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1. Holographic C-Theorem

1.1 The Holographic Hypothesis

The holographic hypothesis [1] postulates that

the number of different quantum states in a given

volume V can not exceed e
A
4GD where A is the

area of the corresponding boundary ∂V and GD
the Newton constant inD space-time dimensions.

This hypothesis is based on the idea that the

maximun entropy associated with a volume V is

given by the Bekenstein-Hawking entropy S =
A
4GD
. Following ’t Hooft we can define the num-

ber of holographic degrees of freedom associated

with a volume V as

Nhdof =
A

4ln2GD
(1.1)

On the other hand, Maldacena’s conjecture [2,

3, 4] stablishes a correspondence between N =

4 supersymmetric Yang Mills in flat Minkowski

space-time, with gauge group SU(N), and type

IIB supergravity on AdS5×S5 provided both the
AdS5 and the S

5 radii are given by

R = ls(gsN)
1
4 (1.2)

In order to check the holographic hypothesis for

Maldacena’s correspondence, we will start (fol-

lowing Susskind and Witten, [5]) by considering

N = 4 supersymmetric Yang Mills in a box of

topology S3 × R, where R represents time and
the radius of the sphere S3 is taken to be equal

one. Let us now introduce an ultraviolet cutoff

of size δ. The number of degrees of freedom of

the regularized theory would then be given by:

NYM =
N3

δ3
(1.3)

Next we move into the AdS5 gravity dual. The

metric of AdS5 can be written as follows:

ds2 =
R2

(1− r2)2 (4dX
2 − (1 + r2)2dt2) (1.4)

In these coordinates the boundary is located at

r = 1. Notice that the holographic coordinate is

now represented by r. We can introduce an in-

frared regulator by putting the regularized bound-

ary at r = 1 − δ. The area of the regularized
boundary is given by

A(δ) =
R3

δ3
(1.5)

Using the holographic hypothesis the number of

holographic degrees of freedom associated with

the volume inside the regularized boundary would

be given by:

Nhdof =
A(δ)

4ln2G5
(1.6)

The quantum field theory ultraviolet cutoff will

now be identified with the gravitational infrared

cutoff.

By doing so we discover, using Maldacena’s

expression for the AdS5 radius, that the number
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of holographic degrees of freedom associated with

the volume with boundary at r = 1 − δ is pre-
cisely, up to a numerical factor 14 , the number of

degrees of freedom of the regularized N = 4 su-

persymmetric Yang Mills theory, with ultraviolet

cutoff equal δ.

The main physical consequence of this result

is to provide a solid basis for the interpretation of

the holographic coordinate as a renormalization

group parameter [6, 7, 8, 9, 10, 11, 12, 13, 14, 15],

thus allowing to reinterpret Maldacena’s corre-

spondence in terms of the following simbolic rela-

tion: (Wilsonian QFT Renormalization group in

D space-time dimensions) = (Holographic prin-

ciple in the gravity dual in D + 1 space-time di-

mensions).

1.2 Null Geodesic Congruences.

Let us consider AdS5 in horospheric (conformally

flat) coordinates:

ds2 =
R2

z2
(dz2 + dX2) (1.7)

The boundary is now located at z = 0. The first

thing we need in order to check the holographic

hypothesis in these coordinates is to define, in

an intrinsic way, a 3-dimensional surface. This

can be easily done using a congruence of null

geodesics [7]. In fact given a congruence of null

geodesics, in a space-time of dimension D, with

tangent vector k, we can define a codimension

two surface as follows. Let p a point on the null

geodesic and Tp the tangent space at the point

p. We define Vp as the subspace of vectors in Tp
which are orthogonal to k. Now since k is null we

define the codimension two quotient space with

respect to the equivalence relation x − y ∼ k.
This space will define the codimension two sur-

face to be used later in order to define the holo-

graphic bound. Let us denote h the induced met-

ric on this surface. It is easy to prove [16] that

d
√
h

dλ
= θ.
√
h (1.8)

where λ is the affine parameter of the null geodesic

and θ the expansion of the null congruence.

Given a null geodesic (X(λ), z(λ)), it is easy

to check that

√
h(λ) =

R3

z3(λ)
(1.9)

Using z as the ultraviolet cutoff for the quantum

field theory, we can the write the holographic hy-

pothesis in more geometrical terms as

√
h

G5
=
N2

z3
(1.10)

The general idea of using null geodesic congru-

ences in order to define a holographic area was

first introduced in reference [7]. For a general

approach to holographic entropy based on null

congruences see reference [17]. In the appendix

we present for completness the explicit construc-

tion of the codimension two volume element in

the AdS5 case using a different (although equiv-

alent) approach.

1.3 Holographic C- function

Let us consider five dimensional space-time met-

rics preserving four dimensional Poincaré invari-

ance:

ds2 = a(r)d~x2(1,d−1) + dr
2 (1.11)

where d~x2(1,d−1) is the flat d-dimensional Minkowski
metric.

Null geodesics are characterized by the null

momentum:

kµ =
a(0)

a
kµ(0) (1.12)

where µ, ν . . . = 0 . . . d− 1 and

kd = (
a(0)

a
)1/2kd(0) (1.13)

and the initial values are indeed null:

a(0)ηµνk
µ
(0)k

ν
(0) + (k

d
(0))

2 = 0 (1.14)

The expansion θ ≡ ∇AkA ( A,B . . . = 0, . . . d) is
given by:

θ =
(1 − d)kd(0)a′
2a3/2

(1.15)

(with a′ ≡ da
dr
), from which it stems that when

kd(0) > 0 as well as a
′ > 0, then θ < 0; that is,

there is convergence of the null congruence.

Ulterior considerations will make use of the

tangentially projected Ricci tensor:

RABk
AkB =

3a(0)(k
d
(0))

2((a′)2 − aa′′)
2a3

(1.16)
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The null convergence condition, RABk
AkB ≥

0 then translates into

(a′)2 ≥ aa′′ (1.17)

(This is marginally true in the AdS case, which is

a maximally symmetric space so that RABk
AkB =

0 for a null vector gABk
AkB = 0)

In conformally flat coordinates the metric

(1.11) can be writen like

ds2 = Ω2(z)(dX2 + dz2) (1.18)

with z the conformally flat coordinate defined by

dr =
√
adz (1.19)

Based on our previous discussion we suggest

the following definition of holographic C-function

C =

√
h.z3

G5
=
z3Ω3(z)

G5
(1.20)

with
√
h given by

√
h = a(r)

3
2 (1.21)

By construction this holographic C-function co-

incides, in the AdS conformal case, with the value

(in the large N limit) of the central extensionN2

as defined by the Weyl anomaly. It is interesting

to observe that the invariance of the C-function

in the AdS case is a direct consequence of the

scale invariance of the metric with respect to di-

latations: X → λX , z → λz.
In quantum field theory the C-function [18][19]

is a positive function of the couplings gi and on

some length scale L that satisfy the renormal-

ization group equation, i.e independence on the

renormalization group scale µ

(µ
∂

∂µ
+ βi

∂

∂gi
)C(µL, gi) = 0 (1.22)

The C-theorem is equivalent to the irreversibil-

ity of the renormalization group flow, more pre-

cisely

L
∂

∂L
C(µL, gi) < 0 (1.23)

Following our approach we will use as our

scale L the ultraviolet cutoff that we have iden-

tified with the conformally flat coordinate z. In

that way we easily get the following relation for

the geometric C-function

z
∂

∂z
C = 3C(1 +

Ω′(z)
Ω(z)

z) (1.24)

Remembering now the value of the null congru-

ence expansion θAdS = − 1z in AdS and defining
θΩ =

Ω′(z)
Ω(z) leads to

z
∂

∂z
C = 3C(1− θΩ

θAdS
) (1.25)

This formula clearly expresses the fact that de-

parture from conformal invariance is measured

by the ratio θΩ
θAdS
.

1.4 Jacobi Fields

It is not difficult to show that any vector field

which commutes with the tangent vector to a null

geodesic congruence obeys the Jacobi equation

D2

dλ2
ZA = −RABCDZCkBkD (1.26)

The most general 1 field Z such that

[Z, k] = 0 (1.27)

is

ZA =
Zd(0)

kd(0)
kA + TA (1.28)

where the components of T read:

T µ = Zµ(0) −
Zd(0)

kd(0)
kµ(0) (1.29)

and

T d = 0 (1.30)

Jacobi fields form a congruence of their own. Their

expansion can be fully attributed to the compo-

nent in the direction of k, and is given by:

θJ = Z
d
(0)a

1/2
(0)

(d− 1)a′
a3/2

(1.31)

It is interesting to notice that the only possible

locus of convergence occurs at a =∞
1Assuming only dependence on the holographic coor-

dinate, r

3



Nonpertubative Quantum Effects 2000 Enrique Álvarez and César Gómez

1.5 Renormalization Group Flows

The simplest example of a renormalization group

flow, interpolating between two conformal field

theory fixed points, is described, in the dual grav-

ity picture, as a kink solution of the five dimen-

sional SU(4) gauged N = 8 supergravity (see for

instance, the references [9, 10, 12]). The space-

time metric of a kink solution preserving four

dimensional Poincaré invariance is of the type

given in equation (1.11). Based on the gravita-

tional description of the conformal anomaly [20]

the following C-function was suggested in refer-

ences [9, 12]

C =
cte

A′3
(1.32)

with e2A = a The monotonicity of this function

with respect to the coordinate r is guaranteed by

A′′ < 0 (1.33)

Now, from the old equation (1.16) we see that

(1.33) is equivalent to the null convergence con-

dition, namely Ra,bK
aKb > 0 for any null vec-

tor K. It is interesting to notice that the ap-

pearance of the null convergence condition is al-

ready suggesting the holographic nature of the

C-function in the sense discussed above. Namely

the null convergence condition implies the focus-

ing of the null congruence of geodesics used to

define the codimension two surface employed to

measure the number of holographic degrees of

freedom. It is important to point out that both

candidates for the C-function, namely the one

defined in equation (1.32) based on the confor-

mal anomaly and the geometric one defined in

equation (1.20) coincide on the conformal points

and both are monotonic if the null convergence

condition is satisfied.

The C-function (1.32) can be written in more

geometric terms as follows

C =

√
h

G5θ
3
Ω

(1.34)

The difference with respect to the geometric defi-

nition (1.20) is a difference -from the holographic

point of view- in what is playing the role of ul-

traviolet quantum field theory cutoff, namely z

in one case or the analog of a Hubble length 1
θΩ

in the other.

An alternative geometric description of the

C-function (1.32) was given in reference [21] as

C =
cte√
hG5|θ|3

(1.35)

θ being the null geodesic expansion.

1.6 Raychaudhuri’s Equation and Confor-

mal Invariance

Let us now consider a box in euclidean R3 of

side length equal L. We are interested in the

behaviour of the volume of the box with respect

to dilatations L→ λL. Obviously we get
dλ3L3

dλ
= 3λ2L3 (1.36)

We can define the expansion coefficient θ = 3
λ
.

This expansion trivially satisfies the equation:

dθ

dλ
= −θ

2

3
(1.37)

This is Raychaudhuri’s equation for the null con-

gruence expansion in AdS5. This simple geomet-

rical fact is the reason for a constant C- function

( i.e conformal invariance ) in AdS5. Namely

the scaling of null congruences is the same of

that of three dimensional euclidean volume. Any

departure of conformal invariance is defined by

adding the effect of “holographic” matter fields

in Raychaudhuri’s equation i.e adding the term

−RabKaKb.
Thus from the holographic point of view the

variation of the C-function measures the diffrence

in the scaling behaviour of three dimensional eu-

clidean volume and the three dimensional volume

associated with a congruence of null geodesics.

Appendix

Conformally Invariant case

Let us employ the coordinates introduced by Fef-

ferman and Graham ([22]),and used in ([20]) to

reproduce theWeyl anomaly which enjoy the prop-

erty that the boundary lies at ρ = 0:

ds2 =
1

ρ
gµν(x, ρ)dx

µdxν +
l2

4ρ2
dρ2 (1.38)

(where l is a length scale associated to the to-

tal curvature of the spacetime, what we called

4
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before the radius, R). We shall denote by xA

the set of the five coordinates, xµ, ρ, where greek

letters run from 0 . . . 3 and capital latin letters

from 0 . . . 4, with x4 ≡ ρ. We shall furthermore
concentrate in the simplest case in which

gµν = ηµν . (1.39)

It is not difficult to compute the null geodesics

in the preceding manifold. They are given by:

xµ =
l4ẋµ(0)ρ̇

2
(0)

2ẋ2(0)(l
2ρ̇(0) − 2ẋ2(0)(λ− λ(0))

+

xµ(0) −
l2ρ̇(0)ẋ

µ
(0)

2ẋ2(0)

ρ =
l6ρ̇4(0)

4ẋ2(0)(l
2ρ̇(0) − 2ẋ2(0)(λ− λ(0)))2

(1.40)

There are two different behaviours depending on

the sign of ρ̇(0): if ρ̇(0) > o, the geodesic starts

at (xµ(0), ρ(0)) at λ = λ(0),and reaches infinity at

a finite value of the affine parameter λc. These

geodesics can be thought of as starting at the

boundary ρ = 0 at λ = −∞.
When ρ̇(0) < 0, instead, the geodesic again

starts at (xµ(0), ρ(0)) at λ = λ(0), but now reaches

the boundary I at λ = +∞. They can be thought
of as coming from the infinity at λ = −λc.
The tangent vector is given by:

kµ = ẋµ0ρ/ρ(0)

k4 = ρ̇(0)ρ
3/2ρ

−3/2
(0) (1.41)

(where the timelike vector ẋµ0 is normalized through

ηµν ẋ
µ
0 ẋ
ν
0 = −

l2ρ̇2(0)
4ρ(0)
).

The optical scalars are easily determined from:

∇µkν = −1
2
ρ̇(0)ηµν(ρ)

−1/2ρ−3/2(0)

∇µk4 =
ηµν ẋ

ν
(0)

2ρρ(0)

∇4k4 = ∇4kµ =
ρ̇(0)l

2

8
(ρρ(0))

−3/2 (1.42)

The fact that this tensor is symmetric means that

the congruence is irrotational ω = 0, which in

turn conveys the fact that it is hypersurface or-

thogonal. The expansion,

θ ≡ ∇AkA = −3/2ρ̇(0)ρ1/2ρ−3/2(0) (1.43)

This physically means that there is gravitational

focusing towards Penrose’s boundary, I.
What we need now is to determine an area

which is naturally associated to the null congru-

ence. The normal hypersurface suffers from the

ambiguity that the vector k itself belongs to it.

Although it is possible to perform an analysis

along these lines (as it is done in Hawking and

Ellis’s book), there is a physically more transpar-

ent construction, to which we turn.

We shall introduce a sort of Newman-Penrose

fünfbein (except that, living in an odd unmber of

dimensions, complex techniques are not useful).

For that purpose, we shall first consider another

null vector, lA∂A, such that gABl
AkB = −1, and

it could be propagated in a parallel way along

the null geodesic, i.e., kC∇C lA = 0. It turns out
that this construction defines a codimension two

hypersurface and besides, that the Lie derivative

of the logarithm of the induced volume element is

directly related to the null congruence expansion

θ.

The most general vector lA obeying the re-

queriments as above is given by:

lµ = (lµ(0) − (l4(0) +
2ρ2(0)

l2ρ̇(0)
)
ẋµ(0)

ρ̇(0)
)(ρ/ρ(0))

1/2 +

l4(0)ρẋ
µ
(0)

ρ̇(0)ρ(0)
+
2ẋµ(0)ρ

2
(0)

l2ρ̇2(0)

l4 = l4(0)(ρ/ρ(0))
3/2 − 2ρ(0)(ρρ(0))

1/2

ρ̇(0)l2
(1.44)

where ηµνk
µ
(0)l

ν
(0) = l

4
(0) − cηµν lµ(0)lν(0) = 0

Let us choose the simplest possibility (while

keeping all the generality in kA), namely

lA =
2ρ(0)
ρ̇(0)l2

(
1

2
kµ(0),−(ρ(0)ρ)1/2) (1.45)

It is now a simnple matter to show that the three

spacelike vectors eAi orthogonal to both k
A and

lA are given by:

eA(i) = (e
µ
(i), 0) (1.46)

where ηµνe
µ
(i)e

ν
(i) = ρ and ηµνe

µ
(i)k

ν
(0) = 0. This

in turn yields the ρ dependence , namely eµ(i) =

ρ1/2Eµ(i). where ηµνE
µ
(i)E

ν
(i) = 1 and ηµνE

µ
(i)k

ν
(0) =

0

5
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The finite equations of the hypersurface (which

lies on a slice of constant ρ)are then given by:

xµ = Eµ(i)ξ
i (1.47)

Correspondingly, the induced metric is:

ds2 =
1

ρ
δijdξ

idξj (1.48)

and the volume element 2 scales as

Ad−2 ∼
√
h ∼ ρ−3/2 (1.49)

in such a way that indeed

$(k)Ad−2 ≡ kA∇AAd−2 (1.50)

= −3ρ̇(0)ρ
1/2

2ρ
3/2
(0)

Ad−2 ≡ θAd−2

A non conformal case

The following metric was introduced in [23]:

ds2 =
1

ρ
ηµνdx

µdxν +
l2c
ρ4
dρ2 (1.51)

Here lc sets the scale of the curvature, although

in the present case the latter is of course not con-

stant. Please note the striking similarity with

AdS in the coordinates just employed; the differ-

ence stemming from the power of the holographic

coordinate in the last term. We shall actually

employ the coordinate g ≡ 1
ρ
, so that

ds2 = gd~x24 + l
2
cdg

2 (1.52)

The general formulas for Poincaré invariant

metrics yield for the tangent vectors to null geodesics

the expression:

kµ = cµ

k4 =
c0

γ
g−1/2 (1.53)

with ηµνc
µcν = − (c0)2

γ
. corresponding to the

parametrized null geodesics:

xµ = x(0) +
2cµγ

c0
(
3c0

2γ
(λ− λ0) + g3/2(0) )1/3

g = (
3c0

2γ
(λ − λ0) + g3/2(0) )2/3 (1.54)

2The hypersurfaces are non compact in general, so that

their volume is infinite. We shall mostly be interested in

the volume density instead, which is a meaningful (and

finite) quantity.

It is plain that, given any point with coordi-

nates xµ(0), g(0), there is a null geodesic starting

at it. This means, in mathematical terms, that

there is a null geodesic congruence. The vanish-

ing of the rotation conveys the fact that they are

all normal to the codimension one hypersurface

cµx
µ + 2

c0

γ
g1/2 = constant. (1.55)

Given a curve

xµ(0) = x
µ
(0)(λ)

g(0) = g(0)(λ) (1.56)

the connecting vector is given by:

Zµ =
γβµ

g
˙g(0)g

1/2
(0) + ẋ

µ
(0)

Z4 = g
1/2
(0) ġ(0)g

−1/2 (1.57)

This vector conmutes with kA, and indeed

Z =
γġ(0)g

1/2
(0)

c0
k + ẋµ(0)∂µ (1.58)

We want now to make explicit the construction of

the volume element of codimension 2 associated

to the null congruence in this case. The most

general null vector lA, normalized in such a way

that

k.l = −1 (1.59)

is

l = l0(1, ~n sinχ, g cosχ) (1.60)

where l0 ≡ (c0(1 − g1/2 cosχ
γ

)− ~c.~n sinχ)−1. The
vector ~n is a three-dimensional unit vector, ~n2 =

1, and χ is an arbitrary angle.

The spacelike 3-surface orthogonal to both k

and l will be given, in terms of the parameters

gi, by:

∂ΦA

∂gi
gABk

B =
∂ΦA

∂gi
gABl

B = 0 (1.61)

Whose general solution is:

t = t(0) + ~v.~n sinχ+ g3 cosχ

~x = −t(0)~n sinχ+ ~v
g = = −t(0) cosχ+ g3 (1.62)

6
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where the vector ~v is determined in terms of the

parameters gi through:

v1 = g1 + [V(0) − t(0)~β.~n sinχ− g3 cosχ+
2

γ

√
g3 − t(0) cosχ] n1 sinχ− β1

sin2 χ+ β2 − 2~n.~β sinχ
v2 = g2 + [V(0) − t(0)~β.~n sinχ− g3 cosχ+

2

γ

√
g3 − t(0) cosχ] n2 sinχ− β2

sin2 χ+ β2 − 2~n.~β sinχ
v3 =

g1(n1 sinχ− β1) + g2(n2 sinχ− β2)
β3 − n3 sinχ

+[V(0) − t(0)~β.~n sinχ− g3 cosχ+
2

γ

√
g3 − t(0) cosχ]
n3 sinχ− β3

sin2 χ+ β2 − 2~n.~β sinχ (1.63)

Not all the vectors ∂Φ
A

∂gi
do parallel propagate

along the null geodesics. It is easy to check that

an arbitrary vector vA(0) defined at a particular

point g(0) propagates in a parallel way provided

its g dependence is fixed to be:

(vµ(0)

g
1/2
(0)

g1/2
+ γv4(0)β

µ(
g
1/2
(0)

g
− 1

g1/2
), v4(0)

g
1/2
(0)

g1/2
)

(1.64)

This can be shown to imply the necessary condi-

tion for the fünfbein to be parallel transported,

namely
~β = ~n sinχ (1.65)

(i.e., only when these conditions are fulfilled, can

the fünfbein be parallel transported) which in

turn singles out the associated spacelike normal

hypersurface as lying in a slice of constant g and,

besides

t = ~x.~n sinχ+ constant (1.66)

The induced metric on the hypersurface is then

given simply by:

ds2 = g(δij − ninj)dxidxj (1.67)

in such a way that the volume density reads

Ad−2 ∼ g3/2 cosχ (1.68)

We are now ready to recover in a very explicit

way the interpretation of the expansion as the

logarithmic derivative of the natural d−2 volume
element associated to the null congruence:

kA∇AAd−2 = 3c
0

2γ
g−3/2Ad−2 = θ Ad−2 (1.69)
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[7] E. Álvarez and C. Gómez, Geometric Holog-

raphy, the Renormalization Group and the

c-Theorem, hep-th/9807226,Nucl.Phys. B541

(1999) 441-460.

[8] A. W. Peet and J. Polchinski, UV/IR rela-

tions in AdS dynamics, Phys. Rev. D59 (1999)

065011 hep-th/9809022.

[9] L. Girardello, M. Petrini, M. Porrati and

A. Zaffaroni, Novel local CFT and exact re-

sults on perturbations of N = 4 super Yang-

Mills from AdS dynamics JHEP 9812 (1998)

022 hep-th/9810126.

[10] J. Distler and F. Zamora, Non-supersymmetric

conformal field theories from stable anti-de Sit-

ter spaces, Adv. Theor. Math. Phys. 2 (1999)

1405 hep-th/9810206.

[11] V. Balasubramanian and P. Kraus, Spacetime

and the Holographic Renormalization Group,

hep-th/9903190.

7



Nonpertubative Quantum Effects 2000 Enrique Álvarez and César Gómez
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