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Stochastic model for fault geometry conditioned to

seismic data and well observations

Hilde G. Borgos1, Henning Omre1 and Chris Townsend2

1 Department of Mathematical Sciences, NTNU, Trondheim, Norway.
2 Statoil Research Centre, Trondheim, Norway.

Abstract

A Bayesian framework is used to de�ne a stochastic model of fault patterns condi-

tioned to seismic data and well data. Faults above seismic resolution are considered,

enabling assessment of uncertainty for faults detectable from seismic data. The fault

pattern is represented through a faulted horizon, with a prior distribution model-

ing characteristics of fault traces, fault intersections and o�set pro�les. A likelihood

function is de�ned under the assumption that reection coeÆcients of a non-faulted,

layered sedimentary reservoir can be modeled as a Gaussian random �eld with a

strong horizontal correlation. Uncertainty in fault patterns is studied through re-
peated sampling from the posterior distribution.

1 Introduction

Geological faults above seismic resolution can be interpreted from seismic reection data.
Sedimentary rocks tend to form horizontally layered sequences. This layered structure is
often observed in the seismic data, where lateral discontinuities visible across succeeding
horizontal layers are interpreted as faults. However, the interpretations of faults from seis-
mic data contain uncertainties, both due to the seismic data quality, seismic resolution and
the judgment of the interpreter. Furthermore, the subjective human interpretations are not
always guaranteed to give geologically realistic fault patterns, especially if the interpreter
is poorly trained or has a particular bias. Another problem related to interpreting seismic
maps, is the problem of matching faults interpreted from succeeding two dimensional maps
to create a three dimensional fault pattern. Badley et al. (1990) discuss a methodology for
interpreting faults from three dimensional seismic data.

Attempts have been made to create algorithms for detecting faults from three dimensional
(3D) seismic data. Bahorich and Farmer (1995) introduce a successful technique (the
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Coherence Cube) for tracking/highlighting faults from 3D seismic data. The method is
essentially a moving window correlation algorithm, and is patented, see Bahorich and
Farmer (1996). Further developments based on the idea behind the Coherence Cube are
presented by Marfurt et al. (1998) and Marfurt et al. (1999). Two alternative techniques
for detecting faults and stratigraphic boundaries from 3D seismic data are described by Luo
et al. (1996). The techniques presented in the cited papers are deterministic procedures
used at an early stage in the interpretation process, and thus making the interpretation
easier and faster. The techniques give indications of fault positions, lengths, connectivity
and orientations. Experience and use of these techniques have shown that they neither
improve fault resolution, nor do they signi�cantly reduce uncertainty. They also tend to
be prone to seismic noise and only have a real bene�t if used at an early stage.

In this work, the problem of detecting faults from 3D seismic data is considered from a
statistical point of view. The method is both novel and clearly di�erent from the previously
mentioned correlation techniques. A stochastic model for post-sedimentary fault patterns
is de�ned, conditioned to 3D seismic data and well observations. The layered structure
observed in seismic data is incorporated in the model, and the aim is to locate faults based
on discontinuities in the lateral consistency. Additional information about the reservoir
obtained from wells are also included in the model. Furthermore, general geological knowl-
edge of faults and fault patterns are incorporated in the model in an attempt to produce
geologically realistic fault patterns.

Previous work on stochastic modeling of faults and fractures include both pixel or grid
based approaches, see for example Gringarten (1996, 1998), object based models, e.g.,
Chil�es (1988), Brand and Haldorsen (1988), Gauthier and Lake (1993), Munthe et al.
(1993), Munthe et al. (1994), Wen and Sinding-Larsen (1997), and one dimensional models
where faults or fractures only appear as points, see Bel�eld (1998). Some of the cited
papers include information from observations. Fault or fracture observations in wells are
conditioned to in some cases, while often data is only used to estimate parameters related
to characteristics of faults and fault patterns. For example, seismic data or outcrop data
are used to estimate distributions of fault size or orientation, and spatial fault densities.
Previous stochastic modeling of faults based on seismic observations mainly use inter-
preted seismic data to model sub-seismic fault patterns. In contrast, the stochastic model
described here is de�ned for faults at seismic scales, and is used to assess uncertainty in
the fault pattern at these scales.

A Bayesian framework is used to present the stochastic model for fault patterns, and to
condition to available information like seismic data and well observations. For previous
work using a Bayesian framework in reservoir modeling, see for example Lia et al. (1997),
Omre and Tjelmeland (1997), Eide et al. (1997a), Eide et al. (1997b), Eide (1999). In
this work the focus is on the network of faults in the reservoir. The relationship between
speci�c reservoir characteristics and the available observations is integrated in the model,
enabling conditioning of fault patterns to the observations. General geological knowledge is
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incorporated in a prior distribution, while the available observations are integrated in the
model through the likelihood function. The posterior distribution combines the general
knowledge and the observations. Assessment of uncertainty of fault geometries can be
based on repeated sampling from the posterior model.

Both the prior model and the likelihood function presented in this work are de�ned using
random �elds: Markov Random Fields and Gaussian Random Fields, see Cressie (1993),
Tjelmeland (1996), Abrahamsen (1997).

2 Bayesian Framework

A stochastic model is de�ned for a faulted horizon H, a topographic surface embedded in
three dimensions. Faults, their positions, orientations and displacements, are visible as dis-
continuities in the surface. Let O denote available observations obtained from the reservoir
under study, consisting of seismic data and well observations. The aim of this work is to
generate geological fault patterns, represented by faulted horizons H, conditioned on the
available observations O. A Bayesian framework is used to de�ne the relationship between
the faulted horizon and the observations. A prior model f(h) of the faulted horizon includes
general geological knowledge about faults and fault patterns, and is discussed in Section 3.
The relationship between the faulted horizon and the observations is de�ned through the
likelihood function f(ojh), discussed in Section 4. Combining the prior distribution and
the likelihood function, the posterior distribution is obtained:

f(hjo) = const� f(h)f(ojh): (1)

The posterior distribution combines general geological knowledge and reservoir speci�c
observations and is discussed in Section 5. Sampling from the posterior distribution is
described in Section 6.

Some basic model assumptions are made. The vertical extents of the faults are assumed to
be large compared to the vertical extent of the region under study, thus vertically all faults
penetrate completely through the region. Furthermore a crude approximation is made,
assuming that faults within the region has a vertical dip and a constant o�set vertically.

3 Prior Model of Geological Fault Patterns

Post sedimentary faults are studied in this work. Consider a layered rock where all layers
originally are horizontal, as is often the case for sedimentary rocks. This corresponds to
the fundamental geological principle that sedimentary rocks are deposited horizontally, see
Monroe and Wicander (1994, chap. 17). When post sedimentary faults emerge through
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the rock volume, rock in di�erent parts of a layer are displaced with di�erent o�sets, and
an originally horizontal surface is deformed into a topographic surface embedded in three
dimensions, denoted a horizon.

Faults form brittle, discrete deformation in sedimentary strata. Other types of deformation,
like ductile deformation, folding and tilting, are in this work assumed to be relatively small
and are modeled as natural variations in the topographic surface. Thus the variations in
the horizon are composed of displacements caused by faulting and other natural variations.

When numerous faults are present in an area, a fault pattern is created. A fault pattern is
usually best observed by examining a single horizon from above, i.e., a topographic map.
However, the total three dimensional extent of the faults can not be obtained from the
surface, and only the pattern of fault traces on the horizon can be mapped. Fault traces
are the intersections of fault planes with the horizon. The fault pattern can be represented
through the number of faults, their position, geometry, displacement and displacement
direction.

Under the model assumptions outlined in Section 2, a series of overlying horizons will
have similar topographies, and the fault pattern can be represented through a single rep-
resentative horizon H. The prior model of the geological fault pattern is de�ned through
the probability density function (pdf) f(h) of the faulted horizon H, and should contain
general geological knowledge about faults and fault patterns. In Section 3.1 the faulted
horizon is parameterized by an image, and in Section 3.2 a prior model of the image is
de�ned.

3.1 Faulted horizon

A fault pattern is represented by the topography of a faulted horizon H, where faults are
recognized as discontinuities in the surface. The number of faults, their position and the
o�sets are found from these discontinuities. The faulted horizon is parameterized by an
image, where both pixels, edges and vertices are included in the model. Figure 1 gives an
illustration of two types of pixels and the corresponding edges and vertices.

(a) (b)

Figure 1: (a) Square pixel and (b) hexagonal pixel. The pixels are colored gray, the edges around
the pixel are marked with solid lines and the vertices with circles.
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Edges form an image of fault traces on a horizon. Each edge E is assigned a value in the
set 
e = f0; 1g, and fault traces are composed of connected edges of values E = 1.

Vertices represent the o�sets along fault traces. Vertices V along connected edges of
values E = 1 are assigned a value corresponding to the o�set of the fault at the
point of the vertex. A vertex takes a value in the set 
v � R, where the sign of the
o�set indicates the o�set direction. Vertices connecting only edges of value E = 0 is
assigned zero o�set V = 0.

Pixels represent the topography of the faulted horizon, consisting of displacements caused
by faulting and other natural variations. The value of a pixel P determines the
altitude of the surface in the center point of the pixel. Each pixel is assigned a value
from the set 
p � R.

Let E , V and P denote the index sets of edges, vertices and pixels respectively, and let
ne = jEj, nv = jVj and np = jPj be the number of edges, vertices and pixels. The edge
values are given by the vector E = fEi; i 2 Eg, the vertices by V = fVi; i 2 Vg and the
pixels by P = fPi; i 2 Pg. All edges Ei, vertices Vi and pixels Pi are treated as stochastic
variables, and the sample space of the image (E;V ;P ) is given by 
 = 
ne

e � 
nv
v � 


np
p .

A hexagonal grid is used to represent the image, as was used by Besag (1989) and Tjelme-
land and Besag (1998). An example of a hexagonal grid is given in Figure 2. The main
advantage of a hexagonal grid, compared to a square grid, is that it gives a greater exibility
in drawing angles of di�erent sizes between fault traces.

The number of pixels, edges and vertices are easily found in the hexagonal grid. Let r be
the number of pixels along one side of the hexagonal grid. This is equal to the number
of concentric hexagonal bands of pixels included in the grid, starting with the center
pixel as band number one. The total number of pixels, edges and vertices in the grid is
np = 3r(r � 1) + 1, ne = 3r(3r� 1) and nv = 6r2 respectively.

Figure 2: The image (E;V ;P ) is represented by a hexagonal grid.
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The image composed of the variables (E;V ;P ) gives a discrete parameterization of the
topography of the faulted horizon. A continuous representation of the horizon is ob-
tained by triangulation between pixels, where faults are represented as discontinuities in
the triangulation surface. The triangulation is uniquely determined by the stochastic
variables (E;V ;P ). The resulting topographic surface is also stochastic, and is denoted
H = H(E;V ;P ). The altitude of the surface H at a point (x; y) is given by H(x; y). At
the center point (x; y) of any pixel, with value P = p, the altitude of the surface equals
the value of the pixel, H(x; y) = p.

The �rst step in the triangulation is to draw triangles between the center points of the
pixels, as shown in Figure 3. Each side of a triangle crosses an edge in the image. If one
or more of the edges have value E = 1, a fault intersects the triangle. The triangle is then
divided into smaller triangles in order to obtain a discontinuity along the fault trace, as
shown in Figure 4. In this way the image is covered by triangles, where the surface H(x; y)
is continuous within each triangle, and discontinuities in the surface are all located along
triangle sides. An example of a topographic surface, found by triangulation from an image
(E;V ;P ), is shown in perspective in Figure 5.

Figure 3: As a �rst step in the triangulation, triangles are drawn between the center points of

the pixels.

(a) (b) (c) (d)

Figure 4: Subdivisions of the triangles shown in Figure 3. The pixels are shown to the left in

each �gure, and edges of value E = 1 are marked with thick solid lines. The subdivisions of

the triangle are illustrated to the right. (a) If no faults intersect the triangle, no subdivision

is made. (b) The end of a fault trace intersects the triangle, and the triangle is divided into 4
smaller triangles. (c) If a fault trace crosses the triangle, 5 sub-triangles are constructed. (d) The

triangle contains an intersection of fault traces, and is divided into 6 smaller triangles.
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Figure 5: Perspective plot of the topography of the horizon H, constructed by triangulation of

the pixels in an image (E;V ;P ). The fault planes, which are all vertical, are colored dark.

3.2 Prior model

The prior model of a faulted horizon should contain general geological knowledge about
faults and fault patterns. The prior model of the edges E should thus contain information
on typical fault patterns in a horizon, the prior model of the vertices V should reect
characteristics of fault o�sets, and the prior model of the pixels P should produce a satis-
factory topography of the faulted horizon. Combining the prior distributions of the edges,
vertices and pixels, a prior model of the faulted horizon H is obtained. The pdf f(h) of H
can be expressed as follows:

f(h) = f(e; v;p) = f(pje; v)f(vje)f(e): (2)

3.2.1 Fault traces

The edges E form an image of fault traces on a horizon, and the prior model of fault traces
is based on the work by Tjelmeland and Besag (1998). They consider Markov random
�elds containing higher order interactions, where a Markov random �eld is de�ned on
the pixels in the image. In this work a corresponding model is used for the edges. The
aim is to include higher order interactions between edges in the image, and to control, to
some extent, the pattern of fault traces. The image is represented by a hexagonal grid, as
described in Section 3.1. Typical angles of intersection between two fault traces are angles
of approximately 60Æ, which are easily modeled in the hexagonal grid, but angles of around
90Æ are also common and can be modeled using this grid. Edge e�ects are accounted for
by using circular boundary conditions.

A neighborhood system must be chosen to de�ne the Markov random �eld used to model

7



(a) (b)

Figure 6: (a) The neighborhood of the edge in the center, drawn with a thick line, is composed

of the edges drawn with thin lines. (b) The maximum clique of the neighborhood in (a). The

edges drawn with thick lines form the inner edges, and the edges drawn with thin lines form the

outer edges.

the fault traces. The neighborhood illustrated in Figure 6a is used, and the corresponding
maximum clique is shown in Figure 6b. The maximum clique consists of the largest set of
edges where all pairs of edges are neighbors. The edges contained in the maximum clique
are classi�ed as inner and outer edges, where inner edges are drawn with thick lines in
Figure 6b, and outer edges with thin lines.

According to the Hammersley-Cli�ord theorem, see for example Winkler (1995), the distri-
bution of any Markov random �eld E can be expressed as a Gibbs distribution, see Geman
and Geman (1984). The pdf of the Gibbs distribution is given as

f(e) = const� expf�
X
c2C

!c(ec)g; (3)

where C is the set of all cliques and !c(ec) is the potential function of the edges ec contained
in the clique c. The sum

P
c2C !c(ec) is called the energy function. Using the neighborhood

shown in Figure 6a, possible cliques are the maximum clique shown in Figure 6b and all
subsets of the maximum clique. Only the maximum cliques are assigned non-zero potentials
in this work. Thus the pdf of the edges E can be expressed as

f(e) = const� expf�
X
c2Cm

!c(ec)g; (4)

where Cm � C is the set of all maximum cliques. The maximum clique ec contains 12 edges,
where each edge takes a value in the set 
e = f0; 1g. Thus there are 212 = 4096 di�erent
clique con�gurations, with a corresponding number of function values !c(ec). In order to
reduce the number of potentials that needs to be speci�ed, the clique con�gurations are
classi�ed into a limited number of classes and all members of a class are assigned equal
potentials. A possible classi�cation is shown in Figure 7. Rotations and reections of the
con�gurations belong to the same class, and are omitted in the �gure. The clique con�g-
urations in the �gure are classi�ed as background, point, end, short-line, line, two-lines,
angle, single-cross, double-cross or edge-background. The latter is the class of con�gura-
tions where all inner edges have value 0, but at least one of the outer edges has a value
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of 1. All con�gurations not shown in Figure 7, or not being a rotation or reection of a
con�guration in the �gure, are classi�ed as other.

The pdf in Expression (4) is de�ned by specifying potentials !c(ec) = i for the 11 classes
of clique con�gurations. The potentials are given in Table 1. Since any constant can be
added or subtracted in the exponent in Expression (4) without changing the prior pdf
f(e), the critical choice is not the actual potential values, but the di�erences between the
potentials. Thus one class can be assigned a zero potential, and all other potentials are
de�ned relative to this class. The class of edge-background is chosen as a zero potential
reference class.

The classi�cation of cliques shown in Figure 7, with the potentials given in Table 1, de�nes
an isotropic distribution of the orientation of fault traces. The con�guration classes can
be subdivided to produce anisotropic distributions of fault orientation, assigning di�erent
potentials to fault traces depending on the direction of the trace. An example of a sub-
dividing of the con�guration class line is shown in Figure 8. Directions 1, 3 and 5 are
rotations and reections of the con�guration in Figure 7g, while directions 2, 4 and 6 are
reection and rotations of the con�guration in Figure 7h.

Subdividing of the con�guration classes end, short-line and two-lines can also be applied,
based on reections and rotations of the con�gurations in Figures 7c-d, 7e-f and 7i-j re-
spectively. The con�guration classes angle, single-cross and double-cross contain two or
more fault traces of di�erent orientations, and subdividing according to directions is not
applied to these classes. Furthermore, neither the con�guration classes point, other nor
edge-background are subdivided. The total number of potentials are listed in Table 2.
The potentials of the subdivided classes are donated i;j, j = 1; : : : ; 6, where j gives the
direction of the fault trace.

Con�guration name Con�guration ec !c(ec)

Background Fig. 7a 1
Point Fig. 7b 2
End Fig. 7c, d 3
Short-line Fig. 7e, f 4
Line Fig. 7g, h 5
Two-lines Fig. 7i, j 6
Angle Fig. 7k 7
Single-cross Fig. 7l 8
Double-cross Fig. 7m 9
Other Not illustrated 10
Edge-background Fig. 7n 0.0

Table 1: Potentials !c(ec) = i for the con�guration classes shown in Figure 7.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m)

(n)

Figure 7: Classes of clique con�gurations, up to rotation and reection. Thick solid edges have

value E = 1, others have value E = 0. The clique con�gurations are classi�ed as (a) background,

(b) point, (c){(d) end, (e){(f) short-line, (g){(h) line, (i){(j) two-lines, (k) angle, (l) single-cross,

(m) double-cross and (n) edge-background.

Direction 1 Direction 2 Direction 3

Direction 4 Direction 5 Direction 6

Figure 8: Subdividing of the con�guration class line into 6 classes of di�erent orientations.
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Con�guration name Con�guration ec !c(ec)

Background Fig. 7a 1
Point Fig. 7b 2
End Fig. 7c 3;1, 3;3, 3;5

Fig. 7d 3;2, 3;4, 3;6
Short-line Fig. 7e 4;1, 4;3, 4;5

Fig. 7f 4;2, 4;4, 4;6
Line Fig. 7g 5;1, 5;3, 5;5

Fig. 7h 5;2, 5;4, 5;6
Two-lines Fig. 7i 6;1, 6;3, 6;5

Fig. 7j 6;2, 6;4, 6;6
Angle Fig. 7k 7
Single-cross Fig. 7l 8
Double-cross Fig. 7m 9
Other Not illustrated 10
Edge-background Fig. 7n 0.0

Table 2: Potentials !c(ec) when some classes are subdivided to de�ne potentials depending on

the orientation of the fault traces. The subscript j of i;j indicates the direction of the fault trace.

Figures 9 and 10 show independently generated realizations from f(e), using the di�erent
potentials listed in Table 3. Simulation from the distribution f(e) is described in Ap-
pendix A, Algorithm 2. Several simulations are run using di�erent potential values, to
study the variations in the prior distribution. The number of concentric bands of pixels
are 9, resulting in 217 pixels, 702 edges and 486 vertices. Examples 1{4, Figure 9, use
isotropic prior distributions of E. In examples 5{8, Figure 10, fault traces with orientation
in direction NW-SE are favored, which is direction 2 in Figure 8.

In example 1 angles and single-crosses are assigned low potentials, creating fault patterns
with a number of bending and intersecting faults. In examples 2{4 the potentials of angles
and single-crosses are increased, resulting in fault patterns of isolated, straight fault traces.
The pdf used in example 3 has a lower potential for points and short-lines than in example
2, and the fault traces tend to be shorter. In example 4 the potential of points and short-
lines is decreased even further. The result is a fault pattern containing a relatively large
number of short fault traces.

The realizations in examples 5{8 are generated from anisotropic prior distributions. In
examples 6 and 7 the fault patterns are dominated by a number of long fault traces in
direction NW-SE. This characteristic is hardly detectable in example 5 where the potentials
of direction NW-SE are slightly lower than potentials of the other directions, but angles and
single-crosses are assigned low potentials. Direction NW-SE dominates in the realizations
of example 8, as it does in examples 6 and 7. However, due to a higher potential for lines,
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(a) Example Potentials
No. 1 9 10

1{8 -0.1 1.1 3.4

(b) Example Potentials
No. 2 3 4 5 6 7 8

1 1.6 -0.1 1.4 -0.2 1.025 0.0 0.1
2 1.8 -0.1 1.6 -0.2 1.025 0.2 0.9
3 1.6 -0.1 1.4 -0.2 1.025 0.5 0.9
4 1.2 -0.1 1.0 -0.2 1.025 0.5 0.9

(c) Example Potentials
No. 2 3;2 3;j 4;2 4;j 5;2 5;j 6;2 6;j 7 8

5 1.6 -0.2 -0.1 1.3 1.4 -0.25 -0.2 0.925 1.025 0.0 0.1
6 1.6 -0.2 -0.1 1.3 1.4 -0.275 -0.2 0.925 1.025 0.0 0.1
7 1.6 -0.2 -0.1 1.3 1.4 -0.3 -0.2 0.925 1.025 0.0 0.1
8 1.6 -0.2 -0.1 1.3 1.4 -0.2 -0.1 0.925 1.025 0.5 0.9

Table 3: Potentials used in the prior pdf f(e). The potentials in (a) are kept constant in all

examples. The potentials in (b) give an isotropic prior distribution while the potentials in (c)

give an anisotropic prior pdf which favors fault orientations in direction 2, see Figure 8. In the

potentials i;j, i = 3; : : : ; 6, j takes the values j = 1; 3; : : : ; 6.

angles and single-crosses in example 8, the faults are shorter and few intersections are
observed.

3.2.2 Fault o�sets

The vertices V represent the o�sets along fault traces, where the o�set tends to vary along
a trace. The maximum o�set depends on the horizontal extent, or length, of the fault trace,
and is typically located near the center point of the trace. Faults with long trace lengths
tend to have a larger maximum o�set than faults with short trace lengths. A number of
geological studies suggest a relationship D / L� between maximum displacement D and
length L, see for example Walsh and Watterson (1987, 1988), Gauthier and Lake (1993),
Dawers et al. (1993).

Fault traces are represented as connected edges of value E = 1. A fault trace can have an
isolated fault tip, where one end of an edge of value E = 1 is only connected to edges of
value E = 0, as in the clique con�gurations in Figure 7c-d. Alternatively, the fault trace
can terminate in another fault trace, producing a single-cross as in the con�gurations in
Figure 7l, or a double-cross as shown in Figure 7m. The number of faults and their traces

12



Example 1 Example 2 Example 3 Example 4

Figure 9: Realizations of E from f(e), using di�erent potentials with isotropic distribution of

orientation. The potentials are given in Table 3.
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Example 5 Example 6 Example 7 Example 8

Figure 10: Realizations of E from f(e), using di�erent potentials with anisotropic distribution

of orientation. Direction NW-SE is favored. The potentials are given in Table 3.
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are determined by the realization of the edges. The circular boundary conditions used in
the prior model of E are adopted.

Let b � V be an index set consisting of all vertices along a fault trace, and let Be =
fb1; b2; : : : ; bng be the set of all fault traces produced by the edge values E = e. Each
vertex is de�ned as belonging to a maximum of one fault trace, thus bj \ bk = ; for any
bj; bk 2 Be. At intersection points of two traces it is not uniquely de�ned which two edges
belong to the same trace, while the third edge is part of the intersecting trace. Thus for
each realization e of edges there is a number, nb(e), of possible ways of de�ning the set Be.
All these partitionings are assigned equal probability nb(e)

�1. The index set of all vertices
not included in any fault trace is denoted b0 = V n f[bj2Bebjg, where for any vertex Vi,
i 2 b0, the common value of all edges connected to the vertex is E = 0.

Consider a fault trace b 2 Be composed of n connected edges of value E = 1. The fault
trace is classi�ed according to the number of isolated fault tips, i 2 f0; 1; 2g, and is assigned
a standardized o�set pro�le gi(x; n), x 2 [0; 1]. The o�set pro�le has a maximum at the
center point of the fault trace, descending to zero at isolated fault tips. The o�set pro�les
are shown in Figure 11 and are de�ned as

g0(x; n) = �(n)

g1(x; n) =

�
4�(n)x(1� x); x � 0:5
�(n); x > 0:5

(5)

g2(x; n) = 4�(n)x(1� x);

where the function �(n) is used to model the relationship between the maximum o�set
and the length n of the fault trace, and is chosen as �(n) = �vn where �v is a constant.
A discrete representation of the o�set pro�le gi(x; n) is given by the vector gi;n, with one
component for each vertex along b. The o�set values of vertices along the trace are given
as V b = Dbgi;n, where the stochastic variable Db is the o�set direction of fault b, with two
possible values Db 2 f�1; 1g. The pdf of the vertex values V b conditioned on the o�set
direction Db is given by f(vbjdb) = Æ(vb � dbgi;n), where Æ(t) is the Dirac delta function.
The prior distribution of Db is chosen as f(1) = �, f(�1) = 1 � �, where 0 � � � 1,
resulting in the following pdf of V b:

f(vb) =
X

db2f�1;1g

f(vbjdb)f(db) = �Æ(vb � gi;n) + (1� �)Æ(vb + gi;n): (6)

When the o�set direction Db is known, the vertex values V b are deterministically given.
Thus the distribution of the o�set along the fault trace b is uniquely de�ned through the
dip parameter �, the length n of the trace and the size parameter �v.

The vertices in b0 represent points not included in any fault traces. These points have
zero o�set, implying vertex values of Vi = 0, i 2 b0. The vertices in b0 are denoted
V b0 = fVi; i 2 b0g, and have pdf

f(vb0) = Æ(vb0): (7)
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Figure 11: Functions gi(x; n) representing the standardized o�set pro�les along a fault trace of
i isolated fault tips.

The pdf of all vertices V , conditioned on the edges E, is obtained by combining the pdfs
(6) and (7):

f(vje) = nb(e)
�1f(vb0)

Y
b2Be

f(vb); (8)

where vertices V b and V b0 are assumed to be independent for any two fault traces b; b0 2 Be.
The number of terms in the product depends on the dimension jBej of the set Be, which is
determined by the edge values e. The non-zero values of the pdf can be expressed as

f(vje) = nb(e)
�1�k(1� �)jBej�k; 0 � k � jBej; (9)

where k is the number of faults b 2 Be o�set in direction Db = 1.

3.2.3 Topography of faulted surface

The pixels P represent the topography of the faulted horizon. The pattern of fault traces
on the horizon and the o�sets along the traces are represented by the edges E and vertices
V respectively. The pixel values P should produce an image of a surface, reproducing the
discontinuities and o�sets along the fault traces. Note that absolute depth is not de�ned,
but the pixel values give relative altitudes of the topography of the faulted surface. Edge
e�ects are accounted for by using free boundary conditions.

A multivariate Gaussian distribution is used as a prior model for pixel values. The mean
value � should depend on the edge valuesE = e and vertex values V = v, thus � = �(e; v),
while the covariance matrix �p is de�ned independently of e and v. The prior pdf of P is
then given as the pdf �(�) of the multivariate Gaussian distribution:

f(pje; v) = �(p;�(e; v);�p)

= (2�)�np=2j�pj
�np=2 expf�(p� �(e; v))0��1

p (p� �(e; v))=2g: (10)

The mean values �(e; v) should reect the discontinuities along fault traces, with the
correct o�set values across the discontinuities. Consider two adjacent pixels Pi and Pj,
where Eij is the edge between the pixels and Vij1 and Vij2 the vertices at the ends of the
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edge, see Figure 12. Let �Vij be the average of the two vertex values. For a given realization
(E;V ) = (e; v), denote by �(e; v) = (�1; �2; : : : ; �np) the mean values of the pixels. If an
edge Eij is not included in any fault trace, Eij = 0, the di�erence between the mean values
of Pi and Pj should be �i � �j = 0. If there is a fault trace including the edge, Eij = 1,
the di�erence should be approximately �i � �j = �vij. Generally the requirement is thus

�j � �i = eij�vij 8(i � j); (11)

where i � j denotes adjacent pixels. The equation system is in general singular and has
no solution. To overcome this problem the o�set values of the vertices are not considered
to give the �nal o�sets along the fault traces. Instead the surface of mean values �(e; v) is
approximated according to some optimization criterion. The pixel values only give relative
heights of the surface, so without loss of generality the mean value of pixel 1 can be
assigned a value �1 = 0. The remaining mean values �2; : : : ; �np are found as a least square
solution of the linear equation system (11). The equation system can be expressed as a
regression problem Y (e; v) = Z� where the components of Y (e; v) are given as eij�vij, and
� = (�2; �3; : : : ; �np). The design matrix Z is independent of e and v, and has component

values Zij 2 f�1; 0; 1g. The least square �t �̂ is given by �̂ = (Z 0Z)�1Z 0Y (e; v), and this
�t, together with �1 = 0, is used as mean values of the pixels P . Thus

�(e; v) = (0; (Z 0Z)�1Z 0Y (e; v)): (12)

The entries of the covariance matrix �p is given as

Cov(Pi; Pj) = �2p�(xi; xj); (13)

where xi denotes the position of pixel i. The exponential correlation function is used,

�(x; x0) = �(x0 � x) = expf�3(jx0 � xj=a)�g; a > 0; 0 < � � 2; (14)

where the parameter a is called the correlation range.

Pj

Pi

Vij1 Vij2

Eij

6

Figure 12: The �gure illustrates the notation of adjacent pixels Pi and Pj , the edge Eij between

the pixels, and the vertices Vij1 and Vij2 at the ends of the edge.

3.2.4 Faulted horizon

The image (E;V ;P ) gives a discrete parameterization of the topography of a faulted
horizon. A continuous representation H is created by triangulation between the pixel
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centers, as described in Section 3.1. The topographic surface H is a deterministic function
of the image (E;V ;P ), and the pdf of H is given in Expression (2). Inserting Expressions
(4), (8) and (10), the following expression of the pdf of H is obtained:

f(h) = const� �(p;�(e; v);�p) � nb(e)
�1f(vb0)

Y
b2Be

f(vb) � expf�
X
c2Cm

!c(ec)g

= const� expf�(p� �(e; v))0��1
p (p� �(e; v))=2�

X
c2Cm

!c(ec)g (15)

� nb(e)
�1�k(1� �)jBej�k;

where k is the number of faults b 2 Be o�set in direction Db = 1. The number nb(e)
�1,

the dimension jBej of the set Be, the sets b contained in Be and the set b0 depend on the
edge values E. Thus the number of terms in the product

Q
b2Be

f(vb) will vary, and also
the dimensions of the variables V b.

Figure 13 shows a realization of h from the prior pdf f(h). The sampling procedure
used to generate this realizations is described in Section 6. The �gure shows edges e,
Figure 13a, vertices v, Figure 13b, and pixels p, Figure 13c. Figure 13d gives a perspective
plot of the continuous surface h = h(e; v;p), and the surface is represented as a gray
scale image in Figure 13f. Figure 13e shows the �nal o�sets, being the magnitudes of
the discontinuities along fault traces in the surface. The �gure should be compared with
Figure 13b. Away from fault intersections the two �gures appear to be quite similar, with
only minor di�erences. Close to fault trace intersections the two �gures di�er to some
extent, indicating that the mean values E [P jE;V ] = �(e; v), Expression (12), are not
able to match the vertex values exactly in these regions.

4 Likelihood Model of Reservoir Speci�c

Observations

Faults alter the geometric structure of a reservoir, and thus inuence on the structure of
reservoir characteristics. Available observations of the characteristics of subsurface reser-
voirs are discussed in Section 4.1. The relationship between the observations and the fault
pattern is de�ned through the likelihood function, and is described in Section 4.2.

4.1 Observations

Available observations from a subsurface reservoir consist of three dimensional seismic data
and well observations. Observations from seismic surveys give a good spatial covering of
the reservoir. However, only faults with displacement above 15{20 meters can be resolved
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(a) (b) (c)

(d) (e) (f)

Figure 13: Realization h from the prior pdf (15). (a) Edges e from f(e), (b) vertices v from

f(vje) and (c) pixels p from f(pje;v). (d) Perspective plot of the faulted horizon h, obtained by

triangulation of the image (e;v;p). (e) Fault planes from �gure (d), showing the true o�sets of

the faults. (f) Horizon h represented as a gray-scale image.
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from seismic data, and the observations contain measurement errors. See for example
Sheri� and Geldart (1995) for an introduction to seismic theory. Fine scale observations of
reservoir characteristics can be obtained from well logs. Such observations are however few
and sparse. Under the assumption of vertical faults, macroscopic faults are not observable
in wells. Seismic travel time is used as the vertical scale, while the conversion from time
to depth is beyond the scope of this work.

4.1.1 Seismic data

When a seismic wave travels downwards and hits an acoustic impedance discontinuity,
a part of the wave is reected, and the reected signal is registered at the surface. For
P-waves, also denoted longitudinal or compressional waves, the acoustic impedance Z is
given as the product of the P-wave velocity � and the density � of the medium, Z = ��.
Discontinuities in acoustic impedance are called reectors, and the most common reectors
are unconformities and signi�cant changes in lithology, see Sheri� and Geldart (1995).
Consider a reector where the P-wave velocity, density and acoustic impedance on one
side is �1, �1 and Z1 = �1�1 respectively, and on the opposite side �2, �2 and Z2 = �2�2.
The reection coeÆcient at the discontinuity is de�ned as

C =
Z2 � Z1

Z2 + Z1

: (16)

For a �xed point (x; y) in a horizontal grid of observations, the seismic amplitudes obtained
from reection points along a vertical axis in (x; y) are denoted So(x; y; t). The seismic
data can be expressed as a convolution of the reection coeÆcients C(x; y; t) with a seismic
wavelet w(t) = w(t; s), where  s is a wavelet parameter. The scale of the vertical axis
is travel time t, and the superscript o denotes observations throughout this work. A
simpli�cation is used, assuming all ray-paths of the seismic wave are vertical, and that all
reectors are horizontal. The seismic data are given by

So(x; y; t) = w(t) � C(x; y; t) + U(x; y; t) =

Z 1

�1

w(�)C(x; y; t� �) d� + U(x; y; t); (17)

where U(x; y; t) � N(0; �2s) is a random noise term including both modeling error and
measurement error, see Eide (1999). An approximation to (17) is given by a discrete
representation. Assume seismic observations are available for times t1; t2; : : : ; tn, and let
So
k = So(x; y; tk) be the seismic observation at the point (x; y; tk). The discrete represen-

tation of the seismic observation is as follows:

So
k =

LX
i=�L

wick�iÆt+ Uk; (18)

where Uk = U(x; y; tk) is the noise term, wi = w(ti) is the seismic wavelet evaluated at
time ti, ck�i = C(x; y; tk�i) is the reection coeÆcient at time tk�i and Æt = ti+1 � ti is
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the time step. Corresponding to Expression (18), an expression of all seismic observations,
denoted So, is given as

So = A( s)C +U ; (19)

where C is a matrix of reection coeÆcients, A( s) is a matrix with entries corresponding
to the product wiÆt and U a matrix of independent random noise. A commonly used
wavelet is the Ricker wavelet, expressed as

w(t) = (1� 2(��M t)
2) exp(�(��M t)

2); (20)

where the wavelet parameter  s = �M is the peak frequency, see Sheri� and Geldart (1995).
The Ricker wavelet is symmetric with a maximum at t = 0, see Figure 14.

t
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Figure 14: The Ricker wavelet (20) with peak frequency �M = 40Hz.

4.1.2 Well observations

From well logs velocity � and density � can be derived. The acoustic impedance Z = �� can
then be calculated, and for vertical wells Expression (16) can be used to obtain reection
coeÆcients C(x; y; t) in a well located at (x; y). Denote the vector of observed reection
coeÆcients Co. The observations of reection coeÆcients from wells are a subset of the
reection coeÆcients C. Throughout this work well observations are assumed to be exact
observations.

4.2 Likelihood model

Two types of observations are discussed in Section 4.1, seismic data and observations
of reection coeÆcients from well logs. The likelihood model of the seismic data and
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reection coeÆcients is based on the work by Eide (1999). See also Eide et al. (1997a),
Eide et al. (1997b). The likelihood function of the reection coeÆcients C and Co is
discussed �rst. The likelihood function of the seismic data So and the joint likelihood
function of all observations O = (So;Co) are obtained from Expression (17) or (19), based
on the likelihood function of the reection coeÆcients.

4.2.1 Reection coeÆcients

A likelihood function of reection coeÆcients in a non-faulted reservoir is �rst de�ned.
Adjustments are then made to �nd the likelihood function of the reection coeÆcients in
the faulted reservoir.

Consider a sedimentary reservoir prior to faulting. Due to the sedimentation process the
rock tends to have a layered structure, with a relatively strong lateral homogeneity. Ver-
tically the layered rock is non-homogeneous. Prior to faulting, reection coeÆcients of a
layered rock can in some cases be modeled as a Gaussian random �eld, see Todoeschuck
et al. (1990) and Eide (1999). Let Cu denote reection coeÆcients of a non-faulted reser-
voir, with a Gaussian distribution

Cu � N(�cu;�cu); (21)

where �cu is a vector of mean values and �cu is the covariance matrix ofCu. The covariance
between reection coeÆcients in the points (xi; yj; tk) and (xl; ym; tn) is given as

CovfCu(xi; yj; tk); Cu(xl; ym; tn)g = �2cu�cu((xi; yj; tk); (xl; ym; tn)); (22)

where �cu(�) is the correlation function of the reection coeÆcients and �2cu the variance.
The lateral homogeneity of the rock is accounted for by de�ning a strong horizontal cor-
relation in the likelihood model. A correlation function with negative correlation at short
vertical ranges is used, suggested by Eide (1999). The horizontal and vertical correlations
are assumed to be separable, and are de�ned based on the exponential correlation func-
tion (14). Let �H(�) and �V (�) denote exponential correlation function with range a = aH
and a = aV respectively. The correlation between Cu(xi; yj; tk) and Cu(xl; ym; tn) can be
expressed as

�cu((xi; yj; tk); (xl; ym; tn)) = �H((xi; yj); (xl; ym)) �

f2(1� �V (Æt))g
�1f2�V (tk; tn)� �V (tk+1; tn)� �V (tk; tn+1)g (23)

where �H((xi; yj); (xl; ym)) is the horizontal correlation and the expression on the last line
is the vertical correlation. A regular grid with vertical spacing ti+1 � ti = Æt is used. A
strong horizontal correlation is obtained by assigning a large value to the correlation range
aH . The vertical correlation, corresponding to (i; j) = (l; m) in the correlation function
(23), is illustrated in Figure 15.
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Figure 15: The vertical correlation in the correlation function (23), with parameters � = 1:2 and

aV = 15 in the exponential correlation function �V (�) involved in Expression (23). The scale of

the horizontal axis is milliseconds.

After faulting the original structure of the rock is altered. The fault pattern is represented
by the horizon H(x; y). Under the basic model assumptions discussed in Section 2, the
reection coeÆcients originally located in (x; y; t) is displaced to the point (x; y; t�H(x; y)),
see Figures 16a and 16b. If the faulted horizon H(x; y) is known, the reection coeÆcients
can be transformed back to their original location, as illustrated in Figure 16c.

Let C(x; y; t) denote the reection coeÆcient at a point (x; y; t) in the faulted reservoir.
The value of this reection coeÆcient is

C(x; y; t) = Cu(x; y; t+H(x; y)); (24)

obtained by a vertical transformation of the original reection coeÆcients Cu. The marginal
distributions of the reection coeÆcients are unchanged, but due to the spatial rearrange-
ment the mean vector �cu and covariance matrix �cu are no longer valid. Consider two
points (x; y; t) and (x0; y0; t0) prior to faulting, with reection coeÆcients Cu and C 0

u. The
covariance between the reection coeÆcients prior to faulting is given in Expression (22).

(a)

H1 ? H2

?

(b)

H1 6 H2 6

(c)

Figure 16: (a) The structure of the rock before faulting. (b) After faulting the structure is

altered. (c) If the faulted horizon H is known, a transformation back to the original structure

can be performed.
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After faulting the covariance between the two reection coeÆcients is unchanged, since the
values of the reection coeÆcients are not altered by the faulting. However, the positions
are changed, and the reection coeÆcients considered are now located at (x; y; t�H(x; y))
and (x0; y0; t0�H(x0; y0)) respectively. The transformations due to faulting can be expressed
as a permutation of the elements of the vector Cu of reection coeÆcients, and a corre-
sponding rearrangement of the order of the elements in the mean vector �cu and covariance
matrix �cu. The overall distribution of reection coeÆcients in a faulted reservoir is then
a Gaussian distribution, expressed as

[CjH = h] � N(�c(h);�c(h)); (25)

where �c(h) and �c(h) are obtained from �cu and �cu by rearranging the positions of
the elements according to the transformations dictated by the faulted horizon H = h.
Reection coeÆcients Co observed in wells are a subset of the reection coeÆcients C.
The observed reection coeÆcients follow a Gaussian distribution

[CojH = h] � N(�co(h);�co(h)); (26)

where �co(h) and �co(h) are subsets of �c(h) and �c(h) respectively.

4.2.2 Seismic data

The likelihood function of seismic data So is obtained by using the relationship between
seismic observations and reection coeÆcients given in Expression (17) or (19), and the
likelihood model of the reection coeÆcients given in Expression (25). The seismic data are
linear combinations of the reection coeÆcients and a random noise term, both Gaussian
random �elds, thus the seismic observations are also modeled as a Gaussian random �eld.
The mean and variance functions of the seismic data are found from the mean and variance
functions of the reection coeÆcients and the random noise term.

Similar to the reection coeÆcients, the seismic data can be expressed as a transformation:

So(x; y; t) = So
u(x; y; t+H(x; y)): (27)

Using the same notation as in Expression (24), So
u denotes the seismic observation that

would be obtained if seismic data were gathered prior to faulting of the reservoir. The
mean value of So

u(x; y; t) is found from Expression (17):

EfSo
u(x; y; t)g =

Z 1

�1

w(�)�cu(x; y; t� �) d�: (28)

The covariance between seismic observations So
u(xi; yj; tk) and S

o
u(xl; ym; tn) is found to be

CovfSo
u(xi; yj; tk); S

o
u(xl; ym; tn)g = �2s1[(i; j; k) = (l; m; n)] +

�2cu

Z 1

�1

Z 1

�1

w(�1)w(�2)�cu((xi; yj; tk � �1); (xl; ym; tn � �2))d�1 d�2 (29)
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where 1[�] is the indicator function. The covariance function (22) and the correlation
function (23) of the reection coeÆcients are used. Using the discrete matrix representation
(19), the mean values and covariance matrix of the seismic data So

u are found to be

�sou = EfSo
ug = A( s)�cu and �sou = VarfSo

ug = A( s)�cuA( s)
0 + �2sI; (30)

where I is the identity matrix. As for the reection coeÆcients, the seismic observations
of the faulted reservoir can be modeled as a Gaussian random �eld with mean vector and
covariance matrix depending on the faulted horizon H. The distribution of the seismic
data is the Gaussian distribution

[SojH = h] � N(�so(h);�so(h)) (31)

where �so(h) and �so(h) are obtained by rearranging the elements of �sou and �sou according
to the faulted horizon H = h.

4.2.3 Joint likelihood model of observations

Reection coeÆcients [CjH] are Gaussian distributed, see Expression (25). From Expres-
sion (19) it is clear that the joint distribution of [(So;C)jH] is also Gaussian, and conse-
quently, so is the distribution of the subset [OjH] of observations, where O = (So;Co).
By the same arguments as above, the mean vector and covariance matrix of [OjH] can be
found by �rst deriving the corresponding mean and covariance in a non-faulted reservoir,
using Expressions (17) or (19), and then rearranging the elements according to the faulted
horizon H = h. Thus [OjH = h] � N(�o(h);�o(h)), and the joint likelihood function
f(ojh) = f(so; cojh) of the observations O = (So;Co), given H, is the pdf of the Gaussian
distribution:

f(ojh) = �(o;�o(h);�o(h)); (32)

see Expression (10). The single elements of the covariance matrix �o(h) are de�ned by the
covariance function (22) and the matrix A( s) involved in the convolution (19), while the
order of the elements are determined by the faulted horizon H.

5 Posterior Model of Geological Fault Patterns

Conditioned to Reservoir Speci�c Observations

Observations O of the reservoir contain seismic data and observations of reection coeÆ-
cients obtained from well logs. The observations carry information about the structure of
the reservoir, and how the originally horizontal layers of the reservoir have been altered due
to faulting. The aim of this work is to generate realizations of the underlying geological
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fault pattern, by sampling the faulted horizon H conditioned to the observations. The
prior distribution from Section 3 and the likelihood function from Section 4 are combined
to form a posterior distribution. Samples from the posterior distribution can be obtained
using the methodology presented in Section 6.

The prior pdf f(h) contains general geological knowledge about the fault pattern and the
faulted horizon H. The likelihood function f(ojh) gives the likelihood of observing O, if
the true faulted horizon is H. The posterior distribution

f(hjo) = const� f(h)f(ojh) (33)

combines the general geological knowledge with the reservoir speci�c observations, and
gives the distribution of the faulted horizon H conditioned to the observations O. The
prior pdf and the likelihood function are given in Expressions (15) and (32) respectively.
Inserting the functions into Expression (33), the following posterior pdf is obtained:

f(hjo) = const� �(p;�(e; v);�p) � nb(e)
�1f(vb0)

Y
b2Be

f(vb) � expf�
X
c2Cm

!c(ec)g

� �(o;�o(h);�o(h)): (34)

The posterior model contains a number of parameters, which are listed in Table 4.

Prior distribution f(h) = f(pje; v)f(vje)f(e):

f(e): Potential function !c(ec): i, i;j, i = 1; : : : ; 10, j = 1; : : : ; 6
f(vje): Dip parameter �

Size parameter �v
f(pje; v): Variance �2p

Correlation function �(�): �; a

Likelihood function f(ojh) = f(sojco; h)f(cojh):

f(cojh): Mean �c
Variance �2c
Correlation function �c(�): �; aH ; aV

f(sojco; h): Variance �2s
Ricker wavelet w(t): �M
Time step Æt

Table 4: Parameters in the posterior distribution f(hjo).
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6 Sampling From the Posterior Distribution

Expression (34) gives the posterior pdf of the faulted horizon H(E;V ;P ), conditioned to
the observations O. Fault patterns and corresponding faulted horizons can be generated by
sampling from the posterior distribution. The posterior distribution is high dimensional,
and due to the complexity of the distribution no procedure for exact simulation exists.
Instead, Markov chain Monte Carlo (McMC) techniques are used, see Besag et al. (1995)
for an introduction to McMC methodology and for further references.

A Metropolis-Hastings algorithm is used to generate samples from the posterior distribu-
tion f(hjo) in (34), see Hastings (1970). A detailed description is given in Algorithm 1,
Appendix A. In each step of the algorithm, one of three possible transition types is chosen.
Suppose at one step the edge, vertex and pixel values are E = e, V = v and P = p, and
the faulted horizon is H(E;V ;P ) = h(e; v;p). New values e0, v0 and p0 are suggested
using one of the transition types. The three alternative transition types have di�erent
transition kernels, and are given as follows:

(i) Edge values e0, vertex values v0 and pixel values p0 are generated from the prior
distribution, with the transition kernel

q(h0jh) = f(e0; v0;p0) = f(e0)f(v0je0)f(p0je0; v0).

(ii) Edge values e0 = e are �xed while vertex values v0 and pixel values p0 are generated
from their respective prior distributions. The transition kernel is in this case

q(h0jh) = f(v0;p0je) = f(v0je)f(p0je; v0).

(iii) Edge values e0 = e and vertex values v0 = v are �xed while pixel values p0 are
generated from the prior distribution. In this case the transition kernel is

q(h0jh) = f(p0je; v).

In alternative (i) and (ii) the prior density function f(vje) cancels in the acceptance prob-
ability, while in alternative (iii) the vertex values V are constant. Thus the dependence of
Be on E causes no problems in the McMC algorithm, and the number nb(e)

�1 need not be
evaluated. For all suggested transitions, the probability of accepting the proposed horizon
h0 = h0(e0; v0;p0) is given by

�(h0jh) = min

�
1;

f(ojh0)

f(ojh)

�
: (35)

A sample from the pdf f(h) is generated in a stepwise procedure, and Figure 13 illustrates
the realizations obtained at di�erent steps of the procedure. First, all edge values E are
generated from the prior pdf f(e). Next, vertex values V are generated from the prior pdf
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f(vje) conditioned on the edge values. The pixel values P are then generated from the
prior pdf f(pje; v) conditioned on both edge and vertex values.

A Metropolis-Hastings algorithm is used to generate realizations from the prior pdf f(e),
while exact sampling of the o�sets and pixels from f(vje) and f(pje; v) are easily per-
formed. Algorithms for drawing samples of E, V and P from their respective prior distri-
butions are given in Appendix A.

The sample space 
 = 
ne
e �


nv
v �


np
p ofH is a high dimensional space, and a large number

of iterations must be run in order to span the space adequately. Thus the algorithm is
rather time consuming and as ne, nv and np increase, the number of iterations required
increases drastically. In alternative (i) of the transition steps, one further McMC simulation
is run within a step of the original McMC algorithm. Thus realizations from the posterior
distribution is generated using a double McMC algorithm. However, the McMC algorithm
used to sample from the prior pdf f(e) is not very time consuming and seems to converge
relatively fast, see Section 7.

The simplicity of the likelihood function is an advantage of the described algorithm. All
acceptance probabilities are given as a likelihood ratio, where the likelihood function (32) is
the pdf of a multivariate Gaussian distribution. Thus the algorithm is capable of handling
densely scattered seismic observations, although evaluation of the likelihood function in the
case of a large number of observations can be time consuming. Still, the major inuence
on the time consumption of the algorithm is from the large number of iterations required
to span the sample space of H through generation of samples from the prior pdf.

For small datasets the Gaussian likelihood function can be evaluated exactly. As the
dimension increases however, the likelihood can in practice not be obtained analytically
for general Gaussian �elds, and an approximation to the likelihood function must be found.
The likelihood function of the observations O can be approximated by a pseudo-likelihood
function (Besag, 1974)

f(ojh) �
Y
i

f(oijo�i; h) �
Y
i

f(oijo@i; h); (36)

where Oi is chosen as a vertical column through the observations and O�i is the set of all
other observations. The conditional distributions of Oi are approximated by distributions
depending only on observations O@i in a neighborhood @i of Oi. A neighborhood of 5� 5
vertical columns is used in the simulations presented below.

7 Sampling From the Prior Model of Fault Traces

The McMC algorithm presented in Section 6 includes sampling from the prior distribution
of H, where McMC techniques are also applied to sample from f(e). Realizations from
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f(e) are shown in Figures 9 and 10, and are generated using the McMC algorithm described
in Appendix A, Algorithm 2. The convergence of this McMC algorithm is studied in this
section.

Figure 17 shows convergence plots for realizations from the prior pdf f(e), using the
potentials from example 1 in Table 3. The McMC algorithm is run for 20 000 iterations.
Each iteration consists of ne update steps, where at each step an edge is drawn at random, a
change of value is suggested, and the new value is accepted with the appropriate probability.
The plots in Figure 17 show the relative number of con�gurations belonging to some of
the con�guration classes from Table 1, plotted for every 10th iteration. All plots indicate
a fast convergence of the algorithm. The Markov chain in Figure 17 has an initial state
where each edge value is drawn at random from 
e = f0; 1g. In Figure 18 some of the
plots are compared to Markov chains starting at extreme initial states, one where all edge
values are E = 0 and one where all are E = 1. The �rst 1000 iterations from the McMC
algorithm are plotted. Within these iterations, the Markov chains seem to have reached
the same stationary state. Figure 19 shows convergence plots for realizations from the
prior pdf f(e), using the anisotropic potentials from Simulation 8. Con�gurations of the
favored direction are observed to be more frequently represented in the Markov chain. Also
Figure 19 gives an indication of fast convergence.
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Figure 17: Plots of the relative number of con�gurations belonging to some of the classes listed
in Table 1. The potentials of example 1 in Table 3 are used. The number of iterations is 20 000

and every 10th iteration is plotted. The scale of the horizontal axis is 1000.
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Figure 18: Plots of the relative number of con�gurations belonging to some of the classes listed
in Table 1, using various initial states of the Markov chain. The potentials of example 1 in

Table 3 are used. The �rst 1000 iterations from the prior pdf f(e) are plotted, and the scale of

the horizontal axis is 1000. Solid lines correspond to initial states where each edge value is drawn

at random. Dotted lines show simulations where all edges have initial value E = 0, for dashed

lines all initial values are E = 1.
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Figure 19: Plots of the relative number of con�gurations belonging to some of the classes listed
in Table 2. The potentials of example 8 in Table 3 are used. The number of iterations is 20 000

and every 10th iteration is plotted. The scale of the horizontal axis is 1000. Solid lines represent

con�gurations belonging to direction 2, the favored direction, while the other are plotted with

dashed lines.
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8 Simulation Examples using Synthetic Observations

The aim of this work is to generate faulted horizons H conditioned to observationsO, using
the sampling technique described in Section 6. In this section synthetic data is used to
study the model and the proposed algorithm. In Section 8.1 the synthetic data is presented,
and in Section 8.2 simulation examples from the posterior distribution are studied. In the
examples in Section 8.2 a small number of edges, vertices and pixels is chosen, to reduce
the dimension of the sample space of the prior distribution.

8.1 Synthetic observations

To generate synthetic observations, data from a non-faulted reservoir is �rst generated.
Reection coeÆcients Cu � N(�cu;�cu) of a non-faulted reservoir are drawn from a Gaus-
sian distribution with mean �cu and covariance matrix �cu , see Expression (21), using the
covariance and correlation function given in Expressions (22) and (23) respectively. The
size of the data set is 50 � 50 � 20, and cross sections through the reection coeÆcients
are shown in Figure 20. The choice of parameter values are inspired by the work of Eide
(1999), and are given in Table 5a. Seismic data So

u = A( s)Cu + U of the non-faulted
reservoir are obtained by convolution of the reection coeÆcients with the Ricker wavelet
(20), adding Gaussian noise of mean 0 and variance �2s , see Expression (19). The param-
eter  s of the Ricker wavelet, the variance and the time step Æt are given in Table 5b.
Cross sections through the generated seismic data are shown in Figure 21. The generated
reection coeÆcients Cu and seismic data So

u represent the reservoir prior to faulting in
the examples below.

A synthetic faulted horizon H is sampled from the prior pdf f(h) in Expression (15), using
Algorithm 1, Appendix A. The number of concentric bands of pixels in the hexagonal image
is 5. The parameter values used in the prior pdf are given in Table 5c. The the horizon
covers a hexagonal area, while the seismic observations are generated over a square area.
The square area is placed inside the hexagonal area, and only the part of the horizon where
observations are available is illustrated in Figure 22. Seismic data of the faulted reservoir
are obtained using Expression (27), So(x; y; t) = So

u(x; y; t + H(x; y)), where t + H(x; y)
is rounded o� to the closest observation point tk. The faulted horizon in Figure 22 gives
the seismic data shown in Figure 23. Reection coeÆcients in four wells are found using
Expression (24), Co(x; y; t) = Cu(x; y; t+H(x; y)), and are shown in Figure 24. The well
positions are picked at random, and are marked in Figure 23. The complete set of synthetic
observations O consists of the seismic data So and the reection coeÆcients Co.

When the seismic amplitudes So
u in Figure 21 are transformed according to Expression (27),

columns of the images in Figure 21b-c are shifted up or down, depending on the values of
H(x; y). The result of the transformations is a non-rectangular area of observations. To

31



(a)

"
x = 25

 y = 25

(b)

(c)

Figure 20: Synthetic reection coeÆcients Cu in an unfaulted reservoir. (a) Top horizontal layer.

(b) Vertical N-S oriented cross section through the reservoir at position x = 25. (c) E-W oriented

cross section at y = 25. Di�erent horizontal scales are used.

�c �2c � aH aV
0.0 0:0352 1.2 40 15

(a)

�2s �M Æt

0:00152 40 0.002

(b)

f(e)

1 2 3 4 5 6 7 8 9 10

-1.0 0.7 -1.0 0.5 -1.1 0.125 -0.9 -0.8 0.2 2.5

f(vje)

�v �

0.01 0.5

f(pje; v)

�2p � a

0:012 2 3

(c)

Table 5: Parameters involved in (a) the Gaussian distribution of reection coeÆcients Cu prior
to faulting, (b) the relationship between reection coeÆcients Cu and seismic data So

u and (c)

the prior distribution f(h) = f(e)f(vje)f(pje;v) of the fault pattern H.
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(a)

"
x = 25

 y = 25

(b)

(c)

Figure 21: Seismic data So
u resulting from a convolution of the reection coeÆcients in Figure 20

with the Ricker wavelet, and Gaussian noise added. (a) Top horizontal layer. (b) Vertical N-S

oriented cross section through the reservoir at position x = 25. (c) E-W oriented cross section at

y = 25. Di�erent horizontal scales are used.

overcome this problem, only the 8 middle layers of the data set is used, and all shifts are
restricted to having maximum size 6. Thus the 8 layers in the middle will always contain
data after the transformations, and only these data are used as seismic observations So.
The size of the seismic dataset is thus 50 � 50 � 8. Similar restrictions are used for the
observed reection coeÆcients from wells. Note that the observation points lying inside
this rectangular area after transformation will di�er according to the faulted horizon H.
In visual representations of the seismic data or well data, all data are included, and the
part of a data column that is transformed below the boundary of the image is added on
the top, see Figure 23. Similar for data transformed above the image boundary.

RealizationsH generated from the posterior distribution of the faulted horizon conditioned
to synthetic observations can be compared to the true horizon. Furthermore, given the
fault pattern H the observations can be transformed back to their original positions by
inverting Expressions (24) and (27). For a given realization of H the transformed seismic
data can be compared to the true non-faulted reservoir So

u illustrated in Figure 21.
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(a) (b)

Figure 22: (a) Faulted horizon h from f(h) and (b) corresponding pattern of fault traces e.

(a)

"
x = 25

 y = 25

(b)

(c)

Figure 23: Seismic data So after faulting, corresponding to the data in Figure 21. (a) Top
horizontal layer, where the circles mark the well positions. (b) Vertical N-S oriented cross section

at position x = 25. (c) E-W oriented cross section at y = 25. Di�erent horizontal scales are used.
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Figure 24: Reection coeÆcients co obtained in four vertical wells.

8.2 Sampling from the posterior model

The synthetic data from Section 8.1 are used as observations of a faulted reservoir. Fig-
ure 25 shows an E-W oriented vertical cross section through the seismic data at position
y = 40. Based on the observations o = (so; co), four realizations of the fault pattern in the
reservoir are generated from the posterior pdf f(hjo), Expression (34). Each realization
is generated by restarting the McMC algorithm, thus all samples are independent. 50 000
iterations are run, using an initial burn-in of 5000 for the sampling from f(e). In Figure 26
the generated horizons are compared with the true, known faulted horizon. Only the part
of the horizons where observations are available is included in the plots. Figure 27 gives a
comparison of the true and sampled fault trace pattern on the horizon. One of the main
features of the faulted horizon is a N-S striking fault with a relatively large o�set in the
upper part of the image, see Figure 26. This fault is present in all four realizations. A NW-
SE striking fault gives a low altitude of the horizon in the lower left corner of the image.
This low-altitude area is also recognized in the realizations, but there is some uncertainty
about the orientation of the fault. The lower part of the N-S striking fault and the inter-
secting fault segment to the right have small o�sets, and the realizations of edge images
in Figure 27 reveal uncertainties in these areas. However, from Figure 26 the variation of
altitude in these areas is observed to be relatively small both for the true faulted horizon
and the realizations from the posterior.

In Figure 28 the seismic observations so from Figure 25 are transformed back to their

Figure 25: E-W oriented cross section through the seismic observations so at position y = 40.

35



True faulted horizon Realizations of the faulted horizon

Figure 26: True faulted horizon h compared to four realizations from the posterior pdf f(hjo)
in Expression (34).

True edge image Realizations of the edge image

Figure 27: True edge image e, representing the pattern of fault traces on the horizon h, compared
to the edge images of the realizations shown in Figure 26.
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original structure according to the realizations of the faulted horizon in Figure 26, as
illustrated in Figure 16. The cross-sections intersect the upper part of the N-S striking
fault. This fault can be observed in Figure 25, while it is no longer visible in the transformed
observations in Figure 28.

Figure 29a illustrates the variation in sampled o�sets along fault traces. For each fault
trace falling inside the observation area, the o�set is measured at vertices and edge center
points along the trace. The o�sets of the true faulted horizon are compared to the o�sets of
the realizations, using di�erent symbols for each realization. Absolute values of the o�sets
are reported. Fault traces that are present only in the true fault pattern or in a realization
appears as points along the axes. The mismatches in Figure 29a mainly originate from
the uncertainty around the position and orientation of the NW-SE striking fault in the
bottom left corner of the true faulted horizon in Figure 26. This fault has a relatively large
o�set. Apart from o�sets along these fault traces, the bulk of the points in Figure 29a
are scattered around the diagonal, indicating a relatively good agreement between o�sets
along fault traces in the true faulted horizon and the realizations. Figure 29b shows a
histogram of o�set values in cases where the edge value di�ers between the true image
e and a realization ej, see Figure 27. The �gure shows that the amount of misclassi�ed
edges decreases as the o�set increases, and edges that di�er between the true image and a
realization have mainly small o�sets.

The convergence of the McMC sampling is studied by considering the energy of the likeli-
hood function:

U(ojh) = (o� �o(h))
0�o(h)

�1(o� �o(h))=2; (37)

where a relatively low energy gives a relatively high likelihood, and vice versa. Figure 30
shows a plot of U(ojh) for the four runs, with accepted proposals of H indicated. It is
observed from the �gure that the acceptance ratio is very low. This can partly be related
to the proposal distribution, which is chosen as the prior pdf. The prior pdf of this high
dimensional variable will typically be much more spread out than the posterior pdf, and
the proportion of proposals located in the high density area of the posterior is low. For all
runs of the algorithm, the plot shows an initial decrease in the energy U(ojh) during the
�rst 20 000 iterations. Later, few new proposals are accepted, and the energy remains low.

Each realization reported above required 1{2 days of simulation, where the McMC algo-
rithm is implemented in the C programming language and was run on a Solaris 2 UNIX
work station. As mentioned above, the time consumption of the algorithm is inuenced
by the time required to span the sample space of H and the time it takes to evaluate the
likelihood function at each step of the algorithm. The potential for a speed up of the algo-
rithm lies mainly within the choice of updates in the McMC algorithm and the evaluation
of the approximated likelihood function at each step of the algorithm.
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Figure 28: Seismic observations so from Figure 25 transformed back to the original structure, ac-

cording to the realizations of the faulted horizon in Figure 26. The concept of this transformation

is illustrated in Figure 16.
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Figure 29: (a) Comparison of o�set at vertices and edges for the true faulted horizon and the

realizations in Figure 26. Di�erent symbols are used for the four realizations. (b) Histogram of
o�set values at edges that are misclassi�ed.
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Figure 30: Plots of the energy function U(ojh) in the likelihood function f(ojh), see Expression
(37), for the simulations from the posterior pdf. Di�erent symbols (2;3; Æ;5) are used to mark

accepted proposals in each run of the McMC algorithm.

9 Real Data

In this section the stochastic model for fault patterns and the McMC sampling algorithm
are applied to a dataset of real seismic observations. Only seismic data are included, since
no well observations are available. The location of the seismic survey is con�dential. An
E-W oriented vertical cross section through the three dimensional seismic cube is presented
in Figure 31a, where faults of approximately vertical dip directions are visible. Figure 31b
shows a horizontal cross section through the seismic cube. The dataset is considered by
geologists to be of good quality.

When the model and the McMC algorithm were �rst applied to large sections of this
dataset, problems were encountered and no satisfactory results were obtained. To be
able to investigate the nature of the problems and the limitations of the model and the
algorithm, smaller sections of the dataset are studied.

A section of size 8 � 8 � 20 is extracted from the data, see Figure 32, and is used in
the stochastic model. The location of the extracted data is indicated in Figure 31, and
the dataset is observed to contain at least one fault. Figure 33 shows realizations of the
horizon H and the corresponding pattern of fault traces, E, sampled from the posterior
pdf in Expression (34). The number of concentric bands of pixels in the hexagonal image
is 5. The parameter �v of the prior pdf f(vje) is chosen as �v = 0:0025, the potentials j
in the prior pdf f(e) are chosen equal to the potentials of example 3 in Table 3, and the
remaining variables are chosen as reported in Table 5. The number of iterations is 100 000,
using 5000 initial burn-in iterations in the McMC sampling from f(e).

All realizations in Figure 33 show a N-S striking fault, with rock on the east side of the
fault o�set downwards. The realizations reveal some uncertainty in the northern part of the
major fault trace and in the pattern of smaller fault traces east and west of the major fault.
Figure 34 shows the original structure of the cross section in Figure 32a, obtained based
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(a)

(b)
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Figure 31: (a) E-W oriented vertical cross section and (b) horizontal cross section through a

three dimensional seismic cube of size 151�226�100. The arrows mark the positions of the cross

sections. The white rectangles mark smaller sections which are extracted and further examined,
one of size 8� 8� 20 (solid lines) and one of size 20� 20� 20 (dashed lines).

(a) (b)

Figure 32: (a) E-W oriented vertical cross section and (b) horizontal cross section through a three

dimensional seismic cube of size 8� 8� 20. The location of the dataset is marked in Figure 31.
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Figure 33: Realizations of H and correspondingE, conditioned to a seismic cube of size 8�8�20.

Figure 34: The vertical cross section from Figure 32a after transformation back to the original

structure according to one of the realizations in Figure 33.

on one of the realizations of H in Figure 33. The vertically dipping fault in Figure 32a is
no longer detectable in Figure 34. The other realizations of H give similar results. Based
on the results in Figures 33 and 34, the model and the sampling algorithm are considered
to work properly when applied to a small section of seismic data.

The extracted dataset is enlarged horizontally, obtaining a dataset of size 20 � 20 � 20,
while the hexagonal image is expanded to 11 bands of pixels. The location of the dataset
is marked in Figure 31. Figure 35 shows two realizations of H and the corresponding E,
using the same model parameters as above and running 50 000 and 500 000 iterations of
the McMC algorithm. The time consumption of the latter run was 2-3 days. No common
fault traces are observed in the two realizations in Figure 35, and based on the knowledge
about the true fault pattern the results of neither run seem reliable. Repeated runs with
50 000 iterations gave similar results, with no common major features in the resulting fault
patterns. In general it can be concluded for this dataset that either the model assumptions
are not able to reect the reality, or that 500 000 iterations is not suÆcient to give a
satisfactory convergence of the McMC algorithm.

Other datasets of sizes ranging from 20� 20� 20 to 50� 50� 20 were extracted from the
seismic cube and used in the stochastic model, and also these gave disappointing results.
Most of the McMC runs resulted in horizontal, non-faulted realizations of H, although the
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Figure 35: Realizations of H and the corresponding E, conditioned to a seismic cube of size

20� 20� 20.

datasets were extracted from regions where faults are visible in the seismic data. Relatively
coarse grids of 5-7 bands of pixels were used for the hexagonal image.

The examples above show satisfactory results when only a small seismic cube is used
in the model, while problems arise when the dataset is enlarged. The main sources of
the problems encountered are believed to be restrictive model assumptions and the time
consumption of the sampling algorithm. The time consumption of each iteration of the
McMC algorithm depends on the grid sizes of both the hexagonal image and the seismic
cube, which determines the time required to sample from the prior and to evaluate the
likelihood. The model assumptions that are considered to be potential sources of diÆculties
are:

(i) Faults are vertical with constant o�set vertically.
(ii) Fault planes are in�nitely thin.
(iii) O�sets are small compared to the thickness of the formation.
(iv) All fault traces follow the edges of the hexagonal grid.
(v) Reection coeÆcients and seismic data follow Gaussian distributions.

The mean and variance of the seismic data of a faulted reservoir are obtained under the
assumption of vertical fault planes. If this model is applied to datasets with non-vertical
fault planes, the mean and variance will not be obtained correctly as the transformation
of rock due to faulting is not perfectly modeled. It is observed in Figure 31a that the
faults are only approximately vertical and the o�set seems to vary somewhat vertically,
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Figure 36: E-W oriented vertical cross section of size 20 (horizontally) � 40 extracted from the

cross section shown in Figure 31a. The cross section covers an enlarged area around the data in

Figure 32a.

thus assumption (i) is not completely ful�lled. However, within the extracted dataset
in Figure 32a the fault plane is vertical and the o�set is constant vertically. Figure 36
shows 20 � 40 seismic datapoints, where the cross section in Figure 32a is enlarged both
horizontally and vertically. From this cross section it is observed that the fault plane
does not appear as a vertical, well de�ned discontinuity, but rather as a dipping band
of deformations covering 5-6 observation points horizontally. Thus the �gure indicates
violations also of assumption (ii). Furthermore, the seismic data close to the fault seem to
be somewhat blurred, which may cause slight violations of assumption (v). The blurring
is related to the Fresnel zones of the seismic signal, see Sheri� and Geldart (1995). The
seismic signal is in practice not reected from a single point on a reector, but from a
larger area. Close to a fault plane the Fresnel zone will cover areas on both sides of the
fault, and the seismic signal from a speci�c reector is weakened.

Seismic datasets consisting of 20 datapoints vertically have been used in the examples
reported above, corresponding to a thickness of the formation of 40ms. This vertical
thickness enables modeling of faults with vertical o�sets up to approximately 20ms. In
the real dataset studied, o�set values range from about 4ms to beyond 60ms, thus with
seismic cubes of thickness 40ms assumption (iii) is not ful�lled by all faults. An example
of large o�set faults is given in Figure 37. To be able to model the largest fault o�sets,
seismic cubes of vertical thickness 120� 150ms, or 60-75 datapoints, should be used. This
magni�es the seismic cube by a factor 3-4 compared to the previous examples, increasing
the time required to evaluate the likelihood. Furthermore, the deviations from vertical
fault planes become more pronounced when thicker seismic cubes are used.

Figure 37: N-S oriented vertical cross section through the three dimensional seismic dataset

presented in Figure 31. The two largest faults have o�sets of 30� 50ms.
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(a) (b) (c)

Figure 38: Seismic datapoints (crosses), combined with hexagonal images of gradually �ner grids.

Assumption (iv) is obviously not ful�lled by the real dataset. The exibility in modeling
the positions of fault traces relative to the seismic observations depends on the resolution
of the hexagonal grid. This is illustrated in Figure 38. The coarse grid in Figure 38a results
in large blocks of seismic data inside each hexagonal pixel, with zero probability of any
fault traces dividing these seismic datapoints. Figures 38b and 38c show how �ner grids
can be used to improve the exibility in the modeling of fault traces. However, re�nement
of the hexagonal grid implies an enlargement of the sample space of (E;V ;P ), increasing
the number of McMC iterations required to span the sample space properly.

A small test is performed aiming at exposing problems related to assumption (v), by in-
vestigating the performance of the model and algorithm when assumptions (i){(iv) are
ful�lled. A seismic cube of size 30� 30� 20 with no visible faults is used. Two simulation
cases are performed, one with the original data and one with a fault pattern sampled from
the prior model arti�cially enforced on the dataset. A hexagonal grid with 5 concentric
bands of pixels is used. Simulations based on the original data gave approximately hor-
izontal realizations of H with no faults at seismic scales. When a N-S striking fault was
arti�cially enforced, see Figure 39a, all realizations from the posterior pdf reproduced the
fault, see Figure 39b. Based on these examples, no major problems with the Gaussian
assumption are apparent.

(a) (b)

Figure 39: (a) Fault trace arti�cially enforced on a seismic cube. (b) Realizations from the

posterior pdf.
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Based on the experience with the real data, it is clear that with the computer power cur-
rently available, the performance of the model and the McMC algorithm is of limited value
for large real datasets. Model assumptions (iii) and (iv) are related to the time consump-
tion of the McMC algorithm, and problems related to these assumptions could be improved
on by increased computer power or more eÆcient implementation, for example by the use
of parallel implementation to evaluate the likelihood function. Violations of assumptions
(i) and (ii) can be corrected for by rede�ning the model to increase exibility in the mod-
eling of the faults, while assumption (v) is not found to cause any major problems. A
possible application for large datasets could be to apply the model to a smaller section
within a gliding window. By moving the window across the larger dataset and modeling
the fault pattern within a number of smaller sections, the overall fault pattern could be
modeled. This could be done either by modeling the fault pattern within each section
independently or by including dependencies between the sections, for example modeled
through boundary conditions. An alternative approach to dealing with large datasets is to
apply a thinning of the seismic data in the horizontal direction. This could improve the
ful�llment of assumptions (i) and (ii), and would reduce the size of the seismic cube and
thus the time consumption of each McMC iteration. Furthermore, the thinning would have
a similar e�ect on assumption (iv) as the re�nement of the grid illustrated in Figure 38.
However, the thinning will reduce the seismic resolution horizontally, and can cause prob-
lems in distinguishing between fault discontinuities and continuous changes in elevation of
comparable magnitude.

10 Conclusion

The paper presents a stochastic model for patterns of faults above seismic resolution, con-
ditioned to three dimensional seismic data and well observations. Based on the typically
strong horizontal correlation found in reection coeÆcients, and also in seismic data aris-
ing from a linear convolution of the reection coeÆcients, faults can be recognized as
discontinuities in the data.

Due to the complexity of the model, McMC techniques are required to sample from the
posterior distribution of fault patterns. The performance of the model and the constructed
McMC algorithm is illustrated using a synthetic dataset. In this case the samples from the
posterior distribution successfully reproduce the main features of the underlying, known
fault pattern.

Problems are encountered when the model and the sampling algorithm are applied to a
real seismic dataset, and possible sources of diÆculties are discussed. Some of the model
assumptions are found not to be completely satis�ed. The exibility of the model is
inuenced by the resolution of the model, however re�nement of the grid is obtained on
the expense of the time consumption. Rede�nition of the model, increased computer
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power and more eÆcient implementation are suggested as improvements of the problems
with the model assumptions and resolution. Alternatively, the model and the algorithm
can be applied to smaller sections of the data, for example by the use of a gliding window
or by thinning of the seismic data.
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A Sampling Algorithms

A Metropolis-Hastings algorithm is used to sample from the posterior pdf f(hjo) of the
faulted horizon H conditioned to the observations O of the reservoir. Several alternative
transition steps are used, resulting in di�erent transition kernels. The algorithm is given
as follows:

Algorithm 1 | Sampling from f(hjo)

Let ne, nv and np be the number of edges E, vertices V and pixels P respectively, and let

ne
e , 
nv

v and 

np
p be the sample spaces of E, V and P . Furthermore, let

P3

i=1 �i = 1,
where 0 � �i � 1.

� Initiate arbitrary e(0) 2 
ne
e , v(0) 2 
nv

v and p(0) 2 

np
p ,

let h(0) = h(e(0); v(0);p(0)).

� Iterate t = 1; 2; : : :

{ Let e = e(t� 1), v = v(t� 1), p = p(t� 1) and h = h(t� 1).

{ Generate e0, v0 and p0 in one of the following ways:

(i) With probability �1: e0 � f(e0)
v0 � f(v0je0)
p0 � f(p0je0; v0)

hence q(h0jh) =f(e0)f(v0je0)f(p0je0; v0)

(ii) With probability �2: e0 = e

v0 � f(v0je)
p0 � f(p0je; v0)

hence q(h0jh) =f(v0je)f(p0je; v0)

(iii) With probability �3: e0 = e

v0 = v

p0 � f(p0je; v)

hence q(h0jh) =f(p0je; v)

{ h0 = h0(e0; v0;p0).

{ With acceptance probability �(h0jh)

�(h0jh) = min

�
1;

f(ojh0)

f(ojh)

�

let h(t) = h0, e(t) = e0, v(t) = v0 and p(t) = p0.
Otherwise let h(t) = h, e(t) = e, v(t) = v and p(t) = p.
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The variable H(t) has pdf f t(hjo) where limt!1 f t(hjo) = f(hjo).

Algorithm 1 includes steps where realizations are generated from the prior pdfs f(e),
f(vje) and f(pje; v). Exact samples can be drawn from the prior distributions of V and
P , while McMC techniques are used to generate samples from the prior distribution of E.
Algorithms 2{4 below describe how samples can be generated from the prior distributions.

The edges E are modeled as a Markov random �eld, see Section 3.2.1. A sample from the
prior pdf f(e) of the edges is generated using the following Metropolis-Hastings algorithm:

Algorithm 2 | Sampling from f(e)

Let ne be the number of edges in E and 
ne
e the sample space of E.

� Initiate arbitrary e(0) 2 
ne
e .

� Iterate t = 1; 2; : : :

{ e = e(t� 1).

{ For k = 1; 2; : : : ; ne

- i � Uniff1; : : : ; neg.

- e0i � Uniff
e n feigg, e
0
j = ej for j 6= i.

- Hence q(e0je) = n�1e (j
ej � 1)�1.

- With acceptance probability

�(e0je) = min

(
1; expf�

X
c2C;i2c

(!c(e
0
c)� !c(ec))g

)
;

let ei = e0i, otherwise retain ei.

{ e(t) = e.

The edge values E(t) has pdf f t(e) where limt!1 f t(e) = f(e).

When Algorithm 2 is used within Algorithm 1, burn-in iterations of Algorithm 2 is run
before Algorithm 1 is started. When a realization from f(e) is needed in update step
(i) of Algorithm 1, a limited number of iterations of Algorithm 2 is performed. These
iterations of Algorithm 2 are performed to reduce dependency between the samples from
f(e). Typically, 5{10 000 burn-in iterations of Algorithm 2 are run, while realizations from
f(e) used in Algorithm 1 are separated by 50 iterations of Algorithm 2.

The prior distribution of the vertices V , conditioned on the edges E, is a combination of
a stochastic o�set direction along each fault trace and a deterministic o�set pro�le given
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the o�set direction, see Section 3.2.2. A sample from the prior pdf f(vje) is generated by
exact drawing of the o�set directions and evaluation of the corresponding o�set pro�les.
The algorithm is given as follows:

Algorithm 3 | Sampling from f(vje)

Suppose
P

bj2Be
jbjj + jb0j = nv, where nv is the number of vertices in V , bj is the index

set of vertices along fault trace j and Be is a partitioning of edges in the realization e into
fault traces. The sample space of V is given as 
nv

v � R
nv .

� For i 2 b0

{ Vi = 0

� For b 2 Be

{ Db � f(db), where f(1) = �, f(�1) = 1� �.
{ n = length of fault trace b
{ i = number of isolated fault tips of b
{ V b = Dbgi;n

A sample of V from the prior pdf f(vje) is thus obtained. The vectors gi;n, i = 0; 1; 2, are
de�ned in Section 3.2.2. If there are several possible partitionings of e into fault traces,
the set Be is picked at random among the nb(e) possibilities. This is done by randomly
partitioning each intersection point into a fault tip and an intersected fault trace.

The pixels P are modeled as a multivariate Gaussian distribution conditioned on edges
E and vertices V , see Section 3.2.3. An exact sample from the prior distribution of the
pixels, conditioned on the edges and vertices, is generated in the following way:

Algorithm 4 | Sampling from f(pje; v)

Let np be the number of pixels in P . The prior pdf of pixels, conditioned on edges and
vertices, is f(pje; v) = �(p;�(e; v);�p), and the sample space of P is 


np
p � R

np .

� Find the matrix A using a Cholesky decomposition of �p: �p = AA0.

� For i = 1; 2; : : : ; np generate Yi � N(0; 1).

� Let y = (y1; y2; : : : ; ynp) and p = �(e; v) +Ay.

The pixel values p form a sample from the prior pdf f(pje; v). Inversion sampling is used
to sample from the standard Gaussian distribution N(0; 1), see Ripley (1987).
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