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Abstract

Recently it was suggested that two very different mass-squared differences

play a role in atmospheric neutrino oscillations. The larger of these also ac-

counts for the LSND result and the smaller of these also drives the solar neu-

trino oscillations. We consider the predictions of this scheme for long-baseline

experiments. We find that high statistics experiments, such as MINOS, can

observe a clean signal for this scheme, which is clearly distinguishable from

the usual scheme of atmospheric neutrino oscillations driven by a single mass-

squared difference.

I. INTRODUCTION

At present there are three pieces of evidence for neutrino flavour conversion:

1. Solar Neutrino Problem The measured flux of νe from the Sun is smaller than the

expected flux [1].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25295727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. Atmospheric Neutrino Problem The measured flux of νµ, generated by the cosmic ray

interactions in the atmosphere, is smaller than the Monte Carlo expectation [2].

3. LSND The LSND experiment has observed signals for both ν̄µ → ν̄e and νµ → νe

transitions [3].

If each set of data is analysed under the assumption that only two neutrino flavours oscillate

into each other, then the following constraints are obtained:

10−6 eV2 < ∆m2
sol < 10−4 eV2, θsol ∼ 3◦ or ∼ 30◦

10−3 eV2 < ∆m2
atm < 10−2 eV2, θatm ∼ 45◦

0.2 eV2 < ∆m2
LSND < 0.4 eV2, 0.01 < sin2 2θLSND < 0.1. (1)

The data from the Bugey accelerator provide the lower limit on ∆m2
LSND [4] and the CDHSW

data provide the upper limit [5].

From the constraints on various ∆’s, it seems as if one may not be able to account for

all the positive results in the framework of three-flavour neutrino oscillations. Very often,

three-flavour oscillation fits are done using solar and atmospheric neutrino data only. In

this scheme, which we call the standard scheme, there are two independent mass-squared

differences and three mixing angles. The solar neutrino oscillations depend on only the

smaller mass-squared difference (which is set equal to ∆m2
sol) and two mixing angles θ12 and

θ13 [6]. The atmospheric neutrino oscillations depend on the larger mass-squared difference

(which is set equal to ∆m2
atm) and two mixing angles θ13 and θ23 [7]. The CHOOZ experiment

constrain θ13 to be very small (< 9◦) [8,9]. Since the common parameter between solar and

atmospheric neutrino oscillations is very small, these two oscillations effectively become two

different two-flavour oscillations. Hence, the above constraints on θsol and θatm apply directly

to θ12 and θ23, respectively. Thus we find that, in this scheme, the preferred solution to the

atmospheric neutrino problem is νµ → ντ oscillations with maximal mixing.

The long-baseline experiments are designed to test the hypothesis that νµ → ντ oscilla-

tions, with ∆m2
atm ' 3× 10−3 eV2, are the cause of the atmospheric neutrino deficit. K2K
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and MINOS will look for muon neutrino disappearance. The number of νµ charged current

(CC) events in these experiments is given by the convolution of their neutrino spectrum

with the νµ survival probability:

Pµµ = 1− sin2 2θ sin2

(
1.27

∆m2L

E

)
, (2)

where ∆m2 is in eV2, L is in km and E is in GeV. In most neutrino oscillation experiments,

there is a single constraint involving two unknowns, θ and ∆m2. We can constrain one of

them, only by making an assumption about the other parameter. However, MINOS is a very

high statistics experiment and can measure the spectrum of νµ CC events. This spectrum

will have a minimum at E = Emin, where (1.27∆m2L/Emin) = π/2. The number of events

at this minimum is proportional to (1 − sin2 2θ). Hence MINOS can determine the mass-

squared difference and the mixing angle independently. If the standard scenario is correct,

then sin2 2θatm = 1 and the number of events at E = Emin should be zero. The energy of

the neutrino beam for MINOS can be tuned in such a way that the minimum will occur

where the beam flux is substantial. Hence MINOS is sensitive to the whole range of ∆m2
atm

suggested by the atmospheric neutrino data.

To account for the three signals for oscillations, it seems as if three-flavour oscillations are

inadequate and one must introduce at least one more light neutrino. Since the measurement

of the invisible width of Z0 boson shows that there are only three light active neutrinos,

the forth neutrino must be sterile. Four-flavour oscillations between three active and one

sterile neutrino, with three independent mass-squared differences set equal to the above

three scales, are considered extensively [10].

Since no direct evidence for any sterile neutrino has been seen, then it is worth re-

examining the simple assumption that only a single ∆ plays a role in each of the above

evidences for oscillations. Recently it was suggested by Scheck and Barenboim (SB) that

oscillations between three active flavours may be able to account for all three signals [11].

In this scheme it is assumed that the larger mass-squared difference, ∆32, is about 0.3 eV2

and drives the LSND oscillations. The smaller mass-squared difference ∆21 is assumed to
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be small enough that LSND is not sensitive to it. The key assumption in this scheme is that

both ∆’s play a role in creating the deficit of νµ flux in the atmospheric neutrino problem.

∆32 drives the oscillations of the downward going neutrinos. Since the path length of these

neutrinos is small, these oscillations are not sensitive to ∆21. The magnitude of ∆21 is

fixed by two requirements: a) the zenith-angle dependence of the deficit of upward going

νµ’s should be reproduced and b) the solar neutrino deficit should be adequately explained.

These requirements fix ∆21 to be in the range 10−4–10−3 eV2. This value of ∆21 is much

larger than ∆m2
sol given in Equation (1). However, the latest Super-Kamiokande data on

solar neutrinos do prefer ∆m2
sol ' 10−4 eV2 [1].

In this letter, we consider the signals that will be observed at K2K and MINOS in the

SB scheme. We find that at K2K the signals in the SB scheme are somewhat different from

those in the standard scheme. With an accumulation of events over a period of time, it may

be possible to differentiate between the two schemes using K2K data. However for MINOS,

the signals predicted by SB scheme for the νµ CC event spectrum are qualitatively different

from those in the standard scenario. Moreover, the oscillations due to the ∆32 ' 0.3 eV2

should be clearly visible if MINOS runs in its high energy beam mode.

II. SCHECK-BARENBOIM (SB) SCHEME

Let us briefly recall the salient features of the SB scheme. The three active flavours mix

to form three mass eigenstates

|να〉 = U |νi〉, (3)

where U is a 3× 3 mixing matrix parametrized by three mixing angles and a CP-violating

phase. Here for simplicity we set the phase to zero. The matrix U can be written in the

form

U = U23(θ23)U13(θ13)U12(θ12). (4)
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Without loss of generality, we can assume that the masses satisfy the inequalities m1 < m2 <

m3. Then the mixing angles should have the range (0, π/2) to cover all the possibilities that

are physically distinguishable. The independent mass-squared differences are taken to be

∆21 = m2
2 − m2

1 and ∆32 = m2
3 − m2

2. It is assumed that ∆32 ' 0.3 eV2 to account for

the LSND results, and the magnitude of ∆21 is taken to be in the range 10−4–10−3 eV2 so

that the zenith-angle dependence of atmospheric neutrinos and solar neutrino suppression

are reproduced.

In Ref. [11] the ranges of the mixing angles allowed by solar, atmospheric and LSND

data were obtained, with values of ∆’s as given above. We have updated their results by

including the further constraints from Bugey [4], CHOOZ [8], CHORUS [12] and NOMAD

[13]. CHORUS and NOMAD have very small values of (L/E) and hence they give no

meaningful constraints on mixing angles for the values of ∆’s we consider here. For Bugey

the average value of (L/E) is about 11 and it is sensitive to ∆32 but not to ∆21. The

oscillations driven by ∆32 are averaged out at CHOOZ because it has 〈L/E〉 ∼ 300. CHOOZ

is sensitive to ∆21 if it is as large as 10−3 eV2, but it is insensitive to smaller values. Both

Bugey and CHOOZ require θ13 to be small and together they yield the constraint

θ13 ≤ 9◦. (5)

Depending on the value of ∆21 CHOOZ also constrains θ12. If ∆21 ' 10−3 eV2, then we get

the constraint θ12 ≤ 10◦. However, if ∆21 ≤ 7× 10−4 eV2 then θ12 is unconstrained.

The νµ → νe oscillation probability relevant to LSND in this scheme is given by

Pµe = sin2 θ23 sin2 2θ13 sin2
(
1.27

∆32L

E

)
. (6)

We need both θ13 and θ23 to be non-zero to explain the positive signal of LSND. The allowed

range of θ23 is a function of θ13. The smallest allowed value of θ23, which will be relevant to

long-baseline experiments, occurs for the largest value of θ13 = 9◦. For this value, we have

20◦ ≤ θ23 ≤ 50◦. (7)
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In Ref. [11], it was shown that, to explain the atmospheric neutrino problem, one needs

θ23 ' 27◦, which is well within the above range.

III. SIGNALS AT LONG-BASELINE EXPERIMENTS

The νµ survival probability for the case of three active flavour oscillations is given by

Pµµ = U4
µ1 + U4

µ2 + U4
µ3 + 2U2

µ1U
2
µ2 cos

(
2.53

∆21L

E

)
+

2U2
µ1U

2
µ3 cos

(
2.53

∆31L

E

)
+ 2U2

µ2U
2
µ3 cos

(
2.53

∆32L

E

)
. (8)

The K2K experiment has a baseline length of 250 km and its neutrino energy spectrum is

peaked around 1 GeV [14], so it has an (L/E) value of about 250. For this large a value of

(L/E), the oscillations due to ∆32 of the SB scheme get averaged out. K2K is not sensitive

to values of mass-squared differences smaller than 10−3 eV2, hence ∆21 of the SB scheme

can be set to zero. Under these approximations, the νµ survival probability relevant to K2K

is

P K2K
µµ = (U2

µ1 + U2
µ2)

2 + U4
µ3 = (1− U2

µ3)
2 + U4

µ3. (9)

Here, Uµ3 = sin θ23 cos θ13 ' sin θ23 because θ13 is constrained to be small. For θ23 ' 27◦, we

have P K2K
µµ = 0.67. The expected number of νµ CC events at K2K is obtained by convoluting

Pµµ with the energy spectrum of the neutrino beam; the integral of the spectrum gives the

expected number of events in case of no oscillations. The ratio of the above two numbers is

purely a function of the oscillation parameters. We saw above that in the SB scheme Pµµ

for K2K is independent of energy. Hence the ratio of expected number of events with and

without oscillations is equal to the constant Pµµ = 0.67. This number, predicted by the

SB scheme, is to be contrasted with 0.46, which is the prediction of the standard scheme,

in which the atmospheric neutrino problem is assumed to be due to νµ → ντ oscillations

with maximal mixing and ∆m2
atm ' 3 × 10−3 eV2 and ∆m2

sol � ∆m2
atm. The prediction

of the standard scheme rises to 0.8, if one takes ∆m2
atm ' 10−3 eV2, which is the smallest
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value allowed by Super-Kamiokande data in that scheme. Thus K2K data may rule out the

SB scheme if the measured suppression turns out be less than 0.5. For larger values of the

suppression, however, the K2K data will not be able to distinguish between the two schemes.

Because of the limited statistics in K2K, one measures only the total number of νµ CC

events but not their spectrum. Because of this, the K2K results will not be able to provide an

unambiguous signal for the two ∆ solutions to the atmospheric neutrino problem. MINOS,

being a high statistics experiment, measures the spectrum of νµ CC events. This measure-

ment allows them to determine the mass-squared difference and mixing angle independently

if only one mass-squared difference plays a role in atmospheric neutrino oscillations. The

same measurement will also enable them to determine if two mass-squared differences play

a role in atmospheric neutrino oscillations.

MINOS has a baseline length of 730 km and it has three options for the energy of its

neutrino beam. For the low energy option, the energy is peaked around 3 GeV, which

corresponds to (L/E) ∼ 250. For the medium energy option, Epeak = 7 GeV, which means

(L/E) ∼ 100. For the high energy option, Epeak = 15 GeV with 〈L/E〉 ' 50. We obtained

the spectra for these three options from Ref. [15] and multiplied them with Pµµ to obtain

the energy distribution of νµ CC events. The distributions for the low energy option are

plotted in Fig. 1, where the thick line is the prediction of the SB scheme, the dotted line

is the expected spectrum in case of no oscillations, and the thin line is the prediction of

the standard scheme with ∆m2
atm = 3 × 10−3 eV2 and θatm = 45◦. As mentioned in the

introduction, the event distribution touches zero at the point where the energy satisfies the

equation 1.27∆m2
atm730/E = π/2. This is an unavoidable feature of atmospheric neutrino

oscillations with one mass-squared difference, because in such a scenario the corresponding

mixing angle is constrained to be maximal. However, we see that in the SB scheme, where

two ∆’s play a role in atmospheric neutrino oscillations, the event distribution will not touch

zero because of the interplay between the two types of oscillations. Between 1 and 5 GeV,

the smallest suppression in any energy bin is about 0.5. Such a signal can give a striking

proof regarding the role of two ∆’s in atmospheric neutrino oscillations. The predictions
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for the SB scheme are plotted for ∆32 = 0.3 eV2, ∆21 = 3 × 10−4 eV2, θ12 = 35◦, θ13 = 9◦

and θ23 = 27◦. Changing the value of ∆21 in the allowed range does not qualitatively affect

the form of the signal. For neutrino energies above 10 GeV, one clearly sees oscillations of

0.3 eV2 generated by ∆32. This signal can be more clearly seen in the high energy neutrino

beam of MINOS. In Fig. 2 we plotted the prediction of the SB scheme (thick line) along

with the expectation in the case of no oscillations. The oscillations are more clearly visible

in this case. This may be the first instance of the observation of a variation of oscillations

as a function of energy.

In plotting Figs. 1 and 2, we assumed that the energy resolution of MINOS is very good,

better than 0.5 GeV or so. Therefore the number of events is not smeared with the energy

resolution. However, the signal for the SB scheme is markedly different from that of the

standard scheme, even if the energy resolution is worse than 1 GeV. Then in the low energy

option, the suppression seen will be about 0.6 for the SB scheme whereas it will be about

0.3 for the standard scheme. But it is in the high energy option that the predictions of

the SB and standard schemes are qualitatively different. Here the standard scheme predicts

no suppression at all for the entire allowed range of ∆m2
atm. The SB scheme predicts a

minimum suppression of about 0.6 in the high energy option, for all the allowed values of

the parameters. Hence even with bad energy resolution, MINOS is capable of distinguishing

between the standard scheme and the SB scheme.

It was mentioned in the introduction that four-flavour oscillations (three active and one

sterile) are considered to account for LSND results. In these schemes each of the pieces of

evidence for flavour conversion of neutrinos (solar, atmospheric and LSND) is explained by

oscillations driven by their own individual ∆. The various types of four-flavour oscillations

are summarized in Ref. [10]. The combined data restrict the solar neutrino oscillations

to be essentially νe → νs (where νs is the sterile neutrino) and the atmospheric neutrino

oscillations to be essentially νµ → ντ oscillations. We calculated the predictions of four-

flavour oscillations for MINOS for the following values of the parameters:
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• ∆m2
LSND = 0.3 eV2 and sin2 2θLSND = 0.1

• ∆m2
atm = 3× 10−3 eV2 and sin2 2θatm = 1

The long-baseline experiments are not sensitive to ∆m2
sol. The results we obtained are

indistinguishable from those of the standard scheme for both low and high energy beams

of MINOS. This occurs for the following reason. The mass-squared difference to which the

long-baseline experiments are the most sensitive is ∆m2
atm. In both the standard scheme

and the four-flavour scheme, it has the same value. Hence Pµµ in both schemes is very

similar. In the four-flavour scheme, the larger mass-squared difference ∆m2
LSND gives rise

to some modification of Pµµ, but these modifications are small because θLSND is small. This

is illustrated in Fig. 3.

IV. CONCLUSION

We considered the signals at the long-baseline experiments K2K and MINOS as predicted

by two different mixing schemes of three active flavours. In the standard scheme only one ∆

is assumed to drive atmospheric neutrino oscillations, while the other ∆ is much smaller. In

the SB scheme both ∆’s play a role in atmospheric neutrino oscillations and the larger ∆ also

drives LSND oscillations. The K2K experiment may be able to distinguish between these

two schemes for some values of the allowed parameters. However, the energy distribution

of the events at MINOS, in both low and high beam energy options, can provide a clear

distinction between the two scenarios for any of the allowed values of the parameters.

We also considered the signals at MINOS from four-flavour oscillations. These signals

are indistinguishable from those of the standard scheme. However the BooNE experiment

at Fermilab [16] can verify or rule out LSND results. If BooNE confirms LSND results, then

the high energy option of MINOS should be pursued. The results of MINOS will tell us

whether LSND results can be incorporated within three active flavour oscillations or whether

a sterile, fourth neutrino is required.
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FIG. 1. Distribution of νµ CC events for the low energy option of MINOS: Prediction from the

SB scheme (thick line), for no oscillations (dots), from the standard scheme (thin line). The plot

from the SB scheme is drawn for ∆32 = 0.3 eV2, ∆21 = 3 × 10−4 eV2, θ12 = 35◦, θ13 = 9◦ and

θ23 = 27◦. The plot from the standard scheme is drawn for ∆m2
atm = 3× 10−3 eV2, θatm = 45◦.

0

50

100

150

200

250

0 5 10 15 20 25 30

dN
dEν

Eν (GeV)

FIG. 2. Same as Fig. 1, but for the high energy option of MINOS.
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FIG. 3. Muon neutrino survival probability in the four-flavour oscillation scheme (thick line)

and the standard scheme (thin line). Both plots are drawn for ∆m2
atm = 3 × 10−3 eV2 and

θatm = 45◦. For the four-flavour plot, we took ∆m2
LSND = 0.3 eV2 and sin2 2θLSND = 0.1.
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