [103] provides the optical matching
between the two regions.
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