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Abstract

We propose the asymmetry in the fractional energy of charm versus anticharm
jets produced in high energy diffractive photoproduction as a sensitive test of the
interference of the Odderon (C = −) and Pomeron (C = +) exchange amplitudes
in QCD. If measured at HERA, this asymmetry could provide the first experimental
evidence of the Odderon.
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1 Introduction

The existence of the Odderon, an odd charge-conjugation, zero flavor-number ex-

change contribution to high energy hadron scattering amplitudes was already dis-

cussed many years ago [1]. In Regge theory, the Odderon contribution is dual to a

sum over C = P = −1 gluonium states in the t-channel [2]. Also in quantum chromo-

dynamics, the Odderon is a basic prediction following simply from the existence of the

color-singlet exchange of three reggeized gluons in the t−channel [3]. For reactions

which involve high momentum transfer, the deviation of the Regge intercept of the

Odderon trajectory from αO(t = 0) = 1 can in principle be computed [4, 5, 6, 7] from

perturbative QCD in analogy to the methods used to compute the properties of the

hard BFKL Pomeron [8].

In the past, some tests were proposed to either verify or reject the odderon hypoth-

esis (e.g., to check [9] out the Odderon hypothesis in the range 0.05 <
∼ −t <

∼ 1Gev2,

by taking into account a combination of differential cross-sections for π±p → ρ±p

and π−p → ρ0n, or of inclusive cross sections for π±p → ρX), but no experimen-

tal evidence of the Odderon separate existence has ever been published. Now that

the recent results from the electron-proton collider experiments at HERA [10] have

brought renewed interest in the nature and behavior of both the Pomeron [11, 12] and

the Odderon, we propose [13] an experimental test well suited to HERA kinematics

which should be able to disentangle the contributions of both the Pomeron and the

Odderon to diffractive production of charmed jets.

2 Odderon-Pomeron interference

Consider the amplitude for diffractive photoproduction of a charm quark anti-quark

pair. The leading diagram is given by single Pomeron exchange (two reggeized glu-

ons), and the next term in the Born expansion is given by the exchange of one

Odderon (three reggeized gluons). Both diffractive photoproduction and leptopro-

duction can be considered, although in the following we will specialize to the case of

photoproduction for which the rate observed at HERA is much larger. Our results

can easily be generalized to non-zero Q2.

We use the conventional kinematical variables, and we denote by zc(c̄) the energy

sharing of the cc̄ pair (zc + zc̄ = 1 in Born approximation at the parton level),

and we take into account that the finite charm quark mass restricts the range of z.

Moreover, ξ is effectively the longitudinal momentum fraction of the proton carried
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by the Pomeron/Odderon, and the proton mass is neglected.

Regge theory, which is applicable in the kinematic region sγp ≫ M2
X ≫ M2

Y ,

together with crossing symmetry, predicts the phases and analytic form of high energy

amplitudes (see, for example, Refs. [14] and [15]). The amplitude for the diffractive

process γp → cc̄p′ with Pomeron (P) or Odderon (O) exchange can be written as

MP/O(t, sγp, M
2
X , zc) ∝ g

P/O
pp′ (t)

(

sγp

M2
X

)αP/O(t)−1
(

1 + SP/Oe−iπαP/O(t)
)

sin παP/O(t)
gγcc̄
P/O(t, M2

X , zc)

(1)

where SP/O is the signature (even (odd) signature corresponds to an exchange which

is (anti)symmetric under the interchange s ↔ u), which is +(−)1 for the Pomeron

(Odderon). In the Regge approach the upper vertex gγcc̄
P/O(t, M2

X , zc) can be treated

as a local real coupling such that the phase is contained in the signature factor. In

the same way the factor g
P/O
pp′ (t) represents the lower vertex.

In general the Pomeron and Odderon exchange amplitudes will interfere, as illus-

trated in Fig. 1. The contribution of the interference term to the total cross-section

is zero, but it does contribute to charge-asymmetric rates. Thus we propose to study

photoproduction of c-c̄ pairs and measure the asymmetry in the energy fractions zc

and zc̄. More generally, one can use other charge-asymmetric kinematic configura-

tions, as well as bottom or strange quarks.

γ* γ*c

c
_

p
p'

p

Figure 1: The interference between Pomeron (P) or Odderon (O) exchange in the

diffractive process γp → cc̄p′.

Given the amplitude (1), the contribution to the cross-section from the interference
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term depicted in Fig. 1 is proportional to

dσint

dtdM2
Xdzc

∝ MP(t, sγp, M
2
X , zc)

{

MO(t, sγp, M
2
X , zc)

}†
+ h.c.

= gP
pp′(t)g

O
pp′(t)

(

sγp

M2
X

)αP (t)+αO(t)−2 2 sin
[

π
2

(αO(t) − αP(t))
]

sin παP (t)
2

cos παO(t)
2

×gγcc̄
P (t, M2

X , zc)g
γcc̄
O (t, M2

X , zc) . (2)

In the same way we can obtain the contributions to the cross-section from the non-

interfering terms for Pomeron and Odderon exchange.

The interference term can then be isolated by forming the charge asymmetry,

A(t, M2
X , zc) =

dσ

dtdM2
Xdzc

−
dσ

dtdM2
Xdzc̄

dσ

dtdM2
Xdzc

+
dσ

dtdM2
Xdzc̄

. (3)

Thus the predicted asymmetry turns out to be

A(t, M2
X , zc) = gP

pp′g
O
pp′

(

sγp

M2
X

)αP+αO 2 sin
[

π
2

(αO − αP)
]

sin παP

2
cos παO

2

gγcc̄
P gγcc̄

O

×





(

gP
pp′

(

sγp

M2
X

)αP

gγcc̄
P / sin

παP

2

)2

+

(

gO
pp′

(

sγp

M2
X

)αO

gγcc̄
O / cos

παO

2

)2




−1

. (4)

The main functional dependence in the different kinematic variables is expected

to come from different factors in the asymmetry. Thus, the invariant mass MX

dependence is mainly given by the power behavior, (sγp/M
2
X)

αO(t)−αP (t)
, and it will

thus provide direct information about the difference between αO and αP . Another

interesting question which can be addressed from observations of the asymmetry is

the difference in the t-dependence of gO
pp′ and gP

pp′.

Let’s note that in a perturbative calculation at tree-level the interference would

be zero in the high-energy limit s ≫ |t| since the two- and three-gluon exchanges

are purely imaginary and real respectively. This should be compared with the analo-

gous QED process, γZ → ℓ+ℓ−Z, where the interference of the one- and two-photon

exchange amplitudes can explain [16] the observed lepton asymmetries, energy depen-

dence, and nuclear target dependence of the experimental data [17] for large angles.

Also it is important to mention that secondary Regge trajectories with the same

quantum numbers as the Odderon contribute, in principle, to the asymmetry at the
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current energies. In fact, the ω contribution seems to be present in the fits to some

of the available experimental data. However, due to the intercept values of these

secondary Regge trajectories, their contribution will become negligible at higher en-

ergies.

The ratio of the Odderon and Pomeron couplings to the proton, gO
pp′/g

P
pp′, is limited

by data on the difference of the elastic proton-proton and proton-antiproton cross-

sections at large energy s. Following [18] we use the estimated limit on the difference

between the ratios of the real and imaginary part of the proton-proton and proton-

antiproton forward amplitudes,

|∆ρ(s)| =

∣

∣

∣

∣

∣

ℜ{Mpp(s, t = 0)}

ℑ{Mpp(s, t = 0)}
−

ℜ{Mpp̄(s, t = 0)}

ℑ{Mpp̄(s, t = 0)}

∣

∣

∣

∣

∣

≤ 0.05 (5)

for s ∼ 104 GeV2 to get a limit on the ratio of the Odderon and Pomeron couplings

to the proton. Using the amplitude corresponding to Eq. (1) for proton-proton and

proton-antiproton scattering we get for t = 0,

∆ρ(s) = 2
ℜ{MO(s)}

ℑ{MP(s)} + ℑ{MO(s)}
≃ −2

(

gO
pp′

gP
pp′

)2
(

s

s0

)αO−αP

tan
παO

2
, (6)

where s0 is a typical hadronic scale ∼ 1 GeV2 which replaces M2
X in Eq. (1). In

the last step we also make the simplifying assumption that the contribution to the

denominator from the Odderon is numerically much smaller than from the Pomeron

and therefore can be neglected. The maximally allowed Odderon coupling at t=0 is

then given by,

∣

∣

∣gO
pp′

∣

∣

∣

max
=
∣

∣

∣gP
pp′

∣

∣

∣

√

∆ρmax(s)

2
cot

παO

2

(

s

s0

)αP−αO

. (7)

Strictly speaking this limit applies for the soft Odderon and Pomeron and are therefore

not directly applicable to charm photoproduction which is a harder process, i.e. with

larger energy dependence. Even so we will use this limit to get an estimate of the

maximal Odderon coupling to the proton.

The amplitudes for the asymmetry can be calculated using the Donnachie-Lands-

hoff [19] model for the Pomeron and a similar ansatz for the Odderon [18]. The cou-

pling of the Pomeron/Odderon to a quark is then given by κγcc̄
P/Oγρ, i.e. assuming a he-

licity preserving local interaction. In the same way the Pomeron/Odderon couples to

the proton with 3κ
P/O
pp′ F1(t)γ

σ if we only include the Dirac form-factor F1(t). The am-

plitudes for the asymmetry can then be obtained by replacing g
P/O
pp′ (t)gγcc̄

P/O(t, M2
X , zc)
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in Eq. (1) by,

g
P/O
pp′ (t)gγcc̄

P/O(t, M2
X , zc) = 3κ

P/O
pp′ F1(t)ū(p − ℓ)γσu(p)

(

gρσ −
ℓρqσ + ℓσqρ

ℓq

)

κγcc̄
P/Oǫµ(q)

× ū(pc)

{

γµ 6 ℓ− 6 pc̄ + mc

(1 − z)M2
X

γρ − SP/Oγρ 6 pc − 6 ℓ + mc

zM2
X

γµ

}

v(pc̄)

where ℓ = ξp is the Pomeron/Odderon momentum and gρσ − ℓρqσ+ℓσqρ

ℓq
stems from the

Pomeron/Odderon “propagator”. Note the signature which is inserted for the crossed

diagram to model the charge conjugation property of the Pomeron. The Pomeron

amplitude written this way is not gauge invariant and therefore we use radiation

gauge also for the photon, i.e. the polarization sum is obtained using gµν − qµpν+qνpµ

pq
.

The leading terms in a t/M2
X expansion of the squared amplitudes for the Pomeron

and Odderon exchange as well as the interference are then given by,

(

gP
pp′g

γcc̄
P

κP
pp′κ

γcc̄
P

)2

∝
z2

c + z2
c̄

zczc̄

(1 − ξ)

ξ2

(

gO
pp′g

γcc̄
O

κO
pp′κ

γcc̄
O

)2

∝
z2

c + z2
c̄

zczc̄

(1 − ξ)

ξ2

gP
pp′g

O
pp′g

γcc̄
P gγcc̄

O

κP
pp′κ

O
pp′κ

γcc̄
P κγcc̄

O

∝
zc − zc̄

zczc̄

(1 − ξ)

ξ2
, (8)

with corrections that are of order t/M2
X and therefore can be safely neglected. The

ratio between the interference term and the Pomeron exchange is thus given by

gO
pp′g

γcc̄
O

gP
pp′g

γcc̄
P

=
κO

pp′κ
γcc̄
O

κP
pp′κ

γcc̄
P

zc − zc̄

z2
c + z2

c̄

=
κO

pp′κ
γcc̄
O

κP
pp′κ

γcc̄
P

2zc − 1

z2
c + (1 − zc)2

. (9)

Inserting this into the expression of the asymmetry and making the simplifying as-

sumption that the Odderon contribution can be dropped in the denominator gives

A(t, M2
X , zc) ≃ 2

κO
pp′κ

γcc̄
O

κP
pp′κ

γcc̄
P

sin

[

π (αO − αP)

2

](

sγp

M2
X

)αO−αP sin παP

2

cos παO

2

2zc − 1

z2
c + (1 − zc)2

.

(10)

To obtain a numerical estimate of the asymmetry, we shall assume that t ≃ 0 and use

αhard
P = 1.2 and αO = 0.95 [6] for the Pomeron and Odderon intercepts, even though

a recent paper by J. Bartels, L.N. Lipatov, and G.P. Vacca [20] has presented an Odd-

eron solution in perturbative QCD with precise symmetry properties and intercept

one. In addition we will also assume κγcc̄
O /κγcc̄

P ∼
√

CF αs(m2
c) ≃ 0.6, motivated by the
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Davies, Bethe, and Maximon calculation [21], and use the maximal Odderon-proton

coupling, κO
pp′/κ

P
pp′ = gO

pp′/g
P
pp′ = 0.1, which follows from Eq. (7) for αsoft

P = 1.08,

s = 104 GeV2, s0 = 1 GeV2 and ∆ρmax(s) = 0.05. Inserting the numerical values

discussed above then gives

A(t ≃ 0, M2
X , zc) ≃ 0.45

(

sγp

M2
X

)−0.25
2zc − 1

z2
c + (1 − zc)2

, (11)

which for a typical value of sγp

M2

X
= 100 becomes a ∼ 15 % asymmetry for large zc as

illustrated in Fig. 2. Let’s note that the asymmetry can also be integrated over zc.

zc

A(zc)

Figure 2: The asymmetry in fractional energy zc of charm versus anticharm jets

predicted by our model using the Donnachie-Landshoff Pomeron for αP = 1.2, αO =

0.95 and sγp/M
2
X = 100.

It should be emphasized that the magnitude of this estimate is quite uncertain,

since we are using an Odderon coupling to the proton which is maximal for the soft

Odderon in relation to the soft Pomeron, and the hard Odderon and Pomeron could

have a different ratio for the coupling to the proton.
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3 Conclusions

By observing the charge asymmetry of the quark/antiquark energy fraction (zc) in

diffractive cc̄ pair photoproduction or electroproduction, the interference between the

Pomeron and the Odderon exchanges can be isolated and the ratio to the sum of the

Pomeron and the Odderon exchanges can be measured. Using a model with helicity

conserving coupling for the Pomeron/Odderon to quarks, the asymmetry is predicted

to be proportional to (2zc − 1)/(z2
c + (1 − zc)

2). The magnitude of the asymmetry

is estimated to be of order 15%. However this estimate includes several unknowns

and is thus quite uncertain. This test could be performed by current experiments

at HERA, and possibly by COMPASS and STAR, providing the first experimental

evidence for the existence of the Odderon.
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