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1 Correction Schemes
The main limitation for the stability of the LHC [1] beam at the injection energy of 450

GeV is the magnet imperfections in the 1104 super-conducting arc (main) dipoles which intro-
duce non-linear transverse fields expressed in the usual complex multipole expansion:

By + i Bx = B1

1X
n=1

(bn + ian)

�
x+ i y

Rr

�
n�1

; (1)

where Bx, By are the horizontal and vertical components of the magnetic field with the normal
(or erect) bn and skew an multipole coefficients, B1 is the magnetic dipole field in the vertical
y direction and Rr = 17mm the reference radius. The multi-polar components responsible for
the perturbations from the ideal dipole field are due to the persistent currents in the filaments of
the super-conductor, the design geometry and the fabrication tolerances. Taking into account all
the previous effects, error tables are estimated and used for beam dynamics analysis. The most
important errors allowed by the dipole symmetry are the normal sextupole b3 and decapole b5.
The normal octupole b4 has a non-negligible effect due to the geometric imperfections induced
by the two-in-one form of the LHC dipoles. The normal sextupole, octupole and decapole co-
efficients corresponding to the 9901 error table are displayed in Table 1. The dominant normal
sextupole error is planned to be corrected by magnetic coils (spool pieces) placed at the entrance
of each dipole and powered in series in each arc, in order to cancel locally the systematic effect.
The same strategy can also be followed for the octupole and decapole, where the correction is
done with a spool piece having both components.

Type 0Type 0

Type IIType II

Type IType I

Type IVType IV

Type IIIType III

Figure 1: Representation of five different correction schemes in four cells of the LHC. The
dipoles with and without octupole/decapole corrector are shown in blue and red, respectively.

Previous studies for the erect octupole [2] and decapole [3] correction have shown that
the dynamic aperture of the LHC at injection could be preserved even if half of the correctors
are used. In order to validate these results for LHC optics version 6, the following correction
schemes have been considered [4] :

– Type O: Correctors at all dipoles in all arcs; this is the reference case.
– Type I: Correctors in every second dipole; this is a scheme proposed for the SSC and

it is an interesting option for the LHC as it minimizes the electrical noise in the power
converters [5].
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– Type II: Correctors in every second cell; it is a proposed layout worked out to balance the
inductance on the bus-bars [5].

– Type III: Correctors in every second dipole with a swap of the two types of dipoles every
half-cell; this arrangement should also be better than the reference case with respect to
electrical noise.

– Type IV: Same as Type III but the two types of dipoles are inverted.

Table 1: Erect sextupole, octupole and decapole field errors in the LHC dipoles (error table
9901), for a reference radius of Rr = 17mm in units of 10�4 of the main field.

Error Systematic Random
b3 -8.32 1.47
b4 0.57 0.51
b5 1.32 0.43

A graphical representation of the correction schemes can be found in Fig. 1, where we represent
the dipoles with and without octupole/decapole correctors in four cells of the LHC arc (the
quadrupoles are omitted).

In this paper we present the studies undertaken for the dynamic analysis of the different
correction schemes. Frequency and diffusion maps [6] were constructed for comparing their
impact on non-linear dynamics. In order to check the efficiency of each scheme on resonance
compensation, the resonance driving terms are computed, through high-order perturbation the-
ory methods [7] and numerical post-processors [8]. Finally, the resonance analysis results are
verified through 1000-turns element by element tracking.

2 Frequency Maps
The machine considered was LHC optics version 6 with the integer tune split of four

(63; 59). The LHC model constructed with MAD [9] includes systematic plus 1� random errors
in all the dipoles and can be considered as a worst case scenario. The normal sextupole error
on the main dipoles has been corrected with spool pieces in every dipole around the machine
and connected in series in each arc such as to eliminate the systematic component. Short-term
tracking was performed with SIXTRACK [10] for two different working points: the nominal one
(Qx; Qy) = (0:28; 0:31) and another interesting candidate for the LHC operation (Qx; Qy) =

(0:21; 0:24) which has the same split between the tunes and the same distance to the tune space
diagonal. This working point is closer to the 5th order resonance (5; 0) on the horizontal plane
and the 4th order (4; 0) on the vertical plane.

Apart from the 4D cases (�p=p = 0), it was also essential to perform tracking with a
constant momentum deviation �p=p = 7:5 � 10�4, at approximately 75% of the full bucket
size. As off-momentum particles cross areas where the dispersion is non-zero (typically 1-2m
in the LHC arc), feed-down effects are generated by the multipoles: to first order in the dis-
persion function, the decapole will create an octupole, the octupole will create a sextupole, etc.
The octupole produces a first order tune-shift, which is linear with the transverse emittance.
The decapole has a second order contribution (quadratic in the decapole strength and in the
emittances). On the other hand, for off-momentum particles, the decapole gives an octupole
feed-down and thus contributes to a first order tune-shift. The total first order “octupole-like”
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Figure 2: Frequency maps when the octupole and decapole components are not corrected, (top)
with correctors in all dipoles (middle), and with correctors in every second dipole (bottom) for
two different momentum spreads �p=p = 0 (left) and �p=p = 7 � 10�4 (right), and for the
nominal working point (Qx; Qy) = (0:28; 0:31).
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Figure 3: Evolution of the frequency variation averaged over all directions, with the particles’
amplitude (in �) for �p=p = 7� 10�4, and for two different tunes (a) (Qx; Qy) = (0:28; 0:31)

and (b) (Qx; Qy) = (0:21; 0:24).

detuning given by k localized thin element kicks is

��x;y =
3

2��

X
k

�
b4k

4
+ b5kDxk

�p

p

�
�x;yk

�
�x;ykJx;y � 2�y;xkJy;x

�
; (2)

where Dxk is the horizontal dispersion (the vertical dispersion is considered to be zero as in the
LHC arc). Using the values of Table 1, we may have a crude estimate of the contribution to the
detuning due to the decapole feed-down for off-momentum particles: it is around 1 % of the
effect of the normal octupole.

Frequency maps [6] were produced for all the correction cases. As an example, we present
in Fig. 2, six maps issued by 4D (left) and 5D (right) tracking of 10000 particles for the nom-
inal working point (Qx; Qy) = (0:28; 0:31) and two different models: the non-corrected case
(top) the reference correction (middle) and the one having the correctors placed in every second
dipole (bottom). The different colors in the maps represent different amplitude windows, up to
22 and 16 � for the 4D and 5D case, respectively. As expected, the non-corrected case is very
bad with respect to non-linear dynamics. The tune-shift is quite large especially for particles
with large vertical amplitude (left corner of the plots). The most excited resonance is the nor-
mal 7th order (2;�5) and the 9th order (3;�6). Their interplay with other 7th order and 10th
order resonances, represented as crossings of lines in the map, can perturb severely the particle
motion. For the 5D case, it is important to point out that there is a shift in the tune for “zero-
amplitude” particles which is caused by the fact that the chromaticity is not zero (actually it
is equal to -2). In that case, the particles are shifted up towards the normal 5th order (1;�4)
resonance, for the uncorrected case. Note also the trapped particles close to the diagonal (reso-
nance (1;�1)). The correction seems quite efficient, as the tune-shift is reduced, especially in
the off-momentum case.

For the other working point, maps were also constructed and dangerous resonances where
identified. Especially the (5; 0) resonance is approached by particles with high vertical ampli-
tudes in the uncorrected case. The correction helps avoiding this resonance by reducing the
detuning. For the other correction schemes the maps look quite similar. Especially the Type I
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Figure 4: Resonance driving terms’ norm (left) and driving term of the (1;�1) resonance (right)
extracted by 4D DaLie [7] maps, for two different working points (Qx; Qy) = (0:28; 0:31)

and (0:21; 0:24). The driving terms are evaluated at 12� and averaged over eleven different
directions of the phase space, with GRR [8].

scheme (every second dipole) is quite good, even if the detuning seems to be bigger. In that
case, and for motion close to the vertical plane, the tune-shift pushes the particles away from
the dangerous crossing of resonances ((5; 2) with (2;�5) for the nominal working point and
(5; 0) with (1;�5) for the second one). In Fig. 3, we plot in logarithmic scale the frequency
variation norm [6] averaged over the angles versus the amplitude, for both working points, for
all correction schemes and for the non-zero momentum spread. These plots confirm that all the
correction schemes are quite similar. The Type I (red dots) correction scheme seems to generate
less perturbation for small amplitudes, in contrast with the Type II (every second cell - pink
dots), which seems slightly worse.

3 Resonance Analysis
In order to have some more insight about the resonance excitation with respect to the dif-

ferent correction schemes, we constructed 11th order 4D maps [7] for every correction case and
post-processed the normal form results with GRR [8], in order to compute the resonance driving
terms at a specific position of the phase space. In Fig. 4, we plot the resonance driving terms’
norm (the sum of squares of all resonances up to 12th order) averaged over eleven directions
in the phase space and computed at an amplitude of 12 �. We should point out that 99.9 % of
the contribution comes from resonances of order 7 and below and more then 85 % comes from
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the (1;�1) resonance, whose phase averaged strength is also plotted in Fig. 4. There is a clear
difference between the corrected and uncorrected cases, especially due to the contribution of
all other resonances (left plots). On the other hand, the (1;�1) resonance seems quite excited
in all cases (right plots). This resonance was already identified to be one of the major dynamic
aperture limitations the of LHC optics version 5, especially due to the integer tune-split of four
(63,59). In particular, for the correction scheme II (every second cell), the strength of this res-
onance is even higher then in the uncorrected case. The change of the tune-split from four to
five will most probably cure this undesirable effect. All the other correction schemes seem to
have approximately the same resonance excitation, with the reference correction scheme being
slightly better. A partial result from this representation is that the resonance excitation seems
smaller for the working point (0.21,0.24) then for the nominal one. This can be also observed in
the frequency variation (Fig. 3), where particles with the same amplitude have higher diffusion
coefficient for the working point (0.28,0.31).

4 Results of Short Term Tracking
The ultimate test for backing-up the arguments and results extracted by the dynamic

analysis of the correction schemes is provided by the 1000 turns dynamic aperture estimation
through element by element tracking. In Fig. 5, we present the dynamic aperture results for the
two working points and momentum spreads. The particles are launched in 200 different direc-
tions of the configuration space with zero velocities. The pictures display the dynamic aperture
for each direction in the transverse position space (horizontal versus vertical initial amplitude)
and the different colors denote different correction cases. These plots are complementary with
the frequency maps, as they show the exact areas where particles are lost and can be associated
with the resonance crossings shown in Figs. 2.

In these pictures, all the correction schemes seem to be equivalent. Of course, the non-
corrected case has the lowest dynamic aperture (note the scattered green crosses in lower am-
plitudes) especially for the second working point and off-momentum particles (Fig. 5d). In that
case, and for motion close to the horizontal plane, there is at least a 1 � 1:5� difference be-
tween the corrected and uncorrected cases. On the other hand, as the shapes formed by the lost
particles’ initial conditions are almost identical, it seems that this is entirely due to the higher
tune-shift in the uncorrected case. This remark stands for the other plots, as well. One may
also argue that the Type II is slightly worse (scattered pink boxes in the edge of the loss zones)
but the difference with the other correction schemes seems very small. Finally, in all the cases
the dynamic aperture is smaller for particles launched close to the horizontal plane and off-
momentum. On the other hand, the difference between vertical and horizontal space motion is
quite marginal in the on-momentum cases. This should be correlated with the fact that for off-
momentum cases the particles with large horizontal amplitudes are moving towards the (1;�1)
resonance in the bottom right corner of the frequency maps and get quickly lost, especially in
the uncorrected case (see Fig 2).

We can have a clearer idea about the efficiency of the correction schemes by the survival
plots displayed in Fig. 6. In these figures, the number of lost particles is displayed, over the
10000 tracked for 1000 turns, and all the studied correction schemes. It is clear from these plots
that the highest number of lost particles for both working points and momentum deviations
occur in the uncorrected case. Then, the correction scheme II (correctors in every second cell)
is the least efficient in all cases except the one of the nominal working point and off-momentum
particles. In that case, all the correction schemes are quite close with the surprisingly good
performance of the Type I (correctors in every second dipole) which is generally quite efficient
and close to the reference case (correctors in every dipole). Let us however point out that the
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Figure 5: Loss zones in the initial conditions space for all the correction cases. The particles
are launched in 200 different directions of the transverse position space with zero velocities and
tracked for 1000 turns. Here are shown the results for two different working points (Qx; Qy) =

(0:28; 0:31) (left) and (0:21; 0:24) (right) and two different momentum spreads �p=p = 0 (top)
and �p=p = 7� 10�4 (bottom).

difference of particle losses between the correction schemes is within a 5% of the total number
of tracked particles (500 over 10000), and should be considered as marginal.

The ultimate comparison of the correction schemes is done in Fig. 7, where we compare
the phase space averaged (over the 200 directions) dynamic aperture for all the studied models.
There is a striking correlation between these plots and the resonance excitation plots in Fig. 4.
It is also interesting to observe that the dynamic aperture is slightly better in the case of the
(0:21; 0:24) working point when the normal octupole and decapole are corrected. On the other
hand, all the correction schemes seam quite equivalent. In fact, their difference is within 0:5�

which is probably very close to the precision level of the dynamic aperture estimation. We
can still confirm, however, that the Type II correction scheme is worse and that the Type I is
equivalent with the reference case, and in one case (nominal working point and off-momentum
tracking) gives even a higher dynamic aperture.
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Figure 6: Number of lost particles for all the correction cases. The total number of tracked
particles is 10000. Here are shown the results for two different working points (Qx; Qy) =

(0:28; 0:31) (left) and (0:21; 0:24) (right) and two different momentum spreads �p=p = 0 (top)
and �p=p = 7� 10�4 (bottom).

5 Conclusion
A variety of correction schemes for the erect octupole and decapole multipole errors in

the LHC main dipoles have been studied and compared with respect to their impact on the non-
linear dynamics of the machine, at injection. Apart from the reference correction scheme where
all the dipoles had octupole/decapole correctors, all the other schemes had half of the correctors
present. We showed that the different correction strategies are equivalent from the point of view
of non-linear dynamics. Based on the small differences observed in dynamical parameters stud-
ied (detuning, resonance excitation, global diffusion coefficient, short term dynamic aperture)
their performance can be graded as follows: the scheme for which the correctors are placed in
every second cell is slightly worse and the one with the correctors placed in every dipole is
slightly better, followed by the scheme where the correctors are placed in every second dipole.
It is thus confirmed that by using half of the correctors will be sufficient to correct the normal
octupole and decapole errors in the LHC main dipoles, even if the reference case (correctors in
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Figure 7: Average dynamic aperture for all the correction cases. The particles are launched
in 200 different directions of the transverse position space with zero velocities and tracked for
1000 turns. Here are shown the results for two different working points (Qx; Qy) = (0:28; 0:31)

(left) and (0:21; 0:24) (right) and two different momentum spreads �p=p = 0 (top) and �p=p =

7� 10�4 (bottom).

every one of them) is probably safer. Element by element short term tracking confirmed the res-
onance analysis results and especially the marginal difference between the correction schemes.
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