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Abstract
We study the properties of a conformal mapping z(k,h) from K(h) = C\ U, ,
where , , = [up — ilhn|,un + ilhn|],n € Z is a vertical slit and h = {h,} € £3,

onto the complex plane with horizontal slits v, C R,n € Z, with the asymptotics
z(iv,h) = iv + (iQo(h) + o(1))/v, v — 4o00. Here up41 —u, > 1,n € Z, and the
Dirichlet integral Qo(h) = [ [2'(k,h) — 1?dudv/(27) < oo,k = u + iv. Introduce
the sequences | = {l,,},J = {J,,}, where l,, = |y,|signh,, and J,, = |J,|sign h,, J2 =
an |Im z(k, h)||dk|/m. The following results are obtain: 1) an analytic continuation
of the function z(-,-) : K(h) x {f : ||f — h|| < r} — C onto the domain K (h) x {f :
|f = hllc < r} for h € £ and some r > 0, and the Léwner equation for z(k, h) when
the height of some slit h, is changed, 2) an analytic continuation of the functional
Qo : 4 — Ry in the domain {f : | Im f|| < r} and the derivatives Qo/0hy, 3) the
mappings [ : /3 — €% and J : £ — (% are real analytic isomorphisms, and /() has the
analytic continuation on the domain {f : ||Im f|| < r}, 4) the double-sided estimates
for ||A]l, I]], |1, Qo (h), 5) some properties of the functional E(h) = > I,(h), 6) the
extension of 1)-5) for the case h € £, where £, is the Banach space with any weight
w = {wntnez,wn = 1, and 1 < p < 2 with the norm [|A]|hn = > wy|hn|P.
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1 Introduction

Introduce the set U = {k : k = u,,n € Z}, where u, is strongly increasing sequence of real
numbers such that u,, — +oo as n — £oo. For some fixed sequence h € /3° we define the
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following domains
K(h) =C\Unezs ny, »n=[tn —itlhy|,un +ilhn|], Ki(h)=C.nK(h).

We call K, (h) the comb”. It is well known that there exists the conformal mapping
z = z(k,h) from K, (h) onto C, with the asymptotics:

z(iv, h) = w(l +o(1)), v — +oo, where z=2x+1iy, k=u+iv,

Moreover, the difference of any two such mappings equals a constant, and then the imaginary
part y(k, h) = Im z(k, h) is unique. Introduce the function 1 (k,h) = v —y(k,h),k € K, (h)
which is the bounded solution of the Dirichlet problem with the following boundary condition
Y(k,h) = v,k = u+iv € 0K, (h). We call such mapping z(k,h) the comb mapping.
Define the inverse mapping k(z, h,U) : C, — K (h). It is clear that such function has the

continuous extension in the domain C, . It is convenient to introduce ”gaps” 7,, ”bands” o,
and the ”spectrum” o(h,U) of the comb mapping by the formulas:

Yo = (2,,25) = (2(un — 0,h), 2(up, +0,h)), on=1[2F 2,1 o(h,U) = Uo,.

Here and below the union, the sum and the integral without the limits means the union,
the sum and the integral from —oo until co. All others cases well be denoted precisely.
The function u(z,h) = Rek(z, h) is strongly increasing on each band and equals u, on the
interval [z ,27], n € Z; the function v(z,h) = Im#k(z, h) equals zero on each band and
is strongly convex on each gap v, and has the maximum at some point z,, and such that
|hn| = v(2,). If the gap is empty we set 2, = 2. These and others properties of the comb
mappings it is possible to find in the papers of Levin [Le].

For the weight w = {wy, }nez, where w, > 1, and the number p > 1 introduce the real
spaces

o= =nnel}, [[fllpw<oo}, |f

) — P
w = E wp [P < oo.

nes
If the weight has the form w,, = (2u,,)?*™, m € R, then we will write ¢£, with the norm ||-||,.n,
if the weight w, = 1,n € Z, then we will write £{ = ¢* with the norm || - ||, |- || =1 - |2
Let EZ,(C be the complexification of the space ¢?. In the complex space EZ,(C introduce the
domain (a layer)

TEp) ={neltlc:|Imn

lpw <p}, p>0, p>1

For h € {x° we define the singed gap length by the following formula:
In(h) = (2} — 2z )signh,, ne€Z,
and let [(h) = {l,(h)}nez. Below we will use very often the following estimate:

1Y (R)] < 2|hn|, € Z, (1.1)



see [MO1]. Hence if h € % then I(h) € /P and we have the mapping [(-) : %, — (P for any
p > 1 and w. Introduce two maps

Arh = A={A)=,,  J:h—=J={]}>,

acting from ¢7 into ¢? for any p > 1 and the weight w, where the components are defined by
the formulas

2
A, = —/ o(z,h)dz,  Jy = |Ay[1? sign hy. (1.2)
m
Tn
Define now the functional @,(-) : #/, — R by the formula:
1
Qr(h) = — / z"v(z,h)dz, r €L,

T Jr

and the Dirichlet integral

1 1
Ip(h) = ;//(c 12" (k, h) — 1]* du dv = ;/c k' (2, h) — 11> dz dy,

the last identity holds since the Dirichlet integral is invariant under the conformal mappings.
For h € I3 the following estimates and identities were proved

5 Z Y (B)|[hn| < 7Qo(h) < Z ¥ (P) || P (1.3)

neZ nez

2Qo(h) = Ip(h) =Y A, = ||J|1, (1.4)

see [KK1]. Relations (1.3-4) show that functional @ is bounded for h € (3.

Note that the comb mappings are used in various fields of mathematics. We enumerate

the more important directions:

1) the conformal mapping theory,

2) the Léwner equation and the quadratic differentials,

3) the electrostatic problems on the plane,

4) analytic capacity,

5) the spectral theory of the operators with periodic coefficients,

6) inverse problems for the Hill operator and the Dirac operator,

7) KDV equation and NLS equation with periodic initial value problem.

We need some results from the conformal mapping theory. Recall the Hilbert Theorem
about the conformal mappings from a multiply connected domains onto a domain with
parallel slits. Let Sy, Ss,..., Sy be disjoint continua in the plane C; D = C\ U)_,S
Introduce the class ¥'(D) of the conformal mapping w from the domain D onto C with the
following asymptotics: w(k) = k + [Q(w) + o(1)]/k, k — oco. We formulate the well known
Theorem (see [G], [J]).

Theorem. ( Hilbert) .Let Si,S,...,Sy be disjoint continua in the plane C; D =
C\UN_|S,. Then for each t € [0, 7] there exists a unique function wy € ¥'(D) which maps
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D onto a domain with parallel slits and the angles of intersection between the parallel slits
and the real axis are all equal to t. Moreover, for each function f € ¥'(D), f # wy, the
following estimate is fulfilled Re Q(f) < Re Q(wy).

Levin [Le] studied general comb mappings for the case h € (2, m = —1, and proved
the existence of the mapping for a very general case. Marchenko and Ostrovski [MO1-
2] considered comb mappings as m > 1l,u, = mn,n € Z. The authors of the present
paper [KK1] found new estimates of the various parameters, the identities (see (1.4)), the
Poisson integral (2.39) ( convenient for the application) and used the Dirichlet integral. New
identities and various estimates were obtained by one of the authors (E.K.) in the papers
[K1-4], [K7-11]. Remark that first the Dirichlet integral for the comb mappings at m = —1,
was used in the paper [Kal] of another author (P.K.) of the present paper.

Estimates are important in the conformal mapping theory. Some double-sided inequalities
for ||h||2,1 and Q2 were found in [MO2] only for the following case :

1S 02\/60 exp(Cy \/éo)a

for some constants C7, Cy, C5. Note that these estimates are overstated since the Bernstein
inequality was used. In this consideration the condition u,, = nmn,n € Z, is very important,
note that the estimates in terms of the gap lengths were absent. Later on various estimates
were showed in [KK1]. First double-sided inequalities ( very rough) for the gap lengths (for
for [|l]|2,1 and @)2) were proved in [KK2]. Some double-sided estimates of various parameters
were found in [K4] for the case when on any unit interval there are finite number of vertical
slits and results were applied to the Dirac operator and the weighted operator [K10-11].
Various inequalities for some values of the Hill operator were proved in [K1, 8] and remark
that the proof of the estimates for the Hill operator is more complicated than for the Dirac
operator.

Recall the well known results about the Lowner equation [L] and quadratic differentials.
The Lowner equation usually is used for a simply connected domain, such that zero (the
norming point) lies inside this domain and oo does not belongs to one. Moreover, there
exists a slit inside this domain such that one of the ends lies on the boundary of the domain
(see [G]). The Lowner equation for the comb is not studied since in this case the norming
point, oo, lies on the boundary. Maybe with a unique exception, there exists a paper of
Garnet and Trubowitz [GT1] where the authors considered such problems.

In our paper we do not study the quadratic differential, but some applications of our
results with this subject will are discussed after Theorem 2.1.

Consider the Hill operator T' = —d?/dx?+q(x), acting on L*(R), where a potential ¢ is 1-
periodic and belongs to the space of even functions H, = {q € L?(0,1),q(x) = q¢(1 — ),z €
[0,1]}. It is well known, that the spectrum of 7' is absolutely continuous and consists of
intervals [A/_;, A;], where A\J_; < A, < Af, n > 1 and let \f = 0. These intervals
are separated by the gap 7, = ()\n,)\j{). If a gap degenerates, that is 7, = 0, then the
corresponding segments merge. Let A(z,¢),z € C, be the Lyapunov function for the Hill
operator. Define the quasimomentum by the formula

n=1n,n < 7, \/70 C'1 1+||h||oo)(1+||h||21)

k(z) = arccos A(z,q), z€ Z=C\ Uy,



where the slit v, has the form

o= (2, 20) = =Yony 2 =V/AE>0, n>1.

Note that for each n > 1 there exists a unique point z, € [z, , 2] such that A,(z,,q) = 0.
The function k(z) is a conformal mapping from Z onto K (h) where u,, = mn,n € Z and |h,,| is
defined by the equation cosh |h,| = (—=1)"A(z,,q). Let u,(q),n > 1, be an eigenvalue of the
Dirichlet problem —y" +qy = Ay, y(0) = y(1) = 0. It is well known that u, € [\, n] n>1.

Construct the height slit mapping h : ¢ — h(q) = {h,}>,, where h, = |h,|sign(z2 — ),
from #, into /2.

Define the gap length mapping G : ¢ — G(q) = {G,}5° from H,. into (2, where the
components have the form G, = A + A\ — p,,

Consider the Zakharov-Shabat (or Dirac) operator T, in the Hilbert space L*(R)® L? (R),

where w @) @)
() @z =~ 0 1
T, =J— , J= 1.5
dx ( @(r) —q(v) > < -1 0 > (L5)
and qi,q2 € L?(1,0) are real 1-periodic functions in x € R. The spectrum of T}, is purely
absolutely continuous and is given by the set Uan, where an interval o, = [2,]_;, 2], where
c< gy K g < 2y K 2 <., and zE = n(7r+0(1)), as |n| — oo. These intervals
are separated by gaps v, = (2,2 n) W1th the length I, = |g,|- If a gap g, is degenerate,
i.e., [, = 0, then the corresponding segments o,,, 0,11 merge. For the Dirac operator T we
are able to define the quasimomentum, some analog of the height slit mapping and the gap
length mapping.

Consider the defocussing cubic non-linear Schrédinger equation (NLS)

T =ttt v = (0D, 0.0 =)

It is well known that NLS is a completely integrable infinite dimensional Hamiltonian system.
The periodic spectrum of (1.5) is invariant under the flow of NLS. The Hamiltonian has the

following form

1

@) =5 [ I0@F + la) iz = 4Qu(h);

Moreover, there are two functionals. First, the number of particles Iy has the forms

(@) = glol? = 5 [ aPde = Qo) = - [ [ 1209~ 1P

and the second, the momentum 1,

1,~, 1

3000 =5 [ @@n @ — d @) = 200,

The NLS equation has the Hamiltonian 75 and the Poisson bracket has the form

' 9F  aG oG  OF
rer=if g @) 90@ (@) dnl) "

5
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The NLS equation admits globally defined real analytic action-angle variables (see [Ar]).
Define the action variable A,, by the formula (1.2) (see [FM] ). Then the Hamiltonian H, the
number of particles Iy and the momentum [;; depend only on the action-variables A,,,n € Z.
Introduce the frequencies w, = aaTHn’ n € Z. The parameters w, are very important since
the angle variables has the form ¢,(t) = w,t + ¢,(0),t > 0,n € Z.

A great many papers are devoted to the inverse problem for the Hill operator. Marchenko
and Ostrovski [MO1], [MO2] constructed a ”global quasimomentum” and proved the con-
tinuous isomorphism of the mapping H (”cut height mapping”). Note that the global quasi-
momentum was introduced into the spectral theory of the Hill operator by Firsova [F], and
by Marchenko-Ostrovski [MO1] sumiltaneously. Dubrovin [D], Its and Matveev [IM], Moser
[Mos|, Novikov [N], Trubowitz [T] considered the inverse problem for finite band potentials
(potentials were more general in [T]). Garnett and Trubowitz [GT1] proved the real ana-
lytic isomorphism both of H and of G for the case of even potentials. In the next paper
[GT2|, Garnett and Trubowitz proposed a new approach to solve the inverse problem. This
approach is based on functional analysis (see Theorem 8.1) and gives the direct proof that
the mapping G is an isomorphism. Note that here the apriori estimate (similarly (1.6)) is
important. But the proof is not complete since the needed estimates were absent, and note
that later on such estimates was proved in [K7]. Kargaev and Korotyaev [KK] reproved the
results of Garnett and Trubowitz [GT1] by the direct method. Moreover, they considered
other mappings, for example, they solved the inverse problems for the gap length mapping
of the operator /T — \§ > 0.

Kappeler [Ka] proved that the ”gap length mapping” for the Hill operator is a real analytic
isomorphism. But in his paper there exists a mistake connected with real analyticity, since
in fact, analyticity seems only to have been proved for each single component of the gap
length mapping Remark that the definition of this mapping is not explicit and differs from
[K6].

In the paper [BGGK] the authors proved that the ”gap length mapping” for the Zakharov-
Shabat operator (for the case of ¢,¢' € H) is a real analytic isomorphism. We feel, however,
that there is a gap in the proof of real analyticity in [Ka] (analyticity seems only to have been
proved for each single component of the gap length mapping), and this proof was referred
to in the subsequent work on the Dirac operator. Furthermore, it is not clear to us how in
[BGGK] the gaps are labeled without using the quasimomentum.

In the paper [BBGK] the symplectomorphism for "the action-angle variable mapping”
was proved. Korotyaev [K1], [K6] proved that two mappings for the Hill operator are the
real analytic isomorphisms by the direct method both for the ”gap length mapping” and the
”cut height mapping”. Later on the same results were extended for the weighted periodic
operator [KKo], [K10].

Double-side estimates for various parameters of the Hill operator (the norm of a periodic
potential, effective masses, gap lengths, height of slits |h,| and so on ) were obtained in
[K2-4] and for the Dirac operator in [KK2], [K2], [K5]. The precise double-sided estimates
(see (1.6)) for gap lengths was found in [K7]. P&schel and Trubowitz [PT] wrote a nice book
concerning the inverse Dirichlet problem.

Recall that for a compact subset K C C the analytic capacity is called the following



value
C =C(K) = sup{|f'(c0)| : f analytic in the domain C\ K; |f(k)]|<1, ke C\ K}

where f'(c0) = limy_ k(f(k) — f(o0)). We will use well known Theorem of Ivanov-
Pommerenke (see [Iv], [Po])

Theorem ( Ivanov-Pommerenke ) Let E C R be compact. Then the analytic capacity
C(E) = |E|/4, where |E| is the Lebesque measure (the length) of the set E. Moreover, the
Ahlfors function fx (the unique function, which gives sup in the definition of the analytic
capacity) has the following form:

exp (30k(2)) — 1 B dt
fr(2) = eXP(%(f)K(Z)) +1’ P (2) = /E - €C\E.

We will use the following simple remark: if K C Cis compact ; D = C\ K, g € ¥'(D), then

C(K)=C(C\ g(D)). It follows immediately from the definition of the analytic capacity.
Let @, C (g be the subset of finite sequences of non negative numbers. Then, using the

Ivanov-Pommerenke Theorem and the last remark we obtain for h € &

||l(h’)||1 = A(h) = C(a (h’))v where ) (h’) = UnEZ[un - 7’|h’n|aun + |hn|];

Yo k(- h,u))) =2( (h).

Moreover, using Theorem 2.4 we have for h € &

anF(h) = ¢,a(k(-,h,u))()‘n)a where F(g) = fY(E(g))v 5 S (I)-l-'

Similarly, we are able to get other results devoted to || - ||; and to the functional E.
The main gaol of our paper is to prove the following points
1) to study the function z(k,h) as a function of two variables k € K(h),h € (P,
2) to get an analytic continuation of the functional Qq : (2 — Ry into the domain J?(p)
and and to find the derivatives 0Qq/0hy,
3) to show that the mappings | : (°, — (P and J : (*, — (* are real analytic isomorphisms for
any 1 < p < 2 and any weight w, > 1,
4) to find the double-sided estimates for ||h||,. and ||l||pw, 1 <p < 2.
5) to get the double-sided estimates for ||h||,w and Ip(h), 1 <p < 2.
6) to study the functional E(h) = 1,(h).

2  Main results

Define the following constants

48 - 61/ oo 32
(1—0)uh, 7 2

*

Uy h? 1 /27722 + 7)\?
p= ap_;(i), Cy = Cp = Cy3V2.

U



where p > 1. We formulate the basic result of our paper. We prove the following properties
of the non-linear mapping I(h) = {l,(h) }nez. Recall [,,(h) = (2 — 2z, )sign h,,, n € Z,.
Theorem 2.1. Let upi1 —u, > u, > 0, n € Z. Then for each 1 < p < 2 and the
weight w, > 1,n € Z the mapping | : * — (P is a real analytic isomorphism. Moreover,
this mapping has an analytic continuation into the domain JP(p) for some p > 0 and the
following estimates are fulfilled:

[la(h)] < Crlhal(1+ CAIRI), k€ T (p). (2.1)

1B lpw < Cllbllpw(X+ CRIRIZ), b€ TE(p), (2.2)
1) pw < 2[Pllpw < L) lpw exp (lAlloo/us), € £, (2:3)
)

1
Sy < [lRlly < 2(1Ap (L + ap [[LR)E),  he . (2.4

The real analytic isomorphism of some mappings were proved in the papers [GT], [KK2],
[K1-2]. In the present paper there exists two absolutely new points: first, this mapping has
an analytic continuation into the domain J?(p) for some p > 0 and the second, the estimates
both for the real vectors and the complex one (see (2.1-3)). Estimates (2.2-3) are new, but
in the case of the real space /7 inequality (2.2) was obtained in the paper [KK2], where the
method and the estimates were very rough. One of the author (E.K. [K4], [K8]) found the
double - sided estimates for the space ¢2,m > 0.

Define the square differential in the domain D = K(h) U {cc} on the Riemann sphere,
which is considered as Riemann surface with hyperbolic boundary components by the fol-
lowing formula:

w = (K'(2,h) — 1)?d2* = (¢'(k, h) — 1)*dk?.

Then w is the analytic square differential on D (in particular, analytic at any boundary
point in terms of a corresponding uniformizing parameter). In the present paper w-metric
is important to get the needed estimates. Moreover, these estimates have the following
geometry interpretation.

The invariant length L, of the cut 7, has the following form

+

Zn zr-l_
L, :2/ W (z) — 1|dx:2/ Vo @) 1 1de.

n

Then using (1.1 ) we obtain
2|hn| < L < 2([hn] + [In]) < 6]/

Moreover, the invariant area S of the Riemann surface D has the form

5= //@ #(2) — 12dady = 27Qo (h).

It is possible to consider Theorem 2.1 and corollaries as a statement which gives the double-
sided estimate for S if we know the sequence of the boundary component lengths and the
points where the vertical slits cross the real line.
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We show now the corollary asociated with the notion of the extremal length. Let h =
{h,}N_| be a finite sequence of positive numbers. For any 1 < n < N we introduce the set
G, of rectifiable curves which connect the slit [u,, + ih, /2, u, + ih,] with the real line and
lying in C;. Let P be the set of metrics p(z)|dz| on C,, such that p?(z) is integrable and

/p(z)|dz|2hn/2, o € Gy n=1,...,N
Tn

It is well known that in this case (see [J] ) the following value

= inf dd
v [ [y

is called the extremal length for the set G,, and numbers h,, /2.
It is found the metric |2'(k) — 1||dk| belongs to the set P and by Theorem 2.1, there
exists an absolute constant C' such that

CM < // 2 (k) — 1|?dpdq < M.
Cy

We formulate the basic result about the mapping J(h) = {J,(h)}nez. and recall J, =
|A,|/? sign hy,, A, = 2f (z,h)dz.

Theorem 2.2. Let u,y1 — u, 2 uy >0, n € Z. Then for each 1 < p < 2 and the weight
wn = 1,n € Z the mapping J : % — (P is a real analytic isomorphism. Moreover, the
following estimates are fulfilled:

1T (M) llpw < 2lAllpw < 2[1T(B)|lpw exp G (W)llpw/u), b€ £, (2:5)
1211y 2

— Sl < ﬁlllllp(l +ayllllp)?, he e, (2.6)

\F J Ml < A[T),(1+ ep2P|| T|E), her 2.7

=5 1l < [18llp < 4111+ ap2?[[T[[5),  he . (2.7)

The real analytic isomorphlsrn of some such mapping was proved in the papers [DBGK] for
the Hill operator. In the present paper there exists two absolutely new points: first, we
consider this mapping in the Banach space ¢? for any w > 0 and the second, the estimates
are proved forany 1 <p < 2w, > 1.

Let 0,, = 0/0h,,n € Z. Introduce the constants

T sign h,, /|k" (An, )|, if  h, #0,
"0 if h,=0.

We formulate the basic result concerning the functional Q. Recall Qq(h) = * fR z,h)dz.
Theorem 2.3.Assume that u, 1 — u, > uy >0, n € Z. Then the functzonal Qo:? - Ry
has analytic continuation in the domain JE(p) for some p > 0 and the following estimates

are fulfilled:
1
Qo(t)| < SCHIBIEL(1+ CAlIRI), b e T20), 2.8)
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s 2Q0(h
2 Qolh) < [IB]f* < 7* max {1, ol )}Qo(h), he 2, (2.9)
Uy
and the derivative has the form:
0,Qo(h) =vn(h), ne€Z, hels (2.10)

In the present paper there exists three absolutely new points: first, this function Qo(h) has
an analytic continuation into the domain JP?(p) for some p > 0, the second, the estimates
both for the real vectors and the complex one (see (2.8-9)) and the derivatives (2.10) is found
for the first time.

For each h € [}, we define the functional

nel

It is possible since there exists estimate (1.1). Recall E(h)/4 is the analytic capacity of the
set Uy,. It the our paper the following properties were proved.

Theorem 2.4.For each sequence U and h € (%, such that h, > 0,n € Z the following
estimates are fulfilled:

mQo(h) < ||hllec E(h) < %E(h)Q, E(h) <2|[hlli. b€ tg, (2.11)

Let in addition u,1 — u, > u, > 0, n € Z. Then the functional E : (5 — R has analytic
continuation in the domain J*(p) and the following estimates are fulfilled:

[E(m)| < Crllnlh(L+ CAllnll),  ne T (p), (2.12)
40 "
Il < o ), e 6 (2.13)
and for any h € l} the derivative has the form
Vp * f %, lf hn % 0,
0, E(h) :{ oty (2.14)
22" (tun, h), if h, = 0.

Consider now the analytic properties of the conformal mapping z(k,n). Assume that the
following condition u, 1 — u, > u, > 0, n € Z is fulfilled. Note that by the definition, for
any fixed k € C the function z(k, h), h € % is even with respect to each variable h,,. Then
in order to find the derivative 0,,z(k, h) it is enough to compute the derivative for the case
hmn > 0,m € Z.

Define the ball BE(n,r) = {f : || f—n||’, < r} C 2, and the disk B(z,7) = {2 : |z — 2| <
r} C C, where p > 0. In the case £2 . the ball is denoted by B? (1, p). For fixed ¢, € [0,1]
and h € ¢* introduce two domains

( \ U unarn UB(un,rn))

neZ
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K,(h) = {|Re(r — u,)| < us} \ {k = u,, + v, |v| > |ha|},
where @, r, depend on the two cases: let R, = h,u.c/8,
Ely

r’l'L_ 47

R, - ) h.R,
7"n277 Un:un+l(|hn|_

Note that in the second case B(u,,r,) C C,, since we have

Up = Up, if |hn| < Rn, (I case);

), if |hn| > Rn, (I case).

(harn/2) + 10 < 51y /4 < 27 < By

We formulate our basic results about the analytic properties of the conformal mappings.
Theorem 2.5.For any fivzed h € (%,e = {e,}, where ¢, € [0,1], n € Z the function
z(k,h +¢en) has an analytic continuation from D = K (h,e) X B*(p) into the domain Do =
K(h,e)xBZ%(p). This continuation is such that if the set K, (h, ) is connected for somen € Z
then the function z(k,h +en), (k,n) € D¢ has an analytic extension in the domain D, =
Ko xB2(p) ("left” if this continuation coincides with z(k, h+-en) as (k,n) € Dan{Rek < u,}
and "right” if this continuation coincides with (k,h +en) € D, N {Rek > u,} ). Moreover,
for any h € (3, n € Z,k € K(h) the derivative has the following form:

l/n
Onz(k, h) = z(k,h) — 2z,
In particular, the formula (2.15) is true for k € [uy, u, +1ihy,), if z(k, h) is the left-hand limit
(the right-hand limit).

In this Theorem an analytic continuation into the domain JP?(p) is new, moreover, the
identitty (2.15) for the derivatives is also new.

We use the results of the Theorem to get the Lowner equation for our case, when the
corresponding conformal mappings have the asymptotics z(iv, h) = v — (Qo + o(1))/iv as
v — oo (the normalisation at infinity). It is important that in this case the point of the
normalisation is the infinity, i.e. this point belongs to boundary of our domain. Remark
that in the classical case (see [G]) this point lies inside the domain. Let h = {h,, },ez belong
to (% and let h,, > 0 for some m € Z. For any & € [0, h,,] define the sequence h¢ by the

following formula:
hn, if n#m,
(hﬁ)n = { #

k # up +ih,, k€ K(h). (2.15)

hy — &, if n=m,

and let K¢ = K (he), ¢(z,&) = k(z, he). Then g(-,&) is the conformal mapping from C;
onto K¢ and we have the following asymptotics

Qo(he)

9(z,)=z2— ——=+..., z— 0.
z

Moreover, by Theorem 2.3, the function 5(§) = Qo(h¢) is increasing on the interval [0, hy,]
and 3 € C*([0, hy,), and



Introduce the function f(z,£) = g '(g(z,0),&) which has the asymptotics

f(z,f):z—wﬁL..., z — 00.

Differentiating the function f with respect to & and using Theorem 2.5 we obtain

0f ___v

86_ f_zm,

where z,,(¢) = g7 (U, + hini) € R. Defining the new parameter t = 3(0) — 3(£), £ € [0, hy,]
we have the Lowner equation for the function f on the interval [0, h,,]:

g_ 1

6t —m, f(Z,O):Z, ZG(C

Using such calculus, the identity ¢g(f(z,t),t) = ¢g(z,0) and in standard way ([G], [A]) we
obtain another Lowner equation for the function g:

dg 1 dg

Note that g(-,0) is the conformal mapping from C, onto By = K, (h) .

Now we estimate the Dirichlet integral Ip(h) (or Qo(h)) for general sequences {u,}nez,
using the following geometric construction. L

For the vector h € [, h, — 0 as n — oo, we introduce the sequence h = h(h,u) which

is defined in the following way. We take an integer n; such that |h,,| = max,ecz |h,| > 0
and set h,, = hy,; assume that we define the numbers nq, no, ..., ng, then we take n;;, such
that

|h”k+1| :r;lea];<|hn| >0, B={n€Z:|uy—up| > |hy|,1 <1<k}

and set Enk“ = hn,,,- Then, for number n, which disagrees with some n;,, we define hn = 0.
Now we formulate the following results L

Theorem 2.6.Let h € [°,h, — 0 as |n| — oo; and let h = h(h,u). Then the following
estimates are fulfilled:

1~ 1 2V2 ~
LRI < Qo) = Loy < 22 (2.16)
Remark that some analog of Theorem 2.6 for || - ||; follows from result of Shirokov [Sh],

devoted to estimates of the analytic capacity. We have
Theorem (Shirokov) 1). Let h € (5°; h, — 0, n—o0; h(h,u). Then

|2y < R < ClA]

where C is the absolute constant.
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2) Assume there exist L > 0, M € N such that u,p —u, > L for any n € Z. Then for each
h € I the folowing estimates are fulfilled:

S < Bl < CHIL (1 4+ S 1) ), (217)

where C' is some the absolute constant.

Application. Consider the electrostatic field in the plane K = C\ U,ez, », where
, n, M € Z is the system of neutral conductors. In other words, we imbed the system of neutral
conductors , ,,n € Z, in the external homogeneous electrostatic field Ey = (0,—1) € R? on
the plane. Then on each conductor there exists the induced charge, positive e, > 0 on the
lower half of the conductor , ,, and negative (—e, ) < 0 on the upper half of the conductor , ,,
since their sum equals zero. As a result we have new perturbed electrostatic field £ € R?. It
is well known that there exists the complex potential z(k, h), k € K such that

E=1iz'(k)=—-Vy(k), ke K, z=uzx+iy. (2.18)

Recall that z(k) is the conformal mapping from K onto the domain Z = C\ U~y,, where
Yo = (2,,,2"). The function y(k) is called the potential of the electrostatic field in K, and
the equation z(k) = const is defined the line of force directed from a positive charge to
negative charge. It is well known that the potential y(k) of the electrostatic field on the
conductor 7, is constant. Then the field £ on the conductor has the horizontal direction and

the following formula is fulfilled:
E=iz(k)=—(yu(k),0) ke,,. (2.19)

The density of the charge on the conductor has the form (see [LS])

|2 (k)|
= 2.2
pe (k) dr ke, n, (2.20)
and then (2.20) yields
pe(k) = [y (k)] ke, =,,NnC; (2.21)
47T Y ‘n Y Y
Using (2.21) we find the induced charge e, on the upper half of the conductor ~;':
1 1
= = — ) 2.22
€n 47T FT'*L' Loy (k)dv 47T |/yn| ( )

i.e. we get the nice formula: the value of the charge equals the gap length |v,|/47. Introduce
the mapping e : ¢ — e = {e,} € (* by the formula: e(h) = {e,,n € Z}, where e, = |y,|/47.
Define the charge E = > e,, i.e. the sum of all positive induced charges, and the bipolar
moment of the conductor with the induced charge density by the formula

1

4 Jp,

dy, v, (k)dv.

13



We transform this value into the form

1 1
d, = — de = - A,, 2.2
o | vt = (2:23)

and define the mapping d : ¢# — d = {d,} € ¢?. Then if we know K(h), i.e. we have
h = {h,}, then we know the electrostatic field £ € R* and all other physical parameters.
Moreover, we obtain the value of the positive induced charges e,, > 0 and the bipolar moment
d,. An inverse is also true. If we have the value e = {e,} € ¢*,p € [1, 2], then by Theorem
2.1, we know the heightes of all conductors. Moreover, there exist the estimates (see (2.1))
and F is an analytic function of A.

Furthermore, if we have the value d = {d,, } € /P, p € [1, 2], then by Theorem 2.2, we get
the heightes of all conductors. We have the estimates (2.1).

Preliminaries. Below we need some results about conformal mappings. The function
2(+, h) has an analytic extension (by the symmetry) from the domain K (h) onto the domain

K0 =KmU) =C\ s m s n = [ttn — ilhn], tn + il]] (2.24)

neZ

and z(-, h) maps K (h) conformally onto the domain Z = C\ U, ¢z7,,. For any nondegenerate
gap 7y, the function k(- h) has an analytic continuation (from above or from below) across the
interval 7,. This sufices to extend the function —i(k(-, h) — u,) by the symmetry. Similarly
the function z(-, h) has analytic continuation (from left or from right) across the vertical slit
(tn, — i|hnl, un + i|hy|) by the symmetry.

Introduce the effective masses u = for the end zF of the gap |v,| # 0 by the formula

ot (k — un)® .3 +
z(k,h) — p,, = . +O((k —un)?), z—z,. (2.25)

Define now the effective masses v, in the plane K (h) for the end of the vertical slit [u, +
i, un — i|hy|] by the following asymptotics

(2(k,h) — zn)”

k — (u, +ilhg]) = i +O0((2(k,h) — 22)%), k= u, +i|hy). (2.26)
i3
By virtue of symmetry the effective masses v coincide, i.e. v = v,. We have the simple
formula .
S |E"(zn, h)| tsignhy,, if 1, #0,
Vo = {0, v o (2.27)

Below we will use the Lindel6f principle (see [J]), which is formulated in the following form,
convenient for us.
Lemma 2.7.Let h, h' € (2; |h}| < |hy|, n € Z. Then the following estimates are fulfilled:

y(k,hY) > y(k,h), k€ K,(h), (2.28)

12" (k, hY)| > |2 (k, B)|; k € (un, uy +ilhn]), n € Z; (2.29)

14



12" (u, hM)| > |2 (u, h)]; u € R, w # up, n ¢ A; (2.30)
Qg(hl) < Qo(h) and Zf Qg(hl) = Qg(h), then hl = h, (231)
[ (B1)] 2 |l (). (2.32)

Estimates (2.28-29) are simple and follow from (2.25-27), which are well known and for
our case are discussed in the paper [KK1]. We show the possibility of this principle in the
following Lemma.

Lemma 2.8. Let h € (y°. Then for each n € Z the following estimates are fulfilled:

Un < |hnl, (2.33)

1A]3% < Ip(h) = 2Qo(h). (2.34)

Proof. Applying estimate (2.28) to h and to the new sequence: h! = h, if m = nand h} =0
if m # n. It is clear that z(k,h') = \/(k — u,)? + h2 (the principal value). Then

y(k, h) < Tm(y/(k — un)? + B2), k € K. (h),

and using the asymptotics (2.26) of the function z(k, h) as k — u,+1i|h,|, we obtain estimate
(2.33).

In order to prove (2.34) we use (2.31) since Qo(h') = b2, /2. O

Below we need the following estimates (see [KK1])

2 2 2

max{(z iny < g, —/ o(@)dz < 2, (2.35)
4" 7 T Jy, T

v(@) = va(@) =|(z = 2;) (55 — 2)|'?, @ €. (2.36)

We need also some results about the Cauchy and the Poisson Integrals. Recall that the
function f(z), z € C,, belongs to the class Ry, if there exists the following formula

f(z):éd“(t) ceC

t—2z’

where 1 is a Borel measure on R and M = pu(R) < oo. It is well known that f € Rg if and
only if, one of the two following conditions is fulfilled:
1) Im f(2) 20, 2 € Cy; My =sup,,|f(iy)y| < oo;
2) fliy) = =22 +o(2), y— +oc.

Note that M = M, = M.

Using this representation and some results from the paper [KK1] it is possible to get the
following formulas.

Let h € (3. Then the following identities are fulfilled

1
k(z,h,):z—l——/Mdt, z € Cy; (2.37)
R

™ t— =z
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Qo(h) +0(1)

k(2 h) =2 = =—————=, z=1iy, y— +0o; (2.38)
1 v(t, h) _
u'(z, h :1+—/ ——dt, T€R T 2.39
I U (29)
1 v(t, h)
v(x,h) =v,(x 1—|——/ ——————dt), x € Y. 2.40
(,h) = v () (1 + — oo = 2[0a (D) ) (2.40)

Below we need the formulas, where the integrals on the line in the upper half plane. For
each b > ||h]| the following estimates are fulfilled:

. . 1 [ o(t+ib,h
(k +1ib) — z(k + ib,h) = ;/}R% dt, ke Cy; (2.41)
Qo(h) = % / ot + ib, h) dt: (2.42)
2(k,h) =k + M, k =1iq, q¢— +oo. (2.43)

Note that (2.41-43) are true for more general case. For example, if
1
FEL®), V() =ImFG0m), ke Km: b> e == [ f)d
T JRr

where the function F' has the form

L[ f(®)
F(z)== : 2.44
@=1 [ HLa secy (241
Then we have
1 1
F(iv) =iv + LO(), v—+4o0; S=-— / V(t + ib, h) dt. (2.45)
(3 T JR

We have also the following inequalities
Im(k(z,h) —2) >0, z€ Cy; Im(k—z(k,h)) >0, ke K.(h). (2.46)

Let us consider the branch points of our conformal mappings 2=, u, £i|h,|, n ¢ A. It is

n?

well known that 2 is a branch point of a second order and the following identity is fulfilled:

o0

k(z,h) = bh(V/E(z—25)", z€Cy, (2.47)

m=0

in some disc with the center zF (here /- is the principal value in C, \ (—o0, 0], such that
V1 =1). Note that bf = u,, +b" > 0, and the effective masses ut = 2(b7")2.
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The points u, £ i|h,| are the branch points of the second order for the function z(-, h)
and the following identity is fulfilled:

2(k,h) =Y em(V/=ilk = (un +ilha])™, k€ K(h), (2.48)

m=0

in some disc with the center u, % ilh,| (here \/- is the principal value such that v/1 = 1).
It is clear that ¢y = z,, —ic; > 0 and v, = —c3.

We need another notion of analyticity. Let U be an artitrary subset of a Banach space
X, and let X, be another Banach space. The map f : U — Xj is weakly analytic on U, if
for each z € U h € X and g € X*, the function F(z) = (f(x + zh), g) is analytic in a disk
{2z : |z| < r} C Cfor some r > 0. in the usual sense of one complex variable. The notion of a
weakly analytic map is weaker than that of an analytic map. Remarkably, a weakly analytic
map is analytic, if, in addition, it is locally bounded, that is, bounded in some neighborhood
of each point of its definition (see [Di]).

Theorem 2.9. (Analyticity) Let f : U — X, be a map from an open subset U of a complex
Banach space X into a complex Banach space Xy. Then the following two statements are
equivalent.

i) f is analytic on U,

ii) f is locally bounded and weakly analytic on U.

3 Dirichlet problem with parameter

In this Section we assume that u,_ , —u, > u, >0, n € Z. For the set U = {u:u=u,,née
Z} define the following set

, =, U)=RU{keC,: RekeU},

Below we will use the functions Sy :, (U) — C which satisfies
Condition B. 1) g, (k) = 3_(k), k € R,
2) B+ € C(, \U), and for each t > 0 the following estimate is fulfilled

fo(t) = sup |Br(k)| < o0

kel Imk<t

In this Section we study the family of Dirichlet problems depending on a parameter h € .
Namely, for the fixed sequence h € (> we consider the Dirichlet problem in the domain
K, (h), with the boundary function §(k, h),

_  Be(k) = B(k), if kER,;
ﬂ(k,h) - {ﬁ:(k)a a = Sign hna if ke (un7u” + Z|hn|]’n € Z’

It is well known that this problem has a unique solution ¢(k, %) bounded in K, (h) and
(- h) € C(Cy \ U) In this case we will say that the function (4 define the Dirichlet
problem with parameter h € /.
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We study the properties of the function v (k,h) as the function of two variables k €
K, (h),h € (. Moreover, we will get the analytic continuation with respect to h in some
domain. In order to solve and to analyze these Dirichlet problems with parameter we use the
Schwartz alternating method which was proposed in the paper [GT1] for a following simple
case: |h,| >0, if |n| < N, and |h,| =0, if |n| > N for some N > 1, in fact they considered
RY case. We extend this result for the case h € . Define the following domains

B.(0,7)=B(0,r)NCy, D(t)=B(0,1)\[-i,it], D) =C,nD(), tel0,1).

Let the functions T'(k, k,t) and T(k, k,t) be the Poisson kernel for the domains D(t) and
D(t) respectively at t € [0,1/2). We need the following results proved in [GT1], which will
be used in this Section

Lemma 3.1.There ezist some constants 0 < h, < 1/2 and 0 < 6 < 1 such that for any
k| = 1,|k| = 1/2,k, k € C,, the functions T(k, k,t) and T(k, k,t), have continuations from
the interval t € (0, h*) onto the disk {t : |t| < h.} C C which are analytic on the interior of
this disk and for which the following relations are fulfilled:

T e€CO(G), G=(B(0,1)NC,;) x (0B(0,1/2)NC,) x B(0, h,),

T(k, k,—t) = T(k,k,t), t € B(0,h*), forany fixed |k|=1,|k|=1/2;k ke C;,

Tec(@, G=0B0,1)x0B(0,1/2) x B, I,
su / T(k, % 0)ldk]) < 5 sup / T (kT 1) 1) < 0
k= keC+,|t\<h [k|=1/2, |t|<hs
3B+ ﬂ(C+ ‘k}|:1

Below the constants h*, 0 from Lemma 3.1 will be often used. We need the following
simple result, which helps to prove the analyticity of the mapping from ¢ into L*(dpu),
where y is some measure.

Lemma 3.2.Let (M, B, i) be the measure space and let {Ep}nez, En, € B be the disjoint
sequence of B- measurable subsets of M. Assume that each mapping fn.(z) : B(0,r) —
L>®(E,,dup),n € Z, is analytic for some r > 0 and

sup || fu(2) ] 2o (B ) - < 400
neZ,|z|<r

Then the mapping F : BZ(0,r) — L>*(M,du) which defined for n € BZ(0,r) by the formula

fn( n)(k)a if ke Ey,
F(n)(k) = {0, ! if ke M\ U, En

15 analytic.
For fixed h € (> and a sequence ¢ = {&,, },ez € °, €, € [0, 1] we introduce the following

domains
K(h, (W (B, ) U B(it, 7))

nel
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Ki(he)=K(he)NCy,  Ki(he)=Ki(h)\ | Btn,ra/2).

neZ

where the values u,,r, depend on R, = h,u.c,/8, in the following way:

Enlly
Ty = 1

- hR,
I T L

, Up = Uy, if |h,| < R,, casel,

), if |hy| > Ry,  case IL

Note that in the case II we have lz(ﬁn, rn) C Cy, since (hyry,/2) + 1 < 5rp/4 < 21, < |hy).
With the domains K (h,s) and K (h,e) we associate few sets by the following formulas

Sp(hn,e) = 0K, (h,e) N B(Un,m0);  Su(hn, ) = 0K, (h,e) N Biun, ra/2)

S(hye) = J Sulhn,2),  S(h,e) = | Sulhn2).

neZ nel

Recall that p = u,h?/32. For \ € [—p, p] we define the following domain D, () :

~ I + Aep 9
D, (X) = u, + r,D(t), t= fin + Aen] < —h., case [;
Tn 16
~ (harn/2) + Xep sp,

D,(\) =u, +r,D(t), 0<t= < hy, s, =signh,, casell

Tn
For fixed sequences ¢ = {ep}nez € €, e, € [0,1] and h € (> we consider the spaces
CB(S) (CB(S)) of all continuous bounded complex-valued function defined on S = S(h,¢)
(on S = S(h,e) ).

For € B>(0, p) we define the operator A(n) = A(h,n,2) : CB(S) — CB(S) in the
following way: for a function f € CB(S) let Af € CB(S) be a function , which is equal on
the arc §n to the restriction on this arc of the solution of the Dirichlet problem for the domain
D,,(n,) and the boundary function which is the same as f on the arc S,, and vanishes on the
remaining part of the boundary of the set D, (1,). Next let P = P(h,e) : CB(S) — CB(S)
be an operator which associates with each function f € CB(S) the restriction Pf € CB(S)
on the set S of the solution of the Dirichlet problem for the domain K, (h,¢) and the
boundary function which is the same as f on the set S and vanishes on the remaining part
of the boundary of the set K (h,¢). Remark that the operator P(h,e) does not depend on
n and ||P]| < 1. Moreover, by Lemma 3.1, ||.A(n)|| < 0 for any n € B>(0, p).

Theorem 3.3. For each sequences € = {ep}nez, €0 € [0,1], h € £ the operator-valued
function A(h,n,e),n € B>®(p), has an analytic extension in the ball BX(p) where the fol-
lowing estimate is fulfilled

[ A(h,m, )l < 6, m e B&(p)-
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Proof. Define the function Tn(k,E, 7), 7 € B(0, p), by the formulas:

7 k_Nn /];_Nn hn n T = .
Tn(k,k,r):T( s , 4 , te T) rt keS,, kes,, in casel;

T'n T'n T'n

kesS,, ke §n, in case II;

) ) )
Tn Tn Tn "

. ~<k—mlg—al%%+fMUMN%D>r1

Using the properties of the functions T, T from Lemma 3.1 we deduce that for each k € Sh,
k € S, the function T,,(k,k,-) is analytic in the ball B(0,p) C C. Moreover, the function
T, € C(S, x S, x B(0, p)), and the function T}, (k, k,7) coincides with the Poisson kernel
for the domain D,,(7) at 7 € [—p, p]. Then the definition of the operator A(n) = A(h,n,¢)
yields

(Awﬁw%a/mw%WMﬂmwm neBE(p)., el

Sn

The operator A(n) maps C'B(S) into CB(C). Fix f € CB(S) and define the new function
F.(1): B(0,p) C C— L*(S,) by the formula:

Fo(r) () = /Tn(k,i&, S F(k) ||, e B(0,p), Fe S,

Shn

Using the theorem about the integral with the parameter the function F;, is analytic in
the ball B(0,p) C C with the value in C'(S,). Moreover, the estimates from Lemma 3.1
imply [|F,(7)||lc < 9]/ fllos |7| < p- Then for each function f € C'B(S), by Lemma 3.2,
the function A(n)f is analytic in the ball B®(p) as the mapping B®(p) — CB(S) and
the following estimate is fulfilled ||A(7)f]loo,e < 0| fllco- Using the well-known Criterion
about the analyticity of operator-valued functions (see [Kato]) and the Theorem about the
analyticity of the mappings from the Banach space into another Banach space (see [Di]) we
obtain the needed statement. O

For each sequence £ = {g, }nez € €°°, &, € [0,1] we define the multiplication operator &
in the space ¢%.,p > 1, by the formula:

éé‘ - {571 é‘n}neZa g € ggéa

We fix sequences ¢ = {e, }nez, €, € [0,1] and h € 3. Introduce the Banach space H (h,¢)
of all complex-valued continuous functions on the set i (h,e) = K (h,)\U and harmonic
in K, (h,e) equipped with the sup-norm. Let v be the solution of the Dirichlet problem

with parameter and with the boundary function 3. The function

90('7h77776) = w('7h+én)|ﬁ+(h,€)? ne BOO(O,p)

is called the solution of the Dirichlet problem with the scaling parameter.
Below we need the function ¢(-, h,n, ) which will be used in the method of Schwartz.
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Condition F. The function ¢(-, h,n,e) is the local analytic of the Dirichlet problem with
the scaling parameter if there exists a sequence {¢n(k, hp + €n0n) Ynez, such that for the fized
sequences € = {e, tnez, €n € [0,1] and h € £°° the following conditions are fulfilled:

1. each function ¢n(k,h, + €,€) is defined and continuous on the set

S0 ={(k,€): ke Du(&), € [—p,pl}J((SaUS) x {€€C: [¢] <p}),

and d)(k‘, h,n, 5) = ¢n(ka hy + 6n77n) |En
2. for each T € [—p, p| the function ¢n (-, hy + £,7) is harmonic in D, (1) with the boundary
value :

Lm  fn(k, hn +en7) = (G h); (€ Up = (0Dn(7) \ Sp) \ {un}

k¢, k€D (7)
3. for each k € S,US, the function ¢,(k, by +2n(-)) is analytic in the disk B(0, p) C C and

sSup ||¢TL(7 hn + 6n(T)||L°°(SnU§n) < 4o00.
neZ,|t|<p

Below we will study few cases of functions ¢ which satisfy Condition F. In the first case
we deal with the function 3(k,h) = v, ¢n(k, h,n,£) = v.

For h,n € B*>(0,p) and for some sequence {¢,}nez, which satisfy Condition F, we
introduce the constants

Cn(h’n + 5n77n) = Sup |¢n(ka Iy, + 5n77n)|7 bn(hn) = sup |Ba(un + ti)|7
kESnUgn tE(O’“"TLH:a‘:fC
Colhm2) = supen(hn +eum)s  Boolh) = max{supby (), sup|Ba(z)]}.
nez nez z€R

In Theorem 3.5 we will describe the method, which gives the analytic continuation of the
function ¢ in the ball B (0, p), for some sequence {¢,, },ez, which defines the local analytic
continuation of .

We need some results about the uniqueness of the analytic extensions of the functions
o(k,h,n,e") and @(k, h,n,&*) with different sequences ' and £2.
Lemma 3.4.Let a functions B+ satisfy Condition B and let h € (. Assume that for
sequences €™ = {eM},ez, m = 1,2 such that 0 < €} < &2 < 1, n € Z each function
om(n) = o(h,n,e™),n € B>®(0,p); ¢m : B>(0,p) — Hi(h,e™) have the analytic extension
dm(n),n € BE(0, p) in the ball B (0, p). Then

o e, nery = €2 (7)), n € BX(0,p),

where

1
moifel 40
T = 1Tnynez, Tn = € " ,
{munez {0, if 22=0

Proof. Let K,,, = K, (h,e™),m = 1,2 and it is clear that Ky C K;. Introduce the function
fm) =1, Fn) = p2(F(n)), n € BX(0,p). Forn € BX(0,p) we have

F) = v(h+& M)k, = v(h+Fm))k, = r2(7(n)) = F(n).
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Then two analytic functions f(n) and F'(n) in the ball B2(0, p) coincide on B*¥(0, p). Hence
by uniqueness, they coincide on the ball B®(0,p). O

In order to estimate the function ¢ (k, h,n,¢), k € K, (h,e) at fixed n € B>(0, p) we
need some estimates of the analytic extensions of the functions ¢(n, h, £) for some sequence
{bn}nez, which defines the local analytic continuation of ¢. Moreover, we need the harmonic
majorant for the function ¢(k,h,n,e),k € K, (h,e) at fixed n € B>(0,p). Define the
following values

My(h,n,2) = sup |o(k, h,n,e)l,  Wa(h,n,e) = sup p(k, hyn,€)],

keSn keKy(h,e),| Rek—un|<%:

and introduce the Poisson integral P(-, h,n,¢) in C, for the function

P(u,hyn,e) =2 (My(h,n,2) + bo(hn))Xa, (1),  uw€R,

where )
An: [un_anaun+an]a On = |hn|+1(5nu*)

We prove now the basic results of this Section.

Theorem 3.5.Assume that some sequences ¢ = {e,} nezn, €n € [0,1] and h € (5. Let the
functions B+ satisfy Condition B and let some sequence {¢y tnez satisfy Condition F. Then
the mapping @(+, h,-,€) : B*®(0,p) — Hy(h,e),p = u.h?/32, has the analytic extensions in
the ball BX(0, p) where the following estimate is fulfilled:

M(h,e) = sup |lp(h,n,e)lle0 < 2(1 = 8) 7 (cool +m) + Boo(R)), (3.1)

(17l c0,c <p
Let, in addition, (k) =0, k € R, then for n € B>(0, p) we have

8a,

My (hym,2) =< (1 — )1 ( W, €) + (1t ) (s s 22) + bn(hn>) L (32

lo(k,h,n,e)| < P(k,h,n,z), ke K. (h,e). (3.3)

Proof. For each n € B*>(0, p) the function ¢, (-, n,)—¢(+,n) is harmonic in the domain D,,(n,,)
and by Definition F, ¢,,(k,n,) — ¢(k,n) = 0,k € U,. Introduce the following functions

F(kan) = ¢n(k777n) - (p(kan)v @(k,n) = ¢n(k777n)7 V(kan) = 90(/%77)7 k € Sy,

F(k,n) = ¢ulk,na) — @k, n),  ®(k,n) = dulkyna),  V(E,n) = @(k,n). k€ Sy,
Then

*

F(,n), ®(,n), V() € CB(S);  F(n), ®(,m), V(-,1) € CB(S)

Let G(k) be the solution of the Dirichlet problem in the domain K+(h ¢) with the boundary
value which is equal to zero for k € S and equals G(k,h) for k € 0K (h,e)\(SUU); G =
G|5 € C(S). Then using the definitions of the operators A and P we obtain:

AF =F; PV=V-G.
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Hence, N L _
- F-G=V-G=PV=P(@-F)=P(® - AF),
(I-PAF =3 —Pd—G.

Using Theorem 3.3 we obtain ||PA|| < ||A|| < 6 < 1 and then there exists the inverse
operator
R=(I-PA™, [RI<1-d7"

Further
V=3-—F=0-—R(®—PD—G) = —R)®+R(PP+G) =R(G+P(D— Ad)).

which yields B
V() =Rm(G +P(@(n) — An)®(n)). (34)
It is clear that the mappings A — @, (-, A)[g and A — @,(-, A)|g are analytic as the functions

B(0,p) € C — C(S,) and B(0,p) — C(S,) respectively. Then using the properties of ¢,
and Lemma 3.2 we deduce that the mappings ®(n), ®(n) have the analytic continuations
in the ball B°(0, p). Hence the last results, the analyticity of A (see Theorem 3.3), and
formula (3.4) give the analytic continuations of V' in the ball B(0, p).

Note that for real n € B*(0, p) we have

V(n)(k) = B(k,h), ke, NnS. (3.5)

By the uniqueness theorem for analytic functions, identity (3.5) is fulfilled for n € B (p).
Define the set
Xo={f € CB(S): f(k) = B(k,h),k €, (h) NS}

and the mapping J, which takes the function f € X to u where u is the solution of the
Dirichlet problem in the domain K (h,¢) with the boundary condition: v = f on S and
u = [3 on the rest of the boundary of the domain K (h,e). It is clear that J is analytic
mapping from X, into H, (h, <), since J does not depend on n € £°.

Then the above result yields

olm) = (s h+2n) e o = TV, me 6. (3.6)
Using (3.4), (3.6) we obtain the needed analytic continuation and the estimate:

e loo.e < IV (M llcpis) + Foo(h),

IV llonsy < Q=807 IGllones) +dll@llenes) + [1®@llepg) < (1=38)" (1 +8)co + Bu(R)).
which yields (3.1).

Assume (i(k) = 0,k € R, fix n and consider the two following cases. First, let
B(tn,rn) ¢ B(un,ue/4). It is possible for "large” |h,| and we have |h,| > 2r,, |h,| 4+ 1, >
u./4. Then |h,| > u./6 and we obtain




Second, let B(tin, ) C Bltn,u,/4). Put Gy = B(un, uy/2) N K, (h,2) and note that Eq.
(3.4) implies B
V(n) =G+ PAMV () + (1) — An) (1)),

Then by identity (3.6), the function ¢(-,n) is the solution of the Dirichlet problem in the
domain K (h, ) with the boundary function which equals A(1)V (1) + ® (1) — A(n)®(n) on
S and it equals 3 on 8K(h,6)\§. Let oo be the part of the boundary of the domain G,
situated interior to Cy N B(uy,u./2), o1 = 0B(uy,u./2) NC,. We rewrite the function ¢
in the domain G, in the form: ¢ = ¢ + @, Here ¢ is the solution of the Dirichlet
problem in the domain GGy with the boundary value ¢ on o, and one equals zero on the rest
of the boundary. First we consider the function p(). We have the estimate

D) <VE), €S, (3.7)

(W, if ke,
(k) = {0, ik € [y — )2, U + 1, )2]

and 9 is the solution of the Dirichlet problem in the domain B(uy,u./2) N C; with the
same boundary function. Estimate (3.7) follows from the maximum principle for subhar-
monic functions. It is clear that t_he function 9 has the harmonic continuation in the disk

B(un, us/2) by the symmetry: (k) = —9(k). Applying the Caratheodory inequality (see
[Ti]) to this function, we obtain

where

2|k — uy|
VS G2y =T — ]

which for |k — u,| < u,/4 yields

W,, k€ B(up,u./2),

8|k — uy|
< -

[9(k)| Wh.

Uy
Moreover, S, C B(uy, u,/4) and for k € S,, we have |k —u,| < o, = |hy| + (epus/4). Then

8ay,

oD (k)] < =W, k€ Sa. (3.8)

*

Second, we consider now the function ¢®. By the modulus maximum principle,

1] e 5, < N0l oo (3, + bne

Then
16l ey < AV ey + 6nComlly s, + AR, o s (3.9)

The definition of A and Theorem 3.1 yield
AV sy < OMa AR s, < 0100 s, - (3.10)
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Using Est. (3.9-10) we have
16 |,y < Mo + (1 +8)c + by (3.11)
and estimates (3.8), (3.11) imply (3.2), indeed

*

We show (3.3). We have B(u,,r,) C B(un,a,). The total Euclidean angle under which
[Un, — Qny Uy, + 1] is seen from & € OB(u,, a,) equals 5. Then

1 r vdt

s |t + u,, — k|?

—ap

WV

1
§a keS,u [una Up + Z|hn|]

and the maximum principle yields (3.3). O

Let the function 3 define the Dirichlet problem with parameter and #(u,h) = 0, u €
R. For a fixed number n € Z we define the new function 3™ (k,h) which is the same
as O(k,h) on the ray {u, +it, ¢ > 0} and vanish on the remaining part of the , . Let
U (kyh), k € K (h), h € ¢ be corresponding solution of the Dirichlet problem with
the boundary function 3 (k,h). Moreover, for the sequences ¢ = {e,,}mez, em € [0,1]
and n,h € ( we define the solution of the Dirichlet problem with the scaling parameter
On(-y hy-ye) s Ky(h,e) x B>*(0,p) = Hy(h,e), by the formula:

(pn('a ha7775) = wn(a h+ én)|lC+(h,e)7 ne Boo(p)7

Using Theorem 3.5 we get an analytic extension of the function ¢, (-, h,-,£) : B®(p) —
H.(h, <) in the ball B2°(p). We prove now the estimates which are basic in the next Section.
Corollary 3.6.Assume that some sequences ¢ = {ep}nez, €n € [0,1] and h € (. Let
the functions [y satisfy Condition B and let some sequence {¢y}nez satisfy Condition F.
Assume that for some n € Z we have

Br(k) =0, ke (, UR)\{k=u,+it, t >0}, ¢, =0, u#n,méeLZL.
Then for n € BX(0, p) the following estimates are fulfilled:

Nn(h,n,6) = sup |‘Pn(ka h,n,6)| < Cn(h'n + 6n77n) + bn(hn)a (3-12)
keK 4 (he)

18/6
Ny (hym,€) = sup lon(k, h,n,e)] < V6

k€K (h,e),| Rek—un|>%: U,*(l - 5)

(3.13)
Proof. Tﬁ‘f) get the estimate (3.12) we can apply the maximum modulus principle to the
domain K, (h,e) \ D,(n,) and to the function ¢, (-, h,n,¢). If (3.12) is not valid then there
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exists some point kg € S,,, m # n such that |, (ko, h,n,€)| > IN,(h,n,€). But inequality
(3.9) yields

|90n(k07h’77776)| < ||90n(h’77776)||l,°°(§m) < ||<10n(h’?7736)||L°°(Sm) < 6Nn(h77776)

So, we get a contradiction. We prove (3.13). Assume that |h,| > u./6, then we have

6
Nﬁ(h,n,S) < Nn(hanag) < (Cn(h,n,ﬁ) + bn(hn)) < u—(cn(hmﬁ) + bn(hn))|hn|-

*

Consider the second case |h,| < u,/6. Let g be a solution of the Dirichlet problem in the
domain

G :{k € Ky (he): |Rek —up| < %}U{k €C, : |Rek — un| > %}

with the boundary function which vanishes on R and equals ¢,(-,n) on the rest of the
boundary. Using (3.3) we have the estimate

9(F)| < Pu(k) = Pu(k, hyn,€), k€ G,

where P, (k) is the Poisson integral in C, for the function P,(u) = 2(c, + b,)xa, (1), A, =
[tn, — iy, Uy + ], u € R Note that we have an inequality o, < 51% Since the value of the
Poisson integral in C; for the function xa,(u), u € R at k € Cy is the same as the total

Euclidean angle under which A,, is seen from k, we have

6v/6

*

lg(k)| < anlcn +b,), k € G,

Now we consider the function f = ¢, — ¢ in the domain K, (h,&) \ Dp(7,). Assume that

D = sup|f(k)|. If we apply the maximum modulus principle to the domain K, (h, )\ D, (n,)
kes
and to the function f we have by the inequality (3.9)

D<sD+ 12v/600, (¢, + bn),
U

18v/6av, (¢, + by,
NO < D sup lg(h)| < (1 — 5)-128V/00n(en +b0)
keG U,

and we get (3.13). O

4  Analyticity of mappings

Let the functions (4 define the Dirichlet problem with parameter and 3y (u) = §_(u) =
0, v € R In connection with this problem we consider some nonlinear map F': {3° — (%
wich is defined in the following way. For a number n € Z consider the functions 37 wich are
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the same as (4 on the ray {u, +it, ¢ > 0} and vanish on the remaining part of the , . Let
Un(k,h), k € Ky(h), h € {F be corresponding solution of the Dirichlet problem with the
boundary function 5"(k,h). Then define F'(h) = {fn(h)}nez

£.(h) :/R@Z)n(un—i—iv(t, h))dt = /Rﬂn(un—i—iv(t, W)dt, n € 7,

where v(k,h) = Im z(k, h).

For h € £ the quantity f,(h) determines the asymptotic behavior of the solution of the
Dirichlet problem v, (k, h) at infinity. In fact, let g(z) is the Poisson integral in C, for the
function ¥, (u, +iv(x, h)), x € R. Then we have

lim g(iy) = / (1t + 0 (1, 1) )dt.
y*)OO R
But according to the formula (2.42) and equality ¢, (k, h) = g(z(k, h)) it implies
Jim ¢y (iy, h) = lim g(z(iy, b)) = fu(h).

In this section we study properties of the map F' and consider some important special
cases of it. Define the following constants

48 - 61/6 32

Ca= (1— 0)uh,’ Cn =13z

Theorem 4.1. Let h € (% be fized sequence. Let the functions By, By(u) = f_(u) =
0, u € R define the Dirichlet problem with parameter and let some sequence {pp }nez satisfy
Condition F. Define the functions g,(n) = fu(h +1n), n € B*(p), n € Z. Then all these
functions have an analytic extension in the ball B2(p) where the following estimates are
fulfilled:

[92(0)] < Crrlen + 250) (on] + Ial) (1 + CHAIRI + ]I ) (4.1)
Proof. Fix the number n. Recall that for sequences € = {&,,}mez, €m € [0,1] and n, h € £

we define the solution of the Dirichlet problem with the scaling parameter ¢, (-, h,- &) :
K. (h,e) x B*(0,p) = H(h,e), by the formula:

(Pn('ah’anag):¢n('7h+én)|lc+(h,g)a 776 Boo(p)a

Using Theorem 3.5 we get an analytic extension of the function ¢, (-, h,-,£) : B®(p) —
H. (h,e) in the ball B°(p).

We consider the mapping ¢, (-, h,1,&),n € B%(p), where the sequence &, = 1, m € Z.
Also we introduce the new sequence ¢,&,, = p~ ||, m € Z. Using Lemma 3.4, we have

P i
wdhmmazwdhhﬁd,keKﬂh@aﬁﬁ:{gm%uiisz%
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Define the value M, ,, = [|¢n(-, b1, €)||Loo(s,), 1, m € Z. Using Theorem 3.5 and Corollary
3.6 for the function ¢, (-, h,7,¢) in the domain K (h, ), we obtain

144/6

MTL’ITL < .
’ (1= 0P

80t (( 18v/6

Due to Theorem 3.5 and Corollary 3.6, for the function ¢, (-, h, 7,£) in the domain K, (h,¢),
there exists the harmonic majorant P, = P, (k, h,7,<) which is the Poisson integral in C;
for the function P, (u, h,n,£), u € R, such that

/ﬁ%wmu:4m@m+@m%+4§:ﬂﬂmmngm%@n+%@u+(n§:am,
R

m#n m#n

and the simple estimate a,, = |h,| + (1/4)e,u. < (Cr/4)(|hn| + [70]), Cr = 32/h?%, implies
2011712 2 o 1
[ Patwdu < e+ 20l + 1) (14 C2QRIP + 1)), G5 = 3CiC (02
R
which yields estimate (4.1). The well known property of the Poisson integral (see [St]) yields

/Pn(u)du = /Pn(u +v)du, for any v > 0.

Fix some vy > ||h]|s + (u+/4). Then for any n € B2%(p) we get

/|g0n(u+ivo,h,n,§)|du§ /Pn(u+ivo)du:/Pn(u) du.

According Theorem 2.9 we can continue now the functional g, from B%(h, p) on the ball
B2(h, p) by the formula :

gn(n) = fulh+n) = /Rgon(u—i— ivg, hyn,€)du.

We show that this extension is an analytic function in the ball B?(p). By (4.2), this function
is bounded on B2(p), then it is enough to check that for any fixed 7,9 € B?(p) such that
|vt]|l2 < p— [|n||2 the function

F(t) = fu(h +n+t9) = ga(n + t0)
is analytic in the ball B(0,1). (see Theorem 2.9). Define the sequences

m p - " 0, if & =0

and note that [|{(t)||« < p for any |t| < 1. Using Lemma 3.4, we get

ok, h,€(1),') = pulk, b+ +10,8), [t <1, k€ Ky(h,e),
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Hence
F(t) = / onlu+ ivo, (), )dz, |t < 1.

Let now = Pi(k, h,&(t), ") be the corresponding Poisson integral. Then by Theorem 3.5,
|on(u + dvg, hyn + t9,8)| = |@n(u + vy, b, E(t),")| < Pi(u+ ivg, b, E(t),€"), u€R,

Py(u+ivg, h,€(t),€") < Q(u +ivp), u € R
where ¢ € B(0,1), @ is the Poisson integral in C, for the following function

Q1) = 405D |90 (™) sty + Bu()) (i (0) + 222 37 s (),

Irl<p 2

where the interval A, = [u, — an, uy, + o] and o, = by | + i(a’mu*), m € Z. We have also

/Q(u+ivo)du = /Q(u) du < +00.

Hence, the sequence of the functions

m

Fm(t):/ o+ ivo, by £(1), & )du,  |t] < s,

—m

converges to the function F(t), as n — oo, uniformly on the ball B(0,1). But each function
F,,(t) is analytic in the ball B(0,1) and then the Weierstrass Theorem yields the needed
analyticity.

So we have proved the analyticity of the function f, in the ball B?(p). O

We apply Theorem 4.1 to the case of the function A, (h).
Corollary 4.2.Let w = {wptnez;wn > 1,n € Z be some weight. Then each functional
A, - Ry,1 <p < 2,n € Z has analytic extension on the domain JF(p) where the
following estimate s fulfilled:

1
[Au()] < 5CHIR (1 + CEIBIE), ke T2 (). (4.3)

The functional Qg : (7, — Ry has also analytic extension in the layer JP(p) by the rule

Qo(h) = Au(h), h e T2 (p). (4.4)
neZ
Moreover, for any m € Z
OmQo(h) =D OnAn(h), h € TE(p). (4.5)
neZ
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Proof. Now we apply Theorem 3.5 for the case fy(k,h) = v,k €, (U) and ¢,(k,h +en) =
v,k =u+iv € Dy(n,). We have the simple estimates for each n € Z and any 7, € B(0, p)

7|

Cu :
Callhnl, [mal/p) = lion(s o4 =) oo s,08,) < [l + =l sup 15 (un + )] = [hal,

0,]hn|

which yields ¢, + 2b, < (Cu/4)(|hn| + |7n]). Then using (4.1) we obtain the estimate

A4 ) < S+ )2 (1 CEAIE + ). (16)

We show estimate (4.3). Let u € JP(p), h = Reu,u = h+mn. Then n € B.(h,p) and (4.6)
implies (4.3).

At last, note that the analytic extensions of A, on the different balls B.(h, p), B.(h°, p)
for the different h, h® € (P coincide on B.(h,p) N B.(h°, p), since the analytic extensions
coincide on the set B(h,p) N B(h° p). At last, according (4.3) the series (4.4) converges
uniformly on the balls B(h, p),h € ¢*. But each function A, is analytic in the ball B(h, p)
and then the Weierstrass Theorem yields the needed analyticity and equality (4.5 ). O

We apply Theorem 4.1 to the case of the function I, (h).

Corollary 4.3.Let w = {wptnez;wn > 1,n € Z be some weight. Then each functional
I, : 2 — R1 < p < 2,n € Z has analytic extension on the domain JE(p) where the
following estimate s fulfilled:

1 (R)] < Crlhal(L+ CHIRIP),  he TE(p),  Cu=CudV2. (4.7)

The functional E : [}, — R has also analytic extension in the layer J'(p) by the rule

E(h) =) (), h e T} (p). (4.8)
nez
Moreover, for any m € Z
OnE(h) = Oula(h), h € T}(p). (4.9)
nez

Proof. Define a function F' by the formula:

Py = Liog i1

, keC 0,1,
~log(~ =), k€T, \[0.1

where /—12 = it,t > 0, and ¢t € C \ [0, 00), and we take main value of logarithm on C,..

It is clear that the function Im F' is the harmonic measure of a double-sided segment [0, 7]
relative to C; \ [0,7]. As the function F is real on R\ {0}, it can be continued by Schwartz
principle of reflection to the domain C \ [—i,i]. Moreover, F(k) — 0 as k — oo; F(k) =

F(k) = —F(—k), k € C\ [~i,i] and

2 o 1
F(k) = ——arcsint, arcsint = = —, k| >1,
0 V1 vk

)
m z2
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Z k-2n+1’ [kl > 1,
=0

where F,, € R, n > 0. Hence, using the simple estimate

: n 2]
|M%mﬂ<§:WHW2H<1_“P,|ﬂ<L
n>0
we obtain
PO < (k) = 25 k> 1
S w = — s .
T |k]2—1
Now we apply Theorem 3.5 for the case
0, ifkeR

B (k) = =B (k), 5+(k):{1, if k= uy, +iq, ¢ >0

Introduce also the functions ¢,(k, &) = (sign h,,) for the case II; in the case I we define the
function ¢,, by the rule:

k — n

h +§5n 2n+1 .
ZF<|k—un|) sinnd, k€ S,US,, £€ B(0,p),

where ¥ € [0, 27) is the argument of the complex number k — u,. It is simple to check the
hypothesis of a Theorem 4.1 relating to ¢,. We have by the maximum modulus principle
for harmonic functions

8
9h,

max ¢, (k, )| < max|ga(k, )| < w(g-) <1, €€ B(0,p).
n keSn

Then we have the simple estimates for each n € Z

1|1 .
Cn(lhnl, 1l /) = 160 b+ =) | o508, <20 sup |B(un +it)| =1,
Y te(0,|hn]

and by (4.1) we obtain the estimate
()] < C3 ([l + [} (1 4+ CAARIE + 1)) (4.10)

We show estimate (4.7). Let p € JP(p), h = Rep,u=h+n. Then n € B.(h,p) and (4.10)
imply inequalities (4.7).

At last, note that the analytic extensions of [, on the different balls B.(h, p), B.(h°, p) for
the different h, h° € (P coincide on B, (h, p) N B.(h°, p), since the analytic extensions coincide
on the set B(h, p) N B(h°, p). At last, according (4.7) the series (4.8) converges uniformly
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on the balls B(h, p), h € .. But each function [, is analytic in the ball B(h, p) and then the
Weierstrass Theorem yields the needed analyticity and equality (4.9 ). O

We show that the mappings [ : / — (7 and A : (> — (! have the analytic extensions
on the domain JP?(p). Moreover, we consider the mapping J : (P — (.
Theorem 4.4.Let w = {wy }nez;wn > 1,n € Z be some weight and 1 < p <2 . Then
i) the mappings | : (. — (P and A : (> — (. have the analytic extensions on the domain

JP(p) and on the domain J2(p) respectively, where the following estimate is fulfilled:
117 |lp.0 < Crl[hllpw(1 + CAlIRIP), ke T (p), (4.11)

1
1AMl < 5CH A+ CRlIAIP IPllow, b€ T2 (p), (4.12)

ii) the mapping J : (2, — (P has analytic extension on the some domain containing IP.
Proof. i) The estimate (4.11) is a direct consequence of (4.7). According the estimate (4.7)
for each sequence n = {1, nez € €% where 2 < ¢ < o0, % + % = 1 the series Y, wnly(h)n,
converges uniformly on bounded subsets of the layer J?(p). So, using the Criterion about
analyticity of operator-valued functions we obtain the statement about L. The results about
J can be proved as above.

ii) Let h € £°,||hllcc < H,|hy| > a > 0. Then there exists a constant K(a, H) > 0
such that A,(h) > K(a, H). To obtain this estimate it is sufficient to note that A,(h) >
limy_00g(iy) = K(A, H) where the function

gk), keG={k=u+iveCy :|jlu—u,| <ufU{k=u+iv: v>H})\I0,ial

is the harmonic measure of a double-sided segment [0, ia] relative to G.
In view of Schwarz's lemma we have also by estimate (4.12) a constant K;(H) such that
for each h € 2 | ||h||2 < H the following estimate is valid:

|[An(n) = An(R)| < Ky (H)[n = hll2, n € Bi(h, p/2). (4.13)

Fix a sequence h € (2 and some 0 < a < p/4 and choose a number p/2 > p; > 0 such that
K (||hl]2)p1 < K(a,||hl|2)/2. Then we consider two different cases for the number n € Z: 1)
|h|n > a, 2) |h|, < a. In the first case according (4.13) we have the inequality

Re(An(h) — An(n)) > 0, n € BZ(h, p1)

and it implies that .J, has analityc extension on the ball B.(h, p).
In the second case we represent the point 7 € ¢% in the form 1 = (n,,7). Consider now
the sequence h, = (0, h) and the set G = {(9,,7) : |7.] < p/2,||7|]2 < p/2. Tt is clear that

|h = hillo < a < p/4, B2(h,a) C B%(h.,2a) C G.

For any (pn, 1) € €2 we have following equalities

~ ~ ~ . An(pny 1
An(ﬂnaﬂ) = An(_ﬂnaﬂ)a An(oaﬂ) =0, lim Q

=0

=1 (4.14)
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therefore this equalities are valid for any (n,,7) € J*.
In view of Schwarz's lemma we have by estimate (4.12) and equalities (4.14)

[An (i, | < Fa (1Rl Imal*, (00, 7) € G, (4.15)

where Ky(||h||2) is some constant depending only on ||A/2.
Now consider the function F"

An n»
F(nmm = %7 (77n7m € G, n, #0;

n

F(0,m7) =1, (0,n) € G.
According to (4.15) we have the estimate

F (i, ) < Ks([[hll2), (m,7) € G. (4.16)

Fix some p € G, v € /%, v # 0 and consider the function

An(p + 21v)

f(Zle) = (Mn + Zl/n)2 )

pin + 2vy # 0; f(Z):l, pn, + 2Vp = 0.

Now we prove that this is an analytic function with respect two variables in the domain
B(0,¢) x B(0,g) C C? fore some € > 0. Really if pu, # 0 ore p,, = v, = 0 it is evident. In
opposite case we can apply Hartogs theorem.

It implies the analyticity of the function F'(u+ zv), |z| < ¢ for sufficiently small . So by
the Criterion about analyticity of functions depending on infinitely many variables we have
proved the analyticity of the function F' in the domain G.

In view of Schwarz lemma we have also by estimate (4.16)

[F () = F(he)| < Ka([lhll2)[ln — hll2, 1 € B (h, p/2).
Finally we have for a such that 2K5(||hl|2)a < 1/2
Re(F(h,) — F(n)) =1—ReF(n) >0, n € B*(h,, 2a)
and required analytical continuation is defined by the following way
Tu(n) = ma/F(n), 1€ B (hs,2a).0
Below we need the following sets:
K,={keC:0<|Rek —u,| <dp,} U (up — ilhy|, up + i|hn]),

dp = min{u, — Uy 1, Upi1 — Un}, Kp(hye) = K,\(B(by, ) U B(by, 7)), n € Z.

Remark. Using Theorem 3.5 for n € B (p), we obtain the harmonic extensions of the
function (-, h) across the set RN K(h,e) by the symmetry on K(h,s). Moreover, if for
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some n € Z the set K, (h,e) is connected, then the function v — ¢(k,n), k = u + iv, is
continued by the symmetry across the interval (u, — i|hy|, w, + 4| hn )\ (B (by, 7) U B(by, 7))
left or right on the domain K, (h,¢).

We consider the analytic extension of the conformal mapping z(k, n).
Theorem 4.5.For fited h € (3, = {e,}, where ¢, = £ € [0,1], n € Z the function
z(k,h + en) has the analytic extension from D = K (h,e) x B%*(p) on the domain Dc =
K(h,e)xBZ%(p). This continuation is such that if the set K, (h, €) is connected for somen € Z
then, the function z(k,h +en), (k,n) € D¢ has the analytic extension in the domain D, =
Ko X B2(p) ("left” if this continuation coincides with z(k, h+en) as (k,n) € D,n{Rek < u,}
and "right” if this continuation coincides with (k,h +¢en) € D, N{Rek > u,} ). Moreover,
for any h € (3, n € Z,k € K(h) the derivative has the following form:

Onz(k,h) = vn(2(k,h) — M) Y,k #u, +ih,, k€ K(h). (4.17)

In particular, the formula (2.13) is true for k € [uy,, u, +ihy), if 2(k, h) is the left-hand limit
(the right-hand limit).

Proof. Take vy > ||h||2+ (u./4) and then {k : Imk > v;} C K(h,e). We fix some ko, Im kg >
v1. Formula (2.40) yields

¢T+zv1,h+67y)

ko, h =ky—— dt B? 4.18
z(ko, h +em) = ko ki) b M€ (») (4.18)

Moreover, for any k € K (h,¢)
zp(kyh+en) = (1 — by (k, b +en)) + iy, (k, =+ en) (4.19)

and let v C K(h,e) be some piecewise smooth path joining k¢ to k. Then
2, 0) — 2(ko, ) = /z,'c(C, 9 dc 9= h+en (4.20)
g

By Theorem 4.1, the function ¢(k,h,e,n) is harmonic with respect to k in the domain
K (h,e) and analytic with respect to n € B%(p). Then the function at right-hand side of
formula (4.7) is analytic in K (h, ). Moreover, due to estimate (4.3) the integral in the right
hand side of (4.6) is absolutely integrable. Define z(k, h +&n) for some (k,n) € D by (4.6-8).
Then for any n € BZ(p) the function z(-, h + £n) is analytic in the domain K (h,e) and for
this function (6.6-8) are fulfilled.

Consider now the function f(n) = z(ko, h+£n), n € B(p) and show that f(n) is analytic
in the ball BZ(p). Due to estimate (4.3) the sequence of the function

1 ™ o(u+ivy, he,n)
n =ky— — -
Jn() 0 / u — (ko — ivy)

d B?
T u, 1 € C’(p)

—n

converges to f uniformly on BZ(p). Indeed,

£0) = £ul)] < 1 [ Tt o heyn)ldumax(—— )
R

|u|>n |U — k0|
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Moreover, by Theorem 4 , each function f, is analytic and bounded in the ball B4(p) and
by the Weierstrass Theorem, f is also analytic in this ball.

Let now k € K, (h,e). Then using (4.7) and the well known formula for harmonic
function we obtain

1
ze(kyh+en) =1+ — (—wsq + twy)(k + rw, h,yn, &) [dw, (4.21)
|w|=1

where 0 < r < dist(¢, 0K (h,€)). We fix k € K(h,¢). Then formulas (4.8-9) imply
1
2(k, h—+en) :Z(ko,h+67’])+(k—k0)+ﬁ/ dz/ (—wa+iwy )o(C+rw, h,n, &) |[dw| (4.22)
gl w|=1

where 7 is less than the distance from 7 to 0K (h, ). Using Theorem 4.1 and the Theorem
about the integral with parameter, we deduce that the function z(k, h+e-) is is analytic and
bounded on the ball B(p). By formula (4.10), the function z(k, h + £n) is bounded on any
set S x BZ(p), where S C K (h,¢) is compact.

By the well-known Criterion about analyticity of functions (see Theorem 2.9) enough to
show that for any k € K (h,e),k; € B(0,1), n,m € B%(p), the function F(¢) = z(k +
ki(,h + n+ n¢) is analytic in the disk B(0,s) C C for some s > 0. For small s > 0 the
function F'is well define on the disk B(0, s). Define the function

G(21,22) = z(k + 21k, h+ 04 2am), 21| < s, |22 < s.

By above, the function G is analytic and bounded with respect to any variable at fixed
another one. Then by the Hartogs theorem G is analytic with respect two variables, This
shows that the function F' is analytic in the disk B(0,s). Due to Remark after Theorem
4.1 the function y(k,n) = v —¢¥(k,n), k € K(h,<) is harmonic continued by the symmetry
across R and also left or right across any non-empty interval K, N {p = u,}. Now in order
to get analytic continuation (”left”) in the domain D,, we repeat the above consideration,
we join the fixed point ky € K,,, Reky < u, with any point k € F,, by some curve lying in
the domain K,,. O

5 Estimates

In this section we prove all needed estimates for the real h. Without loss of generality, in
this Section, we assume h,, > 0,n € Z. First, we need the following Lemma which is some
analog of Hardy inequality (see [K4]).

Lemma 5.1. Let f € WZ(D), where the domain D = [0,7] x [—h, h] for some h >0, 7 > 0.

Then
h

/|f(0,v)—f(0,—v)|2 " @max{l,g}//ljwﬂzdvdu. (5.1)

v
0
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Proof. Let a function f be real and let h < 7. Then for function F'(v) = f(0,v) — f(0, —v)
and for any v € (0, h) we obtain

T i
v / IV £ (vei®) | d,

and hence the Cauchy inequality implies

™

F@)P < m? / V£ (ve) [P,

0

The integration from 0 to h yields

h
F 2
[F(v)] dvgﬂ// |Vf|2dvdu<7r/ IV f 2dv du,
v Dy D

where D; = B(0,h) N {u > 0}, which gives (5.1) for h <
Second, let h > 7. Using inequality (5.1) for the functlon fi(u,v) = f(hT—“, v) for the case

h = 7 we deduce that
hh 8f af
1 1
7r// 81}> )d dv. (5.2)

h
/|Fv
0

Moreover, we have %(u v) = gfj( L), %];1 (u,v) = %%(%u,v). Then, changing the vari-
ables v’ = v, ' = “u in the integral in the right side of estimate (5.2), we get

[ rers <[] (G5 2(50) Jauto < 22 [[ 9 steipauas. o

Introduce the function b(z) = max{1, z/u,} for x > 0 and the domains

Dy (1) = (tn, uy + 1) X (=hp, hy), Dy, = (up, up + uy) X (—hy, hy), n € Z.

Using Lemma 5.1 we estimate h,, in terms of the Dirichlet integral.
Corollary. 5.2.For each n € Z and any h € (g, r > 0, the following estimates are fulfilled:

h,
2h2 < mmax{1, u} 12/ (k, h) — 1|*duduv, (5.3)
" r Dy (r)

Proof. Define the function f(k) = v — y(k,h), ¥ = u + 7v. Then estimate (5.1) for the
function f(iv + u,) — f(—iv + u,) = 2v, v € (—hy, hy,) yields

hn ) 2
2h2 :/ Co)” g < 7rb(|hn|)// IV £ 2du dv,
0 v Dy (r)
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which implies (5.3). O
Corollary 5.2 is important to find the estimates of ||h|| in terms of ||/|| and of the Dirichlet

integral. We show now the basic estimates in the case of the space 2.
Theorem 5.3.Let h € (g°. Then for l,J, Oy, Ip the following estimates are fulfilled:

2
||l||2 2Qo =1Ip < 7Tz:|hn||ln|- (5.4)

nel

Let in addition, u,_ , — u, > u, for any n € Z, then

T2
1Al < Z0(lbll) T, //th—umm (55)

2

ZID < |Inl? < 2max{1

}ID; (5.6)

*

1 2
< < < 117 )
S < WPl < bl ) < il (14 5111, (5.7)
1] V2
5 <l < VI + 2. (58)

Proof. Estimates (5.4) were proved in the paper [KK1]. Introduce the integral I,, =
=[5, 1#'(k, h) = 1*dudv. Inequality (5.3) yields

T T
Il = > ki < 5 0(l1Allee) D In < 55 b(I1RN) I

neZ nel

Using estimates (5.4) and |l,| < 2|h,| (see (1.1)), we obtain the first inequalities in (5.6-
7). The second one in (5.6) follows from (5.5) and (2.33). Moreover, relations (5.4) yields
Ip < 2[|h||[]7]] and then

2
™
1211” < =5 b(l1Allo) Io < 7 b([[All) IR,

which implies ||A|| < 7b(||h||so)]|l]].- Assume that ||h]|,, > w.. Then ||kl < (7/w.)]|R]olll,
and using (5.4), (2.34) we obtain

w2 2
RlIZ < =|11* - Z|al1]].
1Al @HH —[IR{I1iel

Hence ||h|| < (27/u?)||l|]3, which yields (5.7).

Identities ||.J||* = 2Qo = Ip together with (5.4), (5.7) imply (5.8). O

For the case /#,p > 1, we need additional considerations about the comb mappings.
Introduce the domain D, = {z € C: |Rez| <r},r > 0. We need the following result about
the simple mapping.
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Lemma 5.4.The function f(k) = Vk?> + h?, k € C\[—ih,ih] , where h > 0 is the conformal
mapping from C\ [—ih,ih] onto C\ [—h, h] and D, \ [—h, h| C f(D,\[—ih,ih]) for any r > 0.
Proof. Consider the image of the halfline £ = r + iv,v > 0. We have the equations

P =€E=r2 4+ h? - Ty = 1. (5.9)
The second identity in (5.9) yields > 0 since y > 0 . Then
ot —&x? —r?? =0,
and enough to check the following inequality

+ /2 + 4r2v?
2= ST VERATE

The last estimate follows from the simple relations
(r? + h* —v?)? + 4% > (r? + 0 — h?)?, 4r?v® > 4r?(v? — h?). O

We now prove the local estimates for the small slits.
Theorem 5.5. Let h € (. Assume that (u, — 7, Uy + 1) C (Up_1,Upny1) and |h,| < 1r/2,
for somen € Z and r > 0. Then

24w
|| = | 1| < . |tz [N/ T (5.10)
2
0 < |hn| = vn < 20|/ T, (5.11)
r
[ 2
0< | 0 < 2 X T4 (5.12)
r
where .
_ —// (k) — 1[2dudo.
Un+Dy
Proof. Define the functions f(k) = \/k? + h2, k € D, \ [~ih,,ih,],g = f~" and F(w) =

2(uy, + g(w), h),w = p+igq, Where the variable w € Gy = f((D, \ [—ihy, ihy,]). The function
F is real for real w then F is analytic in the domain G = G, U[—h,,, h,] and by Lemma 5.4,
D, C G. Let now |w| =r/2. Then the well known estimate yields

VAP () 1] < ( / / 1) = 1Py < (5.13)

// oo ot dpdq 1/2 // B(0.r) — 1] dpdq)w.

Using the invariance of the Dirichlet integral with respect to the conformal mapping we

obtain
// |(F N[ dpdq—/ / 2'(k,h) — 1 dudv < (5.14)
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// '(k,h) — 112 dudv = 71,.

Dy +un

Moreover, the identity 2Qq = Ip implies

1 1 2
—// g/ (w) — 1|*dpdg < —/ g (w) — 12dpdq == = / VhE — 2% de =h?. (5.15)
T ) Jc T

B(0,r)

Then (5.13-15) for |w| = r/2 yields

|F'(w) — 1| < f+h,

and by Lemma 5.2,

7T 7T
<™ (k, h) — 1Pdudv) < 1,
n 4 /L3r+un | uv) 4

Then for |w| =r/2 we have

2 T 247
|F’(w)—1|g;(1+§)\/[n:7\/[n, (5.16)

and the maximum principle yields the needed estimates for |w| < /2.
We prove (5.10) for ;7. The definition of u (see Sect. 2) implies

. g(x) oz |ha
hy|) = lim 2'(u, + h)-q¢'(x) = lim . = )
F'(|ha]) = Aim "(un + g(x), h) - g'() A ) T

and the substitution of the last identity into (5.16) gives (5.10).
We show (5.11). The definition of v, (see Sect.2) yields

(2(k, h) — 2,)? = 2ivp(k — up — i|hy]) (1 +0(1)), k — up + ilhy|,

g(w) —i|h,| = —2|hn|(w — )’ (14 0(1)), w — u,.

Then we have F'(0) = \/ 727 and the substitution of the last identity into (5.16) shows

Vi 1‘ < ((2 + m)/r)V/T,, and we have (5.11) since by (2.30), v,, < |h,|. Moreover,
inequality (5.16) implies (5.12), indeed

|hnl
2|hy,
0 < 2|hy| — |l = / (1—F'(x))dz < |7“ |(2+7r)\/[n, O
—|hal
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We prove the weighted estimates in the norm of the space [’, 1 < p < 2 and for some
weight w, > 1,n € Z.
Theorem 5.6. Let h € (*°. Then

wQu < 14l Il p> 1, (5.17)
Ip < Gy gy, 1<p<2 (5.18)
7Qo < 1l W < 10 (5.19)
Moo < 20l 11 < 2020 (520)

Proof. Estimate (5.4) and the Holder inequality yield (5.17).
Using (2.33), 7Qo < Y. |hn||ln] (see (5.4)) and the Holder inequality we deduce that

1—-Pk P P
(m/2)Ip < [hllso * 3 1ol 1hal?/0 < (L) =21 IR,

neZ

a+5

(/21> < IR,

2.2 2 2
Ip < [=]7 lIp|R]l5 -
™

Estimate (5.17) at ¢ = 1 implies the first one in (5.19). The last result and (2.33) yield the
first inequality in (5.20) and then the second one in (5.19). The second estimate in (5.20)
follows from || < 2|h,|, n € Z (see (1.1)). O

Consider the case p > 1 more detail and find the double side estimates. Recall that the
constant oy, = (2P72(2 + ) /u, )P /7
Theorem 5.7.Let u, |, —u, > u, for anyn € Z. Then the following estimates are fulfilled:

IAlly < 20,1+ 0 1), 1< <2, (521
ol < 2ezi+ 28z o, = Ty, pso (5.2
We < 1 < Ztaca-+ gy, (5.29
VTl < Welly < 1710+ 0,27 1) (5.21

Proof. Let 1 < p < 2. First we show the needed results. Estimate (5.3), at r = u,/2, implies

Dy,
oh? < wtmax{1, by g // 12 (k, ) — 1] dudv,
T
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where D,, = {k : |Re(k — u,)| < u./2}, and then

2

he < —1I,, if hn>%, and by < —/Tn, if hn< -
U U

* *

Moreover, (5.12) yields

2
b < (10)2) + 20 /Ty, i B < u. /4,
Uu

*

and then 94
hn g 27T—7TIna Zf h’n < u*/47 ln g hna

U

since h, < (7/2)y/I,, and hence

2
if L <hy then h, <2m——T"

In - Cllna

*

where C; = 27(2 + ) /u.. The last inequality and (2.33) yield

1 ptl

Il < (Y RYP+ (D hal7)YP <l + CP T

hn<ln ln<hn

1 p+1
and if we assume that C?1,” [||,, then we obtain ||A|], < 2|/l
P P S P
+

An inverse, let ||{||, < C”’I 57 . Then (5.25), (5.18) implies

2
12l < [(T)z/thII?/" e

and then 5
2 1 ptl
1], < 207 [T+

and
1h]], < 27 Cp( )p“||l||””

which yields (5.21).
Let p > 2. Using inequality (5.5), (2.33) we obtain

Iall, < (" mE72R2) P < C P b=b(hy).

Consider the case b < 1. Then (5.26), (5.17) imply
IRll; < Cplp < Cy2/m)|hllplIlg,

and then
1Rll, < (2C /m)|llllg,
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Consider the case b > 1. Then the substitution of (2.33), (5.17) yield

p+1
1hlly < ol w7 < uZ oy [(2/m) Al 5

and
o - ptl
1Ally™ < Cpuy P[(2/m)|H]) 2

and
1lly < (CpuZ"P)es (2/m) 1 1] 7

and combining these two cases we have (5.22).
Inequality [, < 2.J,, (see (2.34)) yields the first estimate in (5.23). Relation (2.34) implies

T = 1Jal? < D2/ 228 < 2/m)P 2l 2|,

and using (5.21) we obtain the second estimate in (5.23):

2
1711, < V/2/m U201 (1 + agllE[E)] 2 = ﬁlllllp(l + oy lE]17)12.

Inequality J? < 4h%/m (see (2.34)) yields the first estimate in (5.24). Using (5.21) and
I, < 27|, (see (5.23)) we deduce that

121l < 21Ul (1 + aplE]5) < 41Tl (1+ ap2?[| J][7). B

Consider now the examples, which show the exactness our estimates.
Example 1. Define the sequence h, = N, |n| < N, and h,, = 0, if |n| > N and assume that
u, =mn, n € Z. Introduce the conformal mapping

g:C\B(0,R) — C\[-2R,2R], R?=8N?

R2
gk) =k -+, |k >R

and note that U <ny| — i|hn| + Uy, un + i|hy,|] C B(0, R), then for our Theorem ? we have
|hlloo = N, u, =1, [|h]|3 =2N3, ||h|]; = 2N? and using (5.5) we obtain

N? = ||h]|%, < 2Q¢ = Ip < 16N”.

Hence inequality (5.7) is precise. Moreover, the following estimate

—le [l < 7TZIZ 1

nez neZ

(see (1.2)) yields




Then we deduce that (5.21) at p = 1, is precise. O
In order to consider the relation (5.8) we need the following simple result.
Lemma 5.8.Let h € I°, upiy — Up = Up — Up—y = 1, min{|hy_1], |hnt1|} = M, for some
n € Z. Then
] < (M2 = |ha]? + 1) + 4] B )™, (5.27)
Proof. Define the sequence

B 0, if j/m—n|=>2,
hp = M, if |m—n|=1,
hy, if m=n.

Inequality (2.29) implies |I,| > |1,,], then enough to show estimate (5.25) only for the sequence
h = h and it is possible to assume that u, = 0. Define the sequence

77 :{TL"“ lf m%na
" 0, if m=n.

Then

2k, ) =/ (2, m))? + |2(lhnl, ) .

Hence the maximum principle yields

Il < Tm 2(ilha],n) < [/ M2 + (1 + ilhy])?]

N

(M? = |ha* + 1) + 4" O

Example 2. Introduce now the sequence

h, — N—|7”L|, if 0< |7”L| 7
"0, if |n|>N.

We estimate ||/||2. Using Lemma 5.8 we obtain for |m| < N — 2:
Il < (N = [m|™)? = (N = [m])* + 1) + 4((N = m|)*)!/* =

((2 — 2(N — |m|))2 _|_4(N — |m|)2)1/4 < (S(N . |m|)2)1/4 _ 23/4\/N.

Moreover, the simple inequality |l,| < |h,| implies |Iy_;| < 1, |l;_5| < 1. Consider now

A= meN [,. By the Theorem Ivanov-Pomerenke, % is equal the capacity of the compact

set B = U\n|§N[Un — thy, un + hy]. The capacity of the set F is less than the diameter which
is equal to 2N . Then A < 8N and we have

15 = D lml* < VBVN D lim| < 8VBN2 = BN

meZ nez

Assume that the following estimate are fulfilled

1Al < C (12 + [121]5) (5.28)
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with some p > 1, then for our Example 2 for large N we obtain the inequality ||A|2 <
2C BP/2N®/*. On the other hand we have ||h||y > C1 N3/ for some constant C; > 0. Then
N30-p/2) ¢ % BP/2. 1t is possible only for p > 2. Hence the estimate (5.31) is true only for
some p > 2 (we have p = 3). O

We have considered the estimates for the weight w,, < 1. Now we find the counterexample
which shows impossibility of double-sided estimates in the space ¢ with w, < 1.
Counterexample 3. Consider now the uniform comb with u, = mn, H = h, = ||h||co,
n € Z. It is clear (see [LS]), that in this case [ = [,, = 2arcsinth H, n € Z. Then | — 7 as

H — oo and in this case for any sequence w = {wy, }nez, wp >0, n €Z; Y w, < +oo and
nez
any 1 < p < +oo the sequence h belongs to ¢ and

1hllpy =D hhwn = H” Y wn;

neZ nel

. =3 wn.

neZ

Hence the estimate ||h||,, < F'(||l]|,») is impossible for some function F. Moreover, by the
same reason, the following inequality ||A || < F(]|l]|co) is impossible. O

Now we consider any strongly increasing sequence {uy, }nez, 4, — £00 as n — +oo. Let
h €1, h, — 0 as n — oo, then we introduce the new sequence h = h(h) which is defined by
the following way. We take such number n; that |h,, | = max,ecz |h,| > 0 and let h,, = hy,;

assume that the numbers nq, no, ..., n; have been defined, then we take such nj,; that
Py, | = meaé(|hn| >0,B={n€Z:|u,—up|>|hyl,1<l<k}
n
and let ?Lnk“ = hn,,,- Moreover, we let hy = 0, if the number n ¢ {ng, k € Z}. We prove
Theorem 2.6.

Theorem 5.9.Let h € Ig°, h,, = 0 as n — co. Then

1~ 1 2V2 ~

= IAl5 < Qo(h) = SIp(h) < —|[R]l5. (5.29)

s 2 s
Proof. The Lindelof principal yields QO(TL) < Qg(h’). On the other hand open squares
Pi = (tn,, — teytn, + ti) X (=tk, ti), te = |hn,| = |hn,],k € Z, does not overlap. Then
applying Lemma 5.2 to the function (z(k, h) — k) and Py, we obtain

22 < 7r/ (B — 112 dudg,
Py,

and

1 ~ 1 1~
Qo(h) = §[D(h) > s Zti = ﬁ”h”%

k>1
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which yields the first inequality in (5.29).

Let A, ={n € Z : u, € [uy, — tx,u,, + tg]}. By the Lindel6f principal the gap length
|ln, | such that [u,, u, + i|h,|],n € Ay increases if we take off all another slits. By Theorem
of Ivanov-Pomerenke (see Section 1), the sum of new gap lengths equals to 4 x capacity of
the set B = Upea, [tn — |hn|, un + |y ], which is less than the diameter of the set E,(see [ ]).

Then
> la(h)] < 2v2t, (5.30)

neAy

and using (5.28) we obtain

7Qo(h) <) 1hnllla] <D |hnllla] <

nez k>1 neAy
St Y Ll <2v2 Y 2 =2v2|h|2,
k>1  nedy, k>1

since |h,| < tp,n € Ay and the diameter of the set E is less than or equals 2v/2t;. O

Note that the proved Theorem shows that estimates (5.7-8) are fulfilled for the more
weak conditions on the sequence U.
Corollary 5.10.Assume that there exist L > 0, M € N such that each interval with length
L has m < M the points from the sequence U. Then for any h € Iy° the following estimates

are fulfilled: ,
~Io(h) < ||} < - MIp(h)(V2ry/Tp(h) +1), (5.31)

—||l||2 < [[hall> < wM||U]l2 + 87°(— ) 17115,

Proof. The left inequality follows from ( ). We prove the rlght one. Let |Ag| be the number
of elements of the set A;. Then

2t
el < (2 + )M,

and

2M |~ ~
ST <3737 hal? < SR + MRS

nez k>1 neA,

Using (5.27 ), we obtain the needed result. Moreover, the left estimate in the second in-
equality in (5.31) is simple and follows from (5.4), and the right one follows from (5.27) and
(5.4). Indeed, we have

1hl3 < 7*MIp(h) = 27*MQo(h) < 27 M||hl2]|!]|2;

[All2 < 27 M|1]]2,
or "y , ,
T MA/2 s 4mM s 4dm=2M 3032
Ihl3 < P2 1)t = TR Qo < T A,



M
Ipll < 167° ()17, O

In order to prove the estimates in the space ¥ we need some results. Recall that for each
h € £x° the following identity is fulfilled:

v(z) = vp(x)(1+ Vyo(x)), Vulx) = % / %, T E€g,=(z2,,27), (5.32)

R\gn

k(2) = k(z,h) = u(z) +iv(2), z=gx+iy, v.(z)=|(x—2")(x -z )"

For any n € Z there exists the unique point z, € g,, such that |h,| = v(z,). Let s = s(h) =
inf |0, (h)| and hy = ||h]|s. We have

Lemma 5.11. Let u, ; —u, > u, >0 for any n € Z. Then for each h € (g the following

estimates are fulfilled:

n

5
s < < % exp max{2, 2—l||h||oo}, (5.33)
2(|h|| 91|~
1+ 17 < exp [l , (5.34)
ST U
21|
max V,(z) < Ll , nEZ, (5.35)
1 2[hlle, 1 9|hloo
hal < Ll Wy Lo Ml (5.36)
2 2 Uy
Proof. Let hy = ||h||o. Introduce the domain
G={r€C:h,>1Imz>0, Reze(—%,%)}u{lmz>h+}.

Let g be the conformal mapping from G onto C,, such that g(iy) ~ iy as y / +oo and let
«, # be images of the points u,/2, (u./2) + ih, respectively. Define the function f = Img.
Fix any n € Z. Then the maximum principle yields

1
y(k) = Imz(k,h,) > f(k _pn)a keG+pn, pn= §(un—1 + un)

Due to the fact that these positive functions equal zero on the interval (p, —u./2, p, +u./2),
we obtain

dy ox af Uy Uy
-9 - > 2 (0 _ =),
Then
Us /2
2(up) — 2(up1) > / % (x)dz =2a >0,
—ux /2
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and the inequality s < u, (see [KK1]) implies 2a < s < u,.
Let w be the inverse function for g. The function w : C; — G is defined uniquely and
the formula of Christoffel-Schwartz yields

Z t2_52
:A \lmdt, 0<OZ<5,
Uy —t2 2—t2
¢ /,/ d h,+_/ 5 t. (5.37)

The first integral in (5 37) has the simple double-sided estimate

« «
0 2 C¥2—t2 2

and then we have

that is
200 < s < uy < . (5.38)

Consider the second integral in (5.37). Let ¢ = 3/a > 5 and using the new variable
t = acoshr, cosh § = ¢, we obtain

[ 6/2 h2 )
h+:a/ \/52—Cosh2rdr>a5/ \/1—6082 rdr}ﬂég,
0 0 €

since for r < §/2 we have the simple inequality

h2
&}122 < 676(1 _|_675)2 < 571(1 +671)2
COS

and due to £ < €’ we get ¢ < exp(5h/2(3) and estimate (5.38) implies

1 T o
- < ] = 0. .
5 S 20 exp(2U* ), if =5 (5.39)
If £ < 5, then using (5.38) again we obtain
1 € TE ™ .
- 5, if e <b.

X 50X <
s 20 T 2u,  2u,

and the last estimate together with (5.39) yield (5.33-34).
Identity (5.32) for = € g, = (2, 2,;7) implies

’I'L ’r7n

1 v(t)dt 1 v(t)dt
FRNEY STy STV
T Jom—tes [t —xlon(t) 7 Jistss |t — zlvn(t)
1 hdt 1 hdt 2h
—/ +7_2+—/ + 5 < +.
™ Zn —t<s |t—Zn| ™ t—zT>s |t—Z7‘1"| s
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Using (5.32), (5.34) and simple inequality v,(2,) < |l,|/2 we have (5.36). O

We prove the double-sided estimates of h,,, [, u, J, in the weight spaces.
Theorem 5.12.Let the distance u,,1 — Uy, = Uy and the weight w, > 1 for anyn € Z. Then
for each h € (P and any p € [1,2] the following estimates are fulfilled:

17lloo < max{2l|u oo, [ llpws 272 (lUllpe (1 + anllllE )"/}, (5.40)
1l < 2[Pllpw < [Ulpw exp (9]Ploo /1), (5.41)
1Ulp < 2[1T{pw < 20Ulp.w exp (5| Alloo /1), (5.42)

NZs s
=5 Ml < WPllpw <451 lpw exp (51l /), (5.43)

11y < 2011* [lpo < Nellpo exp (18]Il oo /101).- (5.44)

Proof. The first estimate in (5.40) follows from |h,| < 27|uE| (see [KK1]). The second one
in (5.40) follows from [|h|-co < V/Ip = ||J|| < ||]l, < ||/|lpw since we have the inequality
I fll, < |Ifllpw for any f. Moreover, substituting (5.23) into ||h|.co < Ip = ||J|| < || /1],
and using || f||, < || f|lp,» we obtain the last estimate in (5.40).

Introduce the function G = exp (9]|hl|so/u«). The first estimate in (5.41) follows from
(1.1). Due to (5.36) we get 2h,, < G 1, and then we obtain the second inequality in (5.41).

The first estimate in (5.42) follows from (2.34). Using (2.34), (5.36) we have J? <
20,hy /T < (G4 /m)I2, and then we get the second inequality in (5.42).

The first estlmate in (5.43) follows from (2.34), (1.1). Using (2.32), (5.36) we obtain
h: < Gilyh, /2 < (7G4 /2)J2, which yields the second inequality in (5.43).

Identity 2uE = +[1,[[1 + V,.(25)]? (see [KK1]) implies 2|u| > |I,| which yields the first
inequality in (5.44). Moreover, using (5.36) we obtain the estimate 2|pE| < G2|l,| which
yields the second inequality in (5 44). O

6 Asymptotics
In this section we consider the case when the function §(k,h) = v, k = u+ iv € 7. Then

k
(see Sect. 2) for any h € £ the function y(k,h) = v —(k,h), k =u+iv € K. (h), is the
unique imaginary part of the conformal mapping z(k, h) : K (h) — C,. Recall that

h
h

Kph) ={u+iveC:ue (u, —dy,up+dp)}\{u+iveC: u=upv]>|h|}

where d,, = min{u, — u,_1, Uys1 — u,}. First we prove results about the convergence of the
imaginary part of the conformal mappings and the gap lengths
Theorem 6.1.Let h,h™ € (2, m > 1, such that lim h™ = = hy for any n € Z and

m—o0

H = sup ||h™|| < +oo. Then
m21

Wk, k™) = (k,h), as m — oo, (6.1)
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uniformly on bounded subsets in C,. Moreover, for eachn € Z
L(h™) = 1,(h), as m — . (6.2)

Remark. The uniform convergence of the harmonic functions on the bounded subsets yields
the uniform convergence of their gradients on the bounded subsets. Hence, if all Conditions
of Theorem 6.1 are fulfilled then

grad ¥ (k,h™) — grad ¢¥(k,h), m — oo, (6.3)

uniformly on bounded subsets in K(h). Moreover, for each n € Z we have the convergence
(6.3) on the bounded subsets in K, for harmonic continuations (left or right) across the
interval (uy, — i|hy|, wy + ilhy))-
Proof. The functions y,,(k)) = y(k, h™) and y(k) = y(k, h) have the harmonic continuation
across R in the plane C by the symmetry principle since yn,|. = y|zg = 0. Moreover, each
function y,, has the harmonic continuation across the interval (u, — i[hS™|, uy, + i[h{™]) in
the plane C by the symmetry principle, since the function equals zero on this interval and
is continuous in C. The same is true for the functions y(-, h), ¥ (-, h), ¥ (-, h™).

We show that there exists some subsequence {1, }22, from {t,,} such that:
1) this subsequence converges uniformly on bounded subsets in K (h);
2) for each n € Z a harmonic extensions of ¢, (by the symmetry left or right) across the
interval (u, — i|AS™ |, un + i|h4™]), converges uniformly on bounded subsets in K, (h).

Let ¢, (k) = ¥ (k, h™), (k) = (k, h). Then v, is the bounded solution of the Dirichlet
problem in K (h) and the following estimates are fulfilled:

sup  |ym(k) —v[ < H,
k=u-+ive K (h(m))

and we have uniform boundedness. Hence, v,,,, — 1; as [ — oo uniformly on compact subsets
in G = C\ Upez{un — i|hn|, un + i|hy,|}. Hence, the principle of accumulation for harmonic
function (see [G]) yields the existence such sequence since the functions {y,,} are uniform
bounded on the compact sets in C. Then, the bounded function 1 is the solution of the
Dirichlet problem in K (h) with the boundary value # = v. Then 1 = v since the solution
of the Dirichlet problem is unique. Note that our proof is fulfilled for any subsequence of
{thm}-
We prove the convergence near the tops of the vertical slits. Fix n € Z for the case
hn, # 0 and consider the sequence of the following functions
(1 (m . ha,
k) = i+t RSV)). FO) = 0k (a4l (8] <
These functions f,,,m > N, are harmonic in the domain 27|k, | D(0) for some N and above
we have showed that f,,(k) — f(k) uniformly on the circle |k| = |h,|/2. Moreover,

_ < ml__ .
e (R = PO B = ol = 0, m — o0
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The maximum principle yields f,, — f uniformly on the disk |k| < ‘h’".

Consider the case h, = 0. Define a = %. Then for large m we obtain |h,(1m)| < a. The

functions ¢ and 1, are harmonic in the domain G; = u,, + aD('h” ‘) and the maximum
principle yields

max ¢, (k) — (k)] < max [ (k) = P(k)] + A,

keG, keG1,k—nn|=a

since 0 <Y =v—y < v
We show (6.2). By the definition,

ln(¢) = (2(un, +0,9) — z(u, — 0,9))sign ¢,, ¢ €Iy,

and note that

zf(k,@:(l—g—f(k,@) +i% k), ve (6.4)

Then the Remark for this Theorem implies

2(uy + 0, ™) — z(u, — 0, ™) :/z'(k,hm)dk%

/z'(k,h)dk:z(un—l—o,h)—z(un—O,h), as m — oo
v

where the piecewise smooth curve 7 combines the point u,, — 0 on the left side of the slit
u = u, with the point u, + 0 on the right side of this slit and lies in the domain K (h).
Moreover, in the case h, # 0 we have sign B sign h,, as m — oo.O
We consider now the convergence of the comb mappings on the bounded subsets.
Corollary 6.2.Let h(™) ¢ P om > 1, for some 1 < p < 2 and the weight w, > 1,n € Z.

Assume that hi™ = h, as m — oo for any n € Z and H = sup |A™]|, < +00. Then
m>1

2(k,h™) = 2(k,h), as m — oo, (6.5)

uniformly on bounded subsets in K(h). Moreover, for each n € Z convergence (6.5) is
fulfilled uniformly on bounded subsets in K, (h) for analytic extensions (left or right) across
the interval (u, — i|hy|, un + i|hy|) and the following estimates are fulfilled:

A (h™) = A, (h), as  n— oo, (6.6)

Jo(h™) = JT,(h). as  n— oo. (6.7)

Proof. 1t is clear that enough to prove the Theorem for the case p = 2,w, = 1,n € Z. Due
to identity (6.4) and the Remark for the Theorem 6.1 enough to prove convergence z(kgy, h™)
to z(ko, h) for some point ky € K (h). The weak convergence implies

1™ ||l < IR < H < 400, m > 1.
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Take Hy > H and let kg = (Hy+1)i, ¢ € €. Then we have the function f(k) = (k+iH) —
2(k+1iHy, ¢,k € C,. This function has the following properties

W f(k) >0, keCoi  fli)~ 2, y /4o
Then formula (2.4) yields

H

1
dr, ke C,; ng—/v(x+iH0,¢)dx.
T JRr

(6.8)
Applying formula (6.8) to the functions z(k, h(™, z(k,h) at k = ko we obtain for any B > 0

w2 (ko, h) — 2(ko, ™)| <

2B r[nanB}h/)(x—i—iA, h) —z/)(x+iH0,hm)|+%/(z/)(x+iA, h) +(x + iHy, h™)) dx <
re|—b,
R

: : m 2
2B mer[rlaB},cB] |t(x + 1A, h) — (x + iHy, h™)| + ] H?.

where we use the following estimates (see (5.6))

/ b+ iHo) dir < [ 2, / (o + iHo) de < |12

Hence since 1), — 1 converges uniformly on [—B + iHy, B + iH,| and B is large enough we
obtain (6.5).
In order to show (6.6) we take the large contour ¢,. Then substituting (6.5) into (1.2)

we have ) )
Anh(m):—/ ke, h™)dk — — k,h)dk = A, (h).
() = 25 |2k = 2 [ (o )k = 4,0
Asymptotics (6.6) yield (6.7). O
We prove asymptotics of our parameters as n — +oo and in order to do it we use some
results from [K9]. For each h € £ there exists the following identity

v(@) = v (@) (L+ Vo)), wnlw) = |(z = 27) (@ = 2,) "% @ € g, (6.9)
(see [KK1]), where k(2) = k(z,h) = u(z) + iv(2),z = = + iy, and

Vi(z) = % / % dt, x€g,=(z,,2). (6.10)

R\gn

For each n € Z there exists an unique point z, € g, such that |h,| = v(2,). We have the
following identities

Vi(a) = / u(t) dt € gn, (6.11)

m (t —z)|t — z|v,(t)’
R\gn
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V) (x) = 2 / _vdt 0, € g (6.12)

s |t — x|3 v, ()
R\gn
Then v o1
|Vi(z)] < n(x)’ 0<V/(z) < nQ(U), T € g (6.13)
s s

where s = min Recall that A = {n € Z: h, = 0} and note that if n € A, then
k'(z)—1+l/m—1+wz) (6.14)
e ) (t—2z)% e '

Introduce the space
Co={6 €y : & — 0,|n| = oo}.

and the sequence H = {H,,,n € Z}, where
P
< |m —nf*

It is well known that if {l,h,} € #,p > 1, then H € (7 and if {l,h,} € Cy, then H € C.
First we find the asymptotics of V,, as n — oo.
Lemma 6.3.Let h € Cy. Then

max Vy,(z) < Hys™2, n€Z, (6.15)
TEYn
1<K (20) =14+ Vo(zy) <1+ Hps™%, neA (6.16)

Let h,h® € (? have the same components h, = h® forn # 1 and hy =t — 0 = kY, where
t € (0,7) for some small r > 0. Then

Vi(zi(h),h) = K'(21(h°),h°) =1, t—0. (6.17)

Proof. Using Lemma 5.11 and formula (5.33) we obtain
! v(t) Nhllty| _ Hn
Vn = — = 1 < - = "5 n»
(z) /R\g It — x| vt 7Tsz Z |m —n? 52 reg

and H € Cj since {l,h,} € Cy. It means that maxV,,(z) — 0 as n — oo. The following

TEGn
identity
1 v(t)dt
Eup) =1+~ | ——=, A,
(un) +7r/R(t—un)2 n €
yields
Linhom| H,
< k, n \ | - _n-
0 (u 7rs? Z |m — n|? 52
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We prove (6.17). Due to Lemma 6.2 we deduce that zi*(h) — 2z, (h°) = 20 as t — 0. Define

the function . (2)d
v(z)dz

flh) =~ / Pt
™ R\g1 ($ Zl)

By Lemma 6.2, Vi(21(h), h)— f(h) = 0 as t — 0. Then enough to show that f(h)— f(h%) — 0
as t — 0, where f(h°) = k'(2.(h%), h°) — 1.
Rewrite the set 7 in the form v =Y UGy, Gy = Ujy/>n7s and then

f(h) = fx + Fn, FN:l/ 7U(x)dx )
GN

T (x — 21)?

Using Lemma 6.3, we obtain (z — 2,(h))? > (Ns)? for any ¢ € (0,7). Then we have

poglills [ _de Il
o (

< :
s x—2z)? ~ 7wNs

Then the value Fy — 0 as N — oo uniformly for ¢ € (0,7) We take some large fixed N and
Fy is small. In order to consider fy as t — 0 we rewrite the function fy in the form

B 1 v(r)de 1 dk
Inhy = > %/7 (z —2)% 2m 2 /cn(z(k,h)—zl)'

n#L|n|<N n n#L|n|<N

Using Lemma 6.2 we have fy(h) — fy(h°) as t — 0, and since N is large and fixed then
(6.17) is proved. O

Introduce the function §,(r) = x — a, where a,, = (2, + z,)/2. We find the estimates
and the asymptotics, here we use some results from [K9].
Theorem 6.4. Let he€ Cy (orh e P, 1 <p<+00); Uy, —up =>u, >0, n€Z. Then

5u(2n) = %‘%Zn) (6.18)
|%ln - Un(Zn)| g Un(zn)?)%a (619)

1 3 Vi(zn)?
|hn — §ln(1 + Vio(z))| < |1n/2] m, (6.20)
[vn(2n) — vn(1 + Va(z))| < |Vn|vn(zn)2[3vri(zn)2 + V) (2a)], (6.21)
UZQn(ZZ) =2+40(1), as n— o0, n&A, (6.22)

Proof. We have v'(z,) = 0 and v'(z) = v (x)(1 + V,(x)) + v,(2)V,!(z). The derivative
(v2)(x) = —26,(x) = —2(z — a,) yields (6.18). Using the identity (1,,/2)* = v2(x) + 62(x)

we obtain <%>2 (e <1 N v%izféi%ijr)z))f) : (6.23)
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which implies (6.19).
Inequality (6.19) together with the identity h, = v,(2,)(1 4+ V,.(2,)) yield

Vr:(zn)Q

1 3
fin = S+ Valz))l = (14 Valan))I(n/2) = on ()] < () 2570

and we have (6.20).
Differentiating the function v'(z)v,(z) at z, we obtain

'
(vav') = ((%), (1+ Vo) + vzv,;) =—(14+V,)+ (%)/Vé + +(v2) V) 4+ vV
and the relation (v,v")" = v,v" at z, implies
Un (200" (20) = —(1+ Va(2n)) — 3V (2n)0n (20) + 05 (2) V7 (20),

and using the definition of the value v, we deduce that

Un(2n) = a1+ Va(2n) + 3V, (20)0n(20) = vn(20) V) (20)]- (6.24)
Then identity (6.18), estimate v, (2,) < [,,/2 yield

[on(20) = V(1 + Va(2n))| < |vnlvn(20)?[3V5 (20)* + Vi) (20)]-

Moreover, inequalities (6.19-21), (6.13), (6.15) and the definition of the value v, imply (6.22).
(I

We find the asymptotics of the actions A,,.
Lemma 6.5.For each h € [3° and n € Z the following estimates are fulfilled:

H,
A — (2/4) (1 + Vi (an))] < 2(ln/4)4nfg%X Vi (x)] < 2(ln/4)4§, (6.25)
xr ’Yn
1
A, — =lnha| < 2(1,/2)*max [V ()| + max V] (x)?], (6.26)
2 TEYn TEYn
04, — 2 < g (6.27)

2(ms)?

Proof. We use the Taylor’s formula with integral remainder for the function V;,(z):
Vi) = Vi(an) + Vi (an)(z — ay) +/ VI(s)(x — s)ds,
and substituting this identity into the next integral, we obtain

A, = /%v(x)dx :/ on(@)(1 + Vi (2))dz =

Tn
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/ v (2) (1 + Viu(an) + Vi (an)(x — ay,))dx + /

Tn Tn

v (z)dx /m V"(s)(z — s)ds,
The first integral is simple
/ 0 () (1 V() + V] (1) (2 — ) = (L /421 + Vi (an)):

Consider the second one. The function V,(z)", x € ~,, is positive then for some z,, € 7, we
get

/ on(z)dz / VIs) (@ — 5)ds < V" (z) / on (2)dx / (@ = s)ds = 7V () (In/4)°
Tn an n an
which yields (6.25).
We have the following identity for some x; € v,:
b, = (0,/2) (1 + Vi(an)) + [hn — (0L/2) (1 + Vi(20))] + (0/2)0(20) Vo (1),
and substituting this relation into |A,, — (h,l,/2)| and using (6.25), (6.20), (6.18) we obtain
[An = (hnln/2)] <

[An = (I /D1 + Valan)] + 1l /2|[hn = (1/2) (1 + Va(za)] + (I/4)]0(z0) Vi (1) ] <
2l /4) max |V (@) + (1n/2) Vii(z)* + (10/2)" max Vi ()?

TEYn

which yields (6.26).
Identities (7.13), (6.9) imply

v(t)dt |0 hml
< _
e (B = 20)? @ n; s*(n—m)*  mws?

Un
|0, Ap — 21| = o]
T

Consider now .J,,.
Corollary 6.6.For each h € I’ and n € Z the following estimates are fulfilled:

H

| T — (In/2)\/1 4+ Vy(a,)| < (ln/4)3néax V"(z)] < \/§(ln/4)3—2", (6.28)
TEYn S
o = /b /2 sign h| < (1/2)* [max V()| + max V; (2)%] (6.20)
TEYn TEYn
v, H
Ondy — (W) Jn)| < =2 =, 6.30
O = O/ ) < (6.:30)

Proof. Using inequality A, = J? > [2/4 (see(2.35)) and estimates (6.25-26) we obtain
(6.28-29).
Identity 0, A, = 2J,0,J, and estimate (6.27) imply (6.30). O
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7 Derivatives and mappings

In this Section we assume wu,.1 — u, > u, > 0, n € Z. Note, that for fixed £ € C the
function z(k,h), h € ¢4 is even with respect to each variable h,. Then in order to find the
derivative 0,,z(k, h) we consider only the following case h,, > 0,m € Z.

Theorem 7.1.i) Let h € (%. Then for each n € Z the derivatives have the following form

Opz(k,h) =0, h,=0, k#u,, kecCy, (7.1)
"
(2(k,h) = za)’

Moreover, formula (7.2) is true for k € [, Um +ihy), if 2(k,h) is defined as the limit value
from left (right).
i) Let h € (*. Then

Onz(k,h) = hn #0, k#u, +ih,, ke Cy. (7.2)

3,Q0(h) = vy (7.3)

Proof. Recall that the function z(k,h), h € (% is even with respect to each variable h,, for
fixed £ € K. Then in order to find the derivatives 0,,z we consider only the case h,, > 0,
m € Z.

i) First we consider h, > 0. For ¢ > 0 and ¢ — 0 we define the sequence

h if m#n
t__ t t m» )
h = {hm}mEZa hm - {hn —t if m= n,

and the functions
2'(k) = 2(k,h"), 2(k) = z(k,h),  w'(€) = 2'(k(&,h)), € €Cy.

It is clear that the function w' is the conformal mapping from C, onto C, with the cut S,
which is the image of the segment [u,, +i(h, —t), u, +ih,] by the mapping z*. It is easy to
show that w'(iy) = iy + o(1), y — +o0o (see (2.36)), then the Herglotz yields the following
formula

1 a'(z —
wt(é-)zg—i_;/l%édxa §€(C+\It7
where o' = Im(w'), w'(I;) = S;. Hence, if £ = 2(k), then we obtain

1 a(x)

tk—k:—/id. 7.4
) =) = - [ (7.4
We fix some § such that 0 < §* < min{u,, h,} and consider the following functions

F(& 1) = 2" (i€ + (un +i(hn — 1)),  f(E) = 2( =i + (un +ihn)), & € B1(0),

where B, (6) = B(d) N C;. Then the functions f and f(¢) for small ¢ are analytic inside
the semidisk B, (d) and continuous on the closed semidisk By (). Note that Im f(x,t) =
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Im f(z) =0, = € [-4,6], and then these functions have the analytic extension in the disk
with the radius 0 and with zero as the centrum. Using Corollary 6.2, we obtain

f(gat) _>f(§)v t—0, |§|:67

and the maximum principle yields the uniform convergence in the disk with the radius 9.
Note that by the Theorem Weierstrass, for fixed » > 0 we have the convergence:

fe& 1) = [1(6), fee§1) = f"(€), t—=0, [ <r<i

Hence

[F(&,1) = £(0,0) = fe(0,0)] < ClE,  Je] <7 < V3,

where the constant C' does not depend from ¢. Then using the identity f'(0) = /v, we
obtain at £ =i+/s,s € (0,1):

Im 2'(p, +i8) = V2unv/s +0(8), pp=1up+ilhy—1t) 0<s<t, t—0.

Then due to this fact we have |I;|] — 0 as t — 0. Define the functions 2/ (§) = 2/, (1),
€ € [uy, u, + th,). Hence we obtain

t
/ a'(v)dr = / Im 2" (p, +is) (|2 (pn +is)| + |2 (pn + is)]) ds
I 0

:/ (VZ0n/5 + o(5)) ><< 2V +0(1)> ds

0 (t—s)

_ 2yn/0 s/t = )ds + oft),

t S Vs
J—2ds = ¢
/0 -5 " 2"
1

= / a'(z)dx = tv, + o(t). (7.5)

71'],

and using

we have

Then using the formula (7.4) and |I;| — 0, we have

k) —2(k) Vn

—t ~ 2(k,h) — 2, +oll),

which yields (7.2). The function z(k,-) is even with respect to the variable h, and then we
have (7.1).
ii) Asymptotics (7.5) and the definition of the value @)y imply

Qo(h') = Qo(h) = (=) + o(1),
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which yields (7.3) at h,, # 0. Formula (7.3) at h, = 0 follows from the real analyticity and
evenness of the function Qo(h) with respect to any variable h,. O
We prove the following main result.
Proof of Theorem 2.3. By Corollary 4.2, the functional Qo : /2 — R, has the analytic
continuation in the domain JP?(p). Using (4.3-4) we have (2.8), and (5.6) yields (2.9). O
We prove the next main result.
Proof of Theorem 2.4. By Corollary 4.3, we get the needed the analytic continuation of
E(h) and estimate (2.12). Formula (7.9) implies (2.14), and (5.19) gives (2.11). and (5.21)
yields (2.13). O
We prove again the following main result.
Proof of Theorem 2.5. Using Theorem 4.5 we obtain the needed the analytic continuation
of z(k, h). Identity (7.3) implies (2.15). O
Below we need simple result from the operator theory.
Lemma 7.2.Let h € 7 for some 1 < p < 2 and some weight w = {w,,n € Z}, where
wp = 1. Then the operator B : (P — (P which is defined by the following formula:

= hahm(n—m) 2 f,,  feE®,

n#Em

s compact. Moreover, this operator B is nucleus if p = 2.
Recall that v, () = |(z7 —2)(z—2;)|'/?,x € g, Below we need the following result about
uniqueness.
Theorem 7.3.Let h € (* and h, — 0 as |n| — oco. Assume operator B : (> — (> is
defined by the formula (Bf)m =Y Bunfn, where real coefficients By, , satisfy the following
conditions:
i) for each n € Z the number B, ,, > 0 and sup B, ,, < 0o,
i) if |gn] # 0, then By, = au|ln|/va(20)?, where the number o, such that: sup oy, < 0o, and
the number o, = 0 if |v,] = 0 and o, > 0 if |y,] > 0,
1) if m # n, then | Byl < amllnl/vn(zm)?,
Let f € (> is the solution of the equation Bf = 0. Then f = 0.
Proof. Let n € A, then Condition iii) yields B, , f, = 0 and hence f,, = 0.
Assume that there exists only one nondegenerate gap then Conditions i), iii) ipmly f = 0.
Let the number of the nondegenerate gaps is greater than one. First we show that f, — 0
as [n| — oo. Using the identity Bmfm = >, Bmafn and Conditions ii)-iii) at m ¢ A

we obtain the estimate
O‘m|l |

m n#m

d d
anllfle 3 [ =5 < anlflle / =l lel2/5),

n#m " 9n (t_Am) 1> !
which yields |f,| < |lu]|| flls(2/s) and then f,, — 0 as |n| — occ.
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Second, without loss of generality, we assume that f; = sup|f,| = 1. Then Condition iii)

implies
dt
B, = _ZBl,nfn < ZOQ/ m <
L (= A

n#l n#l

[/al dt n /OO dt ] [ 1 n 1 ] O[1|ll|
a 7SR — =« = ,
e =2 Sy =2 T = A)  n—ay) e(=)?
which contradicts Condition ii) and hence f = 0. O

We find the Frechet derivatives for the mapping [ : £/ — (¥ This Theorem will give the
formulas of the derivatives of needed parameters. Recall A(h) ={n € Z: h, =0} and let
I - the identity operator in (7.
Theorem 7.4.7) Let h € (7, for some 1 < p < 2 and the weight w, > 1. Then the operator
I'=1'"(h) has the following matriz in the canonical basis:

LV,
U =0pl,(h) = ——2"—, , 7.6
= Ouln) = =5 (7.6)
;o |27 (up, h), if h, =0,
nm=240(1), n— +oo. (7.8)

Moreover, the operator I'(h) — 2I is compact and the operator I'(h) has an inverse in (P
i) Let h € (' for some weight w, > 1,n € Z. Then

U+ [ s if h,#0, o=o0o(hU)
nE h — o (t—zn) ) ? ) ) .

Proof. i) If hy, > 0, then [,,, = z(u,, + 0) — z(u;, — 0) and formula (7.2) yields

Ol (h) = 12 < ! - ! )

2(Up, +0) — 2, 2(upm —0) — 2,

1 1 T —a ), nlm
_ < B ) _ (af —a; v _ v
a

m~ % g — Zn (af, = 2n)(am — 2n) v (%)

If h, < 0, then using oddness of the function [,,(h) with respect to the variable h, and
evenness with respect to each variable h,,, m # n, we get (7.6).

Consider the case h, = 0. If m # n, then in order to prove (7.6) we use formula (7.6).
Hence we have to consider the case m = n, h, = 0.

If h,, = 0, then asymptotics (6.20), (6.17) and identity (6.16) yield the derivative 0,1, (h) =
22(up, h).

Lemma 6.3 implies |2= — z,| > s|m —n|, m # n, for some s > 0. Then using (7.6), (1.1),
(2.32) we deduce that

m

[foan |
252(n —m)?’

|('(7))mn| <

AN

m # n,
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and (6.22) implies asymptotics (7.8). Hence all Conditions of Lemma 7.2 are fulfilled and
the operator I'(h) — 2I is compact.

We prove the invertibility of the operator I'(h) in (2, for any h € (?. The operator
I'(h) — 2I is compact, then by the Fredholm Theorem, enough to show that the equation

'(h)*f=0, fe() =4, % +$ =1, (7.10)

has only zero solution. We use the proof by contradiction. Assume that Eq. (7.10) has the
solution f # 0. Then using the form of the operator I'(h) we obtain the equation

(amlm)fm + Z lenvn(zm)72fn =0, f € 531

n#xm

Above we show the estimate |Bp,pn| < |hmhn|(25%(n —m)?)~!, m # n, and the asymptotics
Bnn =24 0(1),n — oo, then f € £*°. For the matrix By, ,, = Vinlyvn(2m) 2, m # n, and the
coefficients B,, ,, (see (7.6-8)) all Conditions of Lemma 7.3 at a,, = v, are fulfilled and hence
f=0.

ii) We have E = Y[, and by Corollary 4.3, the series (which defines E) can been
differentiated term by term. Then if h, = 0, then the first point i) of this Theorem yields

OnE(h) = Oplm(h) = 22/ (un, h).

meZ

if oy, # 0, then

o
1 1 1
e =i Y (s ) e 2 e

meZ m m meZ _
Zm

which implies (7.9). O
Introduce the contour

cn = {k : dist(k,, n) = u./2} C K(h).

Consider now the function A, (h).
Lemma 7.6.For each 1 < p < 2 and the weight w, > 1 the functional A, : ¢ — R has
analytic continuation in the domain JE(p) for some p > 0 by the formula

VN

1
A (h) = —,/ 2k, h)dk, b TP(p). (7.11)
Moreover, for any m € Z the derivative has the following form:

v dk
o m D
OmAn(h) = — /c —z(k, . h e JE(p), (7.12)
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0nAn(h) = 2uy + ﬁ/ ﬂ he (7.13)

T Jory, (E Zn)?’
+
2w [0 (2, h)d
amAn(h):L/ vie hde (7.14)
T Jom (Zm— )
+
20 [ v(z, h)dx
O A, (h) = , L hew, 7.15
= [T m ety (7.15)

Proof. Let j, be the contour (counterclockwise) around the slit g,,. The integration by parts

( for real h) implies
1 1
Ay () = ——/ k(2)dz = - [ 2k, h)dk,
Jn

m T Je,

and the analyticity of the integrand function z(k, h) with respect to h € J2(p) (se Theorem
4.5) yields the analyticity of the function A,, in J?(p).

Using (7.11) and (7.2) we obtain (7.12).

Substituting (2.38) into (7.12) we have

Vn 1 v(t)dt | dz
A =— [ [1+—

then computing the residue and changing the order of the integration we obtain

Vn dz v(t)dt
WAn(h) — v, = : =
OnAAn(h) = v 27722/jnz—zn/g(t—z)2

% /gv(t)dt [n (z — zna)l?t —2)%’

Decomposing the integral into two ones we have

vy, dz Un, dz —
i) =2 = 525 | 00k | S [, 0 | e

Vn dz Vn v(t)dt
t)dt - _" _\
227 /g\gn“” / G- = /\ (=)

since the first equals zero.
Identity (7.12) yields

’ PRy
O A () = v [ K'(2)dz _ —2Vn/ v'(z, h)dz

T Jq, 2 — Zm = (T —2m)

Y

which implies (7.14). The integration by parts in (7.13) gives (7.15). O
Consider now the mapping .J.
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Lemma 7.7.For each 1 < p < 2 and the weight w, > 1 the function J : {, — R is real
analytic For any h € (P the operator J'(h) = J' has the following matriz in the canonical
basis:

1
T =0 =0, if hphy=0, m#n, (7.17)
Tpn = V7 (tn, h), by =0, (7.18)
Jon=140(1), |n|]— oc. (7.19)

Moreover, the operator J'(h) — I is compact and the operator J'(h) has an inverse in (.
Proof. By Thoerem 4.4, the mapping J : /£, — R is real analytic.

Identity J2 = A,, and the analyticity of A,,, J,, imply (7.16).

Evenness of the function .J,,,(h) with respect to h,, m # n, yields (7.17).

Using (6.20), (6.28) we obtain the asymptotics .J,,(h) as h, — 0:

hn
(1+Va(zn))

Ju(h) — = O(h®), h—0.

which together with (6.17) gives (7.17).

Using (6.16) we have the asymptotics (7.18) as n € A .

Using (6.19), (6.21), (6.28) we obtain v,/J, = 1+ o(1), as |n| — oo, h, # 0. Then
estimate (6.30) gives (7.18) asn ¢ A .

In order to prove compactness we need the following inequality

o]
J’I < | nrm
[Tinn s2(n —m)?’

~X

m #n. (7.20)

If hy, = 0 or h, = 0, then due to identity (7.16) we have J; , = 0 and inequality (7.19) is
true.

Let h,, # 0 and h,, # 0. Using Lemma 6.3 we get |a — 2,| > s|m —n|, m # n, for some
s > 0. Hence (7.14), (2.32) yield

+
n fm ,h)d
] < (0T (B)] = L [ vl P

_27T|Jm| o (@ —2p)?

+

|0 /“m dx |V T | PP |
<
m)? Jq

- o(®, h)? - 252(n —m)?  s2(n —m)?’

m

and (7.19) is proved. Then all Conditions of Lemma 7.2 are fulfilled and the operator J'(h)—1I
is compact.

We prove the invertibility of the operator J'(h) ¢ for any h € (2. The operator J'(h)—1
is compact, then by the Fredholm Theorem, enough to show that the equation

(J'(h)f=0, fe@)y=e0, (1/p)+(1/q) =1, (7.21)
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has only zero solution. We use the proof by contradiction. Assume that Eq. (7.20) has the
solution f # 0. Then using the form of the operator J'(h) we obtain the equation

(amjm)fm + Z amJnfn = 07 f € Zg;:
n#Em

then the inequality J} , # 0 and estimate (7.18) imply f,, = 0,n € A. Then without loss of
generality we assume A = (). In this case the operator [J'(h)]* has the following matrix

J,{,l,n:amjn:ia A, = Lm / v(@)ds
Y

20, " T [, (@ — 2m)?

Using (6.11) and (2.32) we obtain the inequality for h, # 0:
hy < (Bl /2)[1+ [[Plloo/ ()] < wT3[1 + ||]loo / (5))-

Then we deduce that £ = {&,,n € Z}, &, = fuhn/(7Jy,), belongs to €2 and for £ the following
equation is fulfilled:

T
B B = 7 = — : :
mamém + Y Bun&n =0, £€L, By, 7O A (7.22)
n#m
We check all Conditions in Lemma 7.3 for the matrix B.
i) Using (7.17), (7.15), (7.13) we have B, , > 0 and the asymptotics (7.18), (6.28) imply

wJ,
Bn n —
) hn

Bn,n - ﬁ/ 7v(x),dx =
ho ).y, (2m — )

Vp o [ v(z)'de a v(x) dx Vnln
I e B M el v

iii) Formula (7.14) implies

Ul
an__ < [Um mn-
Bl = 521 | 0 <l [ o = e

Then All Condition of Lemma 7.3 are fulfilled , £ = 0 and hence f = 0.0

Jpn=m+0(1), |n|— oo

ii) Identity (7.13) yields

8 Mappings

In order to prove the basic results about real analytic isomorphism we need the following
fact from nonlinear functional analysis.
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Theorem 8.1.Let X, X, be real Banach spaces equipped with norms || - ||, || - [|[1. Assume
that there exist the Schauder basis {u,}°,, {€,}5°, in the spaces X, Xy such that

:U:Zﬂm(x)-um, r € X; y:ZEm(y)-em, y € X;.

where {u, }2,, U, € X*, {€,}%,, €, € X| are the sequences of the functionals defined by
these basis.

Suppose that the mapping f : X — Xy satisfies the following conditions:
1) f is real analytic ( or of class CP,p>1 ),
2) for each x € X the operator f'(x) has an inverse,
3) there is a nondecreasing function g : [0,00) — [0,00), ¢(0) = 0 such that ||z|| <
g(If (@)[|1), for all z € X,
4) for each bounded sequence {x,}0>, C X there exist subsequence {xy, }3, and x from X
such that for any m € Z

lim &, (f(2n,)) = em(f(2));

k— 00

5) if en(f(x)) =0, for some x € X, mvZ then up,(x) = 0.

Then f is a real analytic (respectively, C?— ) isomorphism between X, X;.

Proof. Using Conditions 1), 2) and the inverse function theorem, we see that the set f(X)
is open. We prove that it is also closed .

Let fi(-) = en(f(-)) : X — R be the component of the mapping f with number m.
Suppose that y, = f(z,) — y strongly as n — oo. Then Condition 3) yields ||z,| <
9(llynllr) < g(sup,s; [lynll1). Hence by Condition 4), there exists a subsequence {,, }32,
and some ¥ € X such that for any m € Z we have f,(z, ) — fm(z) as k — oco. The
continuity of the functional €,, yields €,,(f(z,,)) = fm(zn,) — €m(y), as k — oo. Then
em(y) = en(f(x)) for any m € Z, and then y = f(z). Hence f(X) = X since the set f(X)
is open and closed simultaneously but X, is connected.

We show that f is an injection. We introduce the sets

Kn={heX: e (h)=0, |n|>m}cCc X, M,=/f"K,) CXi,

Ln,={heX: u,(h)=0, |n| >m} CX,

The map f is a smooth local isomorphism so that M, is a real smooth submanifold of X
of dimension m. Note that L,, is the subspace in X of dimension m and by Condition 5),
M,, C L,,. Moreover, for each bounded sequence {z,}°; C M,, there exist subsequence
{xn, }32, which converge to some = € M,,. Denoting by E,, the set of points in K,, that
have more than one preimage, we see that FE,, is open because f is a local isomorphism.
But E,, is also closed. Indeed, suppose there are distinct points x,, # t, in M,, such that
f(z,) = f(tn) — z as n — oo. Then, by Condition 3), the sequences {z,}> ,, {t,}32, are
bounded. Then there exist subsequences such that

lim z, =2z, limt,, =t,
k—o00 k—o00
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for some z,t. If x =y, then z,,, =t,, for large k, since the map f is a local homeomorphism.
Hence z # t, f(x) = f(t) = z since f is continuous. Then z € E,, and E,, is closed. But
0 ¢ E,,, whence E,, = 0. Thus, f: M,, — K,, is an isomorphism.

Suppose that f : X — X, is not an injection. Then some point z € X; has at least
two pre-images. Since f is a local homeomorphism, the same is true of every point in some
neighbourhood of 2. In this neighborhood there exists

N

ZN = Z gm(Z)em € KN
m=—N

for some large N € N. But this contradicts the fact that f : My — Ky is an isomorphism.
O

Remark 1. Instead of Condition 2 in Theorem 8.1 it is possible to write the following

Condition 2°) For each © € X the operator f'(z) is Fredholm and Ker f'(x) = 0 (or
Ker(f'(x))* =0).

Indeed Condition 2 follows from Condition 2’) since we have the Fredholm Theorem.
Remark 2. Condition 4) in Theorem 8.1 follows from the following assumption.

Condition 4’) The space X is reflexive and for each n > 1 the coordinate function
fn(x) = €,(f(x)) is compact, i.e. if x,, — = weakly then f,(z,,) — f(x) asm — oo .
Remark 3. This Theorem for the case of the Hilbert space was proved in the paper [KK1],
the proof of Theorem 8.1 repeats really the proof in [KK1]. In order to give the detail picture
only, we refresh this result.

We prove now our basic results. First we consider the mapping [ : £ — (¥ and we prove
Theorem 2.1 with few addisional results.
Theorem 8.2. Let uy 1 — Uy > ue > 0 for any n € Z and let w = {wy tnez,wn > 1,n €Z
be some weight. Then for each 1 < p < 2 we have
i) the mapping | : 7 — (P is real analytic and has analytic continuation in the domain
JP(p), where estimates (2.1-2) are fulfilled,
ii) for each h € (P the operator l'(h) has an inverse,
iii) estimates (2.2-3) are fulfilled,
iv) for each bounded sequence h™,n > 1, from (P, there erist subsequence h™) and h € (7,
such that L, (h™)) — 1,,(h) as k — oo for any m € 7Z.

Moreover, the mapping [ : 7, — (P is a real analytic isomorphism.
Proof. Apply Theorem 8.1 for the case X = X; = ? and the mapping f = [ and we
take the canonical basis ¢ in the capacity of the Schauder basis. In order to get Condition
1)-4) Theorem 8.1 we check all statements i)- iv) of Theorem 8.2 ( see also Remark 1 after
Theorem 8.1). Last Condition 5) in Theorem 8.1 is very simple since if [,,(h) = 0, then by
the definition, the gap v,(h) is empty and h,, = 0, hence Condition 5) is true.

i) Using Theorem 4.4 and Corollary 4.3, we obtain (2.1-2) and that the mapping [ : # —
P is real analyticand has analytic continuation in the domain JPZ(p).

ii) By Theorem 7.4, the operator (k) has an inverse for any h € (7. Recall that here we
use Remark 1 after Theorem 8.1.
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iii) Theorem 5.12 implies estimate (2.3) and (5.21), (1.1) yield (2.4).

iv) Let h™,n > 1, be some bounded sequence from (7. Then using the ”diagonal
process”, we obtain some subsequence h("™) k > 1, such that lim hg,?’“) = hy,, for any m € Z
as k — oo and for some h € (. Using Theorem 6.1 we obtain statement iv). O

Consider now the mapping J and we prove Theorem 2.2 with few addisional results.
Theorem 8.3. Let up 1 —up > uy >0, n € Z and let w = {wy }nez,wn > 1,n € Z be some
weight. Then for some each 1 < p < 2 we have
i) the mapping J : 7, — (P is real analytic,

ii) for each h € (7 the operator J'(h) has an inverse,

3) estimates (2.5-7) are fulfilled,

4) for each bounded sequence h\™ n > 1, from P there exist subsequence R k> 1, and
h € 2 such that J,,(h"™)) — J..(h) as k — oo for any m € 7Z.

Moreover, the mapping J : (2, — (P s a real analytic isomorphism.

Proof. Apply Theorem 8.1 for the case X = X; = ¢ and the mapping f = J and we
take the canonical basis £ in the capacity of the Schauder basis. In order to get Condition
1)-4) Theorem 8.1 we check all statements i)- iv) of Theorem 8.2 ( see also Remark 1 after
Theorem 8.1). Last Condition 5) in Theorem 8.1 is very simple since if .J,(h) = 0, then by
the definition, the gap v,(h) is empty and h,, = 0, hence Condition 5) is true.

i) Theorem 4.4 yields real analyticity of the mapping J : /7 — (P.

ii) By Theorem 7.7, the operator J'(h) has an inverse for any h € (P . Recall that here we
use Remark 1 after Theorem 8.1.

iii) (5.43), (5.23-24) imply estimate (2.5-7).

iv) Let h(™ be some bounded sequence from ¢P. Then using the ”"diagonal process”, we
obtain some subsequence h(™) such that lim h%”“) = h,,, for any m € Z as k — oo and for
some h € (P. Using Corollary 6.2 we obtain iv). O
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