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FERMION DAMPING RATE EFFECTS

IN COLD DENSE MATTER a b
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We review the non-Fermi or marginal liquid behavior of a relativistic QED plasma.
In this medium a quasiparticle has a damping rate that depends linearly on the
distance between its energy and the Fermi surface. We stress that this dependence
is due to the long-range character of the magnetic interactions in the medium.
Finally, we study how the quark damping rate modifies the gap equation of color
superconductivity, reducing the value of the gap at the Fermi surface.

1 Introduction

There is an increasing interest in studying how matter behaves at very high
density. While high density effects in non-relativistic systems have been studied
thoroughly in the past, the same does not hold true for relativistic ultradegen-
erate plasmas. Relativistic effects cannot be avoided if the chemical potential
µ of the system is much larger than the mass of the particles that form the
medium. This situation certainly occurs in the interior of neutron stars. The
astrophysical scenario is the natural domain of application of the physics of
ultradegenerate relativistic plasmas.

Electromagnetic plasmas behave in a drastically different way in their non-
relativistic and ultrarelativistic limits. This is so because the magnetic interac-
tions are suppressed in the non-relativistic limit by powers of v2/c2, where v is
the typical velocity of the particles in the plasma, and c is the velocity of light.
Electric and magnetic interactions behave in a very different way in a plasma.
In the medium, static electric fields are completely screened. This is the well-
known Debye screening phenomenon, also known as Thomas-Fermi screening
for ultradegenerate plasmas. But magnetic interactions are only weakly dy-
namically screened, through Landau damping. Thus, while electric interactions
are short-ranged, magnetic interactions are long-ranged. This fact has several
relevant consequences for ultradegenerate plasmas and makes the relativistic
and non-relativistic phases of the plasma to look completely different.

In this talk we will discuss how the long-range character of magnetic in-
teractions affects the lifetime of a quasiparticle in the medium. This is based
on work done in collaboration with Michel Le Bellac 1,2. We will then see how
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the fermion lifetime effects also correct the value of the gap of color supercon-
ductivity 3.

2 Lifetime of a quasiparticle and non-Fermi liquid behavior of the

relativistic plasmas

One of the central concepts in a plasma is that of a quasiparticle. A particle
immersed in a medium modifies its propagation properties by interacting with
the surrounding medium. In field theoretical language, we would say that the
particle is “dressed” by a self-energy cloud. In the ultradegenerate plasma,
the relevant degrees of freedom are those of quasiparticles or quasiholes (ab-
sences of particles in the Fermi sea) living close to the Fermi surface. Because
of the exclusion principle, quasiparticles/quasiholes can only live if they are
outside/inside the Fermi sea. These excitations tend to lower their energy by
undergoing collisions with the particles in the Fermi sea. They decay, and thus
have a finite lifetime. The concept of quasiparticle, however, only makes sense
if its lifetime is long enough, or in other words, if its damping rate is much
smaller than its energy.

If the interactions in the system are repulsive and short-ranged, some of
the propagation properties of the quasiparticles can be deduced on general
grounds. In that case, Luttinger’s theorem 4 states the energy dependence of
the damping rate of a quasiparticle that lives close to the Fermi surface. The
damping rate can be obtained either by computing the imaginary part of the
fermion self-energy or, alternatively, by computing the decay rate

Γ(E) =
1

E

∫

d3p′

(2π)3
(1 − Θ(µ − Ep′))

2Ep′

∫

d3k

(2π)3
Θ(µ − Ek)

2Ek
(1)

×
∫

d3k′

(2π)3
(1 − Θ(µ − Ek′))

2Ek′

(2π)4δ(4)(P + K − P ′ − K ′)|M|2 ,

where |M|2 is the scattering matrix element squared, and Θ is the step func-
tion. The above decay rate represents the interaction of the quasiparticle with
one fermion inside the Fermi sea with energy Ek. As a result, two new par-
ticles appear, with energies Ek′ and Ep′ , which are outside the Fermi sea. If
the interaction is repulsive and short-ranged, and for E −µ ≪ µ, one can take
|M|2 with the value of the fermion energies at µ. Then, one can deduce that
Γ(E) ∝ (E − µ)2, only using the phase-space restrictions of fermion-fermion
scattering.

The damping rate can also be obtained from the imaginary part of the
fermion self-energy, and the computation agrees with that obtained from Eq.
(1). Since the real and imaginary parts of the self-energy corrections are related
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by dispersion relations, Luttinger’s theorem implies that the leading order
behavior of the real part of the self-energy is ∝ |E − µ|. For weakly coupled
systems, the dispersion relations of the quasiparticles (or quasiholes) are not
drastically affected by medium effects.

For systems with long-range interactions, it is not possible to make the
previous general statements, as in general the integral in Eq. (1) will depend
on the form of the interaction, and in general, Luttinger’s theorem will be
violated. This is actually what happens in relativistic QED plasmas, due to
the long-range character of the magnetic interactions. A closer look into the
decay rate Eq. (1) in a relativistic plasma shows that it is dominated by
scattering in the forward or collinear direction, mediated by a soft Landau
damped magnetic photon. The momentum of the photon in the process is
space-like, so the fermion damping rate would vanish in the absence of Landau
damping. In particular, one finds 1,5

ImΣ+(E, p) ∼ e2

24π
|E − µ| , (2)

where e is the electromagnetic coupling constant. The real part of the self-
energy can be computed from the imaginary part, using a dispersion relation.
One then finds 6,2

ReΣ+(E, p) ∼ e2

12π2
(E − µ) ln

M

|E − µ| + O((E − µ)) . (3)

The wavefunction renormalization factor Z can then be equally computed from
the above values. One finds

Z−1 ∼ 1 − e2

12π2
ln

M

|E − µ| . (4)

Thus, in the limit E → µ, the fermion propagator vanishes, instead of showing
the typical step discontinuity associated to the existence of a Fermi surface
7. This is an anomalous behavior for a typical Fermi liquid. Its origin is the
long-range character of the magnetic interactions in the relativistic system.

3 Color superconductivity at weak coupling

QCD at very high baryonic density behaves as a color superconductor 8. This
is a consequence of Cooper’s theorem, as any attractive interaction occur-
ring close to the Fermi surface makes the system unstable to the formation of
particle pairing. In QCD the attractive interaction is provided by one-gluon
exchange in a color antisymmetric 3̄ channel.
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In the weak coupling limit the value of the gap can be computed in per-
turbation theory. The condensation process is dominated by the exchange of
very soft magnetic gluons, which are dynamically screened by Landau damp-
ing. The Meissner effect is a subleading effect in the gap equation. At leading
order, one finds 9,10,11,12,13,14,15,16,17

φ0 ∼ 2
b0

g5
µ exp

(

− 3π2

√
2g

)

[1 + O(g)] , b0 = 256π4(
2

Nf
)5/2b′0 , (5)

where g is the gauge coupling constant, Nf is the number of quark flavors,
and b′0 is a constant of order one. The dependence on the coupling constant of
the gap is quite different from the one that arises in a system with short-range
interactions.

It is possible to compute next to leading order corrections to Eq. (5) by
introducing one-loop corrections in the quark propagators of the gap equation.
Here, we will mainly concentrate on studying how the quark damping rate
affects the value of the gap close to the Fermi surface. At leading order one
finds a modified gap equation 3

φk =
g2

36π2

∫

∞

0

d(q − µ)

[

ln

(

µ2b2

|ǫ2q − ǫ2k|

)]

φq

ǫq

2

π
arctan

(

ǫq

Γq

)

, (6)

where b = b0/g5, ǫq =
√

(q − µ)2 + φ2
q , and Γq is the quark damping rate. The

most relevant effect of the damping rate is introducing a physical ultraviolet
cutoff in the gap equation: when the ratio ǫq/Γq starts to be small, the inte-
grand in Eq. (6) tends to zero. This situation actually occurs for quarks that
are far away from the Fermi surface. As expected, the condensation process
only occurs close to the Fermi surface.

For a leading order computation of the gap at the Fermi surface one can
take the value of Γq in the normal phase of the system (that is, using Eq. (2),
replacing e2 by 4

3g2). This is so because the one-loop fermion self-energy in
the normal phase differs from that in the superconducting phase by, at most,
values of the order of the squared of the condensate. Also, the Meissner effect
in the gluon propagator to arrive at the value of Γq is a subleading effect. The
dominant scattering processes are those occurring in the forward direction,
and these processes are dominated by soft Landau-damped color magnetic
interactions, exactly as it happens in the gap equation. To leading order one
finds 3

φdamp
0 ∼ 2

b0

g5
µ exp

(

− π

2ḡeff

)

, (7)

4



where ḡ2
eff = ḡ2

(

1 − 2ḡ2
)

, and ḡ = g/3
√

2π. The value of the gap at the
Fermi surface is then reduced. This can be understood in very intuitive terms.
The fact that the quarks decay limits their efficiency to condense. The decay
of the quasiparticles should also affect the critical temperature of transition to
the normal phase of the system computed in Refs. 11,12,16,17.

The fermion damping rate effects represent a correction of order g2 to
the leading order value Eq. (5). It is worth emphasizing that this is not
the complete next-to-leading order correction, which it should be possible to
compute using the Schwinger-Dyson equations.
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