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SUMMARY

This paper demonstrate how Gaussian Markov random fields (conditional autoregressions)
can be fast sampled using numerical techniques for sparse matrices. The algorithm is gen-
eral, surprisingly efficient, and expands easily to various forms for conditional simulation and
evaluation of normalisation constants. I demonstrate its use in Markov chain Monte Carlo
algorithms for disease mapping, space varying regression model, spatial non-parametrics, hi-
erarchical space-time modelling and Bayesian imaging.
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1 INTRODUCTION

Gaussian Markov random fields (GMRF) or conditional autoregressions, are popular and com-
monly used (sub-)models within spatial statistics in a broad sense, see for example Cressie (1993),
Besag & Kooperberg (1995), Winkler (1995) the references therein, and Kiiveri & Campbell (1989),
Besag, York & Mollié (1991), Heikkinen & Arjas (1998), Wikle, Berliner & Cressie (1998) and
Assunção, Gamerman & Assunção (1999). GMRFs are convenient models both from a computa-
tion and theoretical point of view: they have a Markov-property and are jointly Gaussian. The
Markov property is also important for models relying on Markov chain Monte Carlo (MCMC)
based inference, as it will ensure rapid computation of the conditional densities.

Sampling from a GMRF is straight-forward in theory. A GMRF is multivariate Gaussian hence all
well-known general algorithms apply, see for example the review in Cressie (1993). Non of these
algorithms take particular advantage of the Markov property for the GMRF, and hence will be
slow and computational inconvenient for larger problems. For a GMRF with a circulant block-
Toeplitz covariance matrix, sampling is particular efficient using fast Fourier transforms (Wood
& Chan, 1994; Dietrich & Newsam, 1997). However, the Toeplitz assumption only applies to
the most simple problems. Recently, new algorithms have been constructed that make specific
use of the Markov property of the GMRF, by either running a special dynamic model with ar-
tificial observed data (Lavine, 1998), or by using the propagation algorithm of Lauritzen (1992)
with extensions by Dawid (1992). However, neither of these seems particular useful nor fast un-
less in simple cases, for example for a GMRF involving the four nearest neighbours on a lattice.
For more complicated and realistic neighbourhood patterns, the algorithm complexity increases
(very) rapidly both with respect to CPU and coding.

In this paper, it will be demonstrated how to use numerical techniques for sparse matrices to
construct an efficient way to sample from a general GMRF defined on a lattice or a graph. The al-
gorithm is simple, surprisingly efficient and expands easily to complicated neighbourhood struc-
tures and various forms for conditional simulation and evaluation of the likelihood.

In addition to traditional applications of GMRF in spatial statistics referenced above, there are
also new potential uses of GMRF. Rue & Tjelmeland (1999) study how to approximate a station-
ary Gaussian field to a GMRF (on a lattice) with somewhat surprising results: a Gaussian field
with a Gaussian correlation function with range 50 could be approximated with a GMRF using a
7 � 7 neighbourhood with a maximum error in the correlation function of about 0:01, and simi-
larly with other families for correlation functions. Thus, a local GMRF can in practice replace a
conventionally specified Gaussian field in applications, so the posterior analysis or other tasks
can make benefit of the new fast algorithms and analytical simplifications for GMRFs.

In spatial models using MCMC for inference, the new algorithms allow for block-sampling or
block-proposals depending on whether the full conditional is a GMRF or contains additional
non-quadratic terms. The full generality in the algorithms are important, as the conditioning
on the “rest” often results in a non-homogeneous GMRF. Block-sampling in MCMC algorithms
most often improves the properties of the MCMC algorithm. Previous examples in the literature
include dynamic models where the natural structure and dimension of the problems ease the
construction and implementation (Carter & Kohn, 1994; Shephard & Pitt, 1997), and expert sys-
tems (Jensen, Kong & Kjærulff, 1995). The experiments demonstrate large improvements when
the block-sampling is efficient. On the theoretical side, Roberts & Sahu (1997) study the conver-
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gence rate for (Gibbs) block-sampling a GMRF.

Rapid evaluation of the likelihood for GMRFs are important for estimating (hyper-)parameters
using either a likelihood or Bayesian approach. For example, Griffith & Sone (1995) investigate
numerical approximations formulas to the likelihood for which the neighbourhood structure was
build upon spatial neighbouring regions, and Kiiveri (1992) approximate numerically the integral
in Whittle’s approximation (in the stationary case). Our new algorithms can efficiently compute
the likelihood for large cases even in the general non-homogeneous case, which makes numer-
ical approximation (even for simpler cases) less important. Note that Rue & Tjelmeland (1999)
demonstrate that likelihood based inference for a GMRF seems to be quite sensitive for model
error.

The reminder of the paper is organised as follows. Section 2 presents the basic algorithm for sam-
pling from a GMRF. Section 3 discusses extensions including various forms for conditioning and
evaluation of the likelihood. Section 4 discuss blocking- and a divide and conquer-strategy to ap-
proach large graphs. In Section 5, I present some examples and demonstrate how the algorithms
can be used in disease mapping, space varying regression, spatial non-parametrics, hierarchical
space-time models and Bayesian imaging, improving the MCMC algorithm used for analysing
the model. Computational details are described in the Appendix.

2 THE ALGORITHM

This section defines a GMRF and describe the basic algorithm for producing samples from it.

Let G = (V ; E) be an undirected graph where V is the set of nodes (or vertices) and E is the set of
edges. For simplicity, we number the nodes from 1 to n = jVj. Define @i as the set of neighbours
to node i: the set of all nodes adjacent to node i in the graph. A zero mean GMRF x on G is
Gaussian with precision matrix Q, such that Qij is zero iff j 62 @i [ i. A GMRF is often specified
through the local characteristics

E(xi j x�i) = �
X
j2@i

Qij

Qii
xj ; and Var(xi j x�i) = Q�1

ii ;

which illustrate the Markov-property of a GMRF.

The fast sampling algorithm depend on the typical structure of the graph for GMRFs used in
spatial statistics. A common application in spatial statistics starts with Figure 1 showing the
map of Germany consisting of 544 regions. A common prior for a spatial model of regional data
(which is discussed further in Section 5.1 and Section 5.2), is an intrinsic GMRF x where for each
region i, @i is the set of all regions j adjacent to i (Besag & Kooperberg, 1995)

�(x j �) / �n=2 exp

0
@�1

2
�
X
i�j

(xi � xj)
2

1
A : (1)

The graph for the GMRF is then derived from the map. Figure 2a shows the non-zero pattern
in the corresponding precision matrix using the numbering of the regions as in the definition of
the map. (Recall that Qij = 0 iff i 6� j and i 6= j.) Figure 2b shows the same precision matrix
after a permutation of the nodes to minimise the bandwidth. I will comment later on how this is
done. The bandwidth for the precision matrix is defined as bw = maxi�j ji � jj. The permuted
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FIGURE 1: The map of Germany with 544 regions.
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permuted Q, bw=43

FIGURE 2: Figure (a) show the non-zero entries in the precision matrixQ for the GMRF using the
numbering of the regions as in the definition of the map. Figure (b) shows the same precision
matrix after a permutation of the nodes to minimise the bandwidth. Fast numerical algorithms
exists for band-matrices and these are the basis for our algorithms.
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precision matrix is a band-matrix (with a small bandwidth) and the basis for our algorithms.
Fast algorithms for most tasks exists for band-matrices and their efficiency depends on bw. Note
that the permutation of the nodes reduce bw from 522 to 43, which allows for a potentially large
speedup.

The situation is similar for lattices where the neighbours @i is the set of sites closest to i using
some norm. Assume for simplicity that @i is the (2m + 1) � (2m + 1) square centred at i and
that the lattice has dimension n with n1 rows and n2 columns, where n1 � n2. In this case the
precision matrix using row-wise ordering, is also a band-matrix with bandwidth bw = m(n1+1).
In this case there is no need to permute the nodes, as the solution is obvious.

The banded precision matrix for the GMRF (after permutation) is the basis for our sampling al-
gorithm. There are no additional assumptions of the coefficients in the precision matrix. The
algorithm goes as follows: First note that computing the Cholesky factorisation of the band ma-
trix Q with bandwidth bw

Q = LLT (2)

is a standard problem in numerics. By Theorem 4.3.1 in Golub & van Loan (1996), L has lower
bandwidth bw (and is zero above the diagonal) and is efficiently computed using only nb2w flops,
see Golub & van Loan (1996, Sec. 4.3.5) for details and algorithm. L require nbwU bytes of storage
where U is the number of bytes needed to store one float. In the next step let z be a vector of
independent standard Gaussians, and note by direct calculation that x defined by the solution of

LTx = z (3)

has mean zero and precision matrix Q. Again, solving (3) efficiently is a standard problem in
numerics and the solution can be computed in 2nbw flops using band back-substitution, see again
Golub & van Loan (1996, Sec. 4.3.2) for details and algorithm. How to permute the nodes to
minimise the bandwidth is also a classic numerical problem, for which there exists clever and
fast algorithms. Algorithmic details are described in the Appendix.

Some additional notes to the algorithm are as follows.

REPEATED SAMPLES Sampling more than one sample from the same GMRF is especially efficient.
The band Cholesky factorisation in (2) is computed only once and then (3) is solved for each
sample.

COMPUTATIONAL COST Assume for simplicity a n1�n2, n1 � n2, lattice with a (2m+1)�(2m+1)

neighbourhood. Computing the band Cholesky decomposition (2) costs n2n31m2 flops, and
solving (3) costs 2n2n21m flops. Note that the cost is linear in the largest dimension n2, and
cubic/quadratic in the smallest dimension n1. Hence, it is far more efficient to sample from
rectangular compared to square lattices. A similar comment is also valid for graphs.

A COUNTEREXAMPLE It is not hard to construct a graph for which the bandwidth equals the
dimension of the problem, bw = n � 1 for all permutations: let every node have all other
nodes as neighbours. In this cases, there is little to gain computationally. In spatial applica-
tions the bandwidth is most often small compared to the problem size bw = o(n), and often
bw = O(pn).
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3 CONDITIONING AND LIKELIHOOD

I will now discuss generalisations of the simulation algorithm to conditional simulation and eval-
uation of the log-likelihood.

3.1 CONDITIONAL SIMULATION

This section discuss three common forms of conditional sampling for a GMRF, i) conditioning on
an observed subset of x, ii) conditioning on “the rest” as is common in MCMC algorithms, and
iii) conditioning on some linear combinations of x.

3.1.1 SAMPLING FROM x1jx2

Assume we want to sample a subset of a zero mean GMRF x conditioned on the rest. Split x into
x1 (unobserved) and x2 (observed) where x = (xT1 ;x

T
2 )

T , and divide Q similarly,

Q =

�
Q11 Q12

Q21 Q22

�
:

The task is to sample from x1jx2. This conditional density is Gaussian with mean �1j2 given
by Q11�1j2 = �Q12x2 and precision Q1j2 = Q11. These nice and simple expressions for the
conditional densities are one of the great advantages using GMRFs. The proof is simply to use
the block equations derived from QQ�1 = I and the standard results about conditional mean
and variance. Conditioning on observed values are particularly easy for GMRF, since the condi-
tional precision matrix is explicitly known as the precision matrix for the graph after removing all
observed nodes. Note further thatQ11 cannot have larger bandwidth thanQ, so it is still a band-
matrix (after permutation) and the algorithm in Section 2 can be used. The only difference is the
need to compute �1j2 by solving Q11�1j2 = b, where the right hand side is easily computable
b = �Q12x2. �1j2 can be obtained from the band-Cholesky decomposition of Q11 = LLT ,
by solving efficiently by forward (band) substitution Lu = b and a back (band) substitution
LT�1j2 = u. To obtain a sample, one only needs to add the solution of LTy = z (where z is a
vector of independent standard Gaussians) to the conditional mean, x1j2 = �1j2 + y. The com-
putational cost for a conditioned sample is then n1b

2
w1 + 2 � 2n1bw1 flops, where n1 = dim(x1)

and bw1 is the bandwidth of the permuted Q11 matrix. Repeated samples cost 2n1bw1 flops.

Note that the case x1jx2 also covers the case when some observations are observed exact and
others with Gaussian errors. This is because the conditional density for x conditioned on the
noisy observations is again a GMRF with precision matrix Q+Qobs, where Qobs is the precision
matrix for the observations. A common situation is to observe (conditional independent) yijx
with mean xi and precision �i for i 2 I � V , then Qobs

ii = �i; i 2 I and zero otherwise. After
computing the conditional mean, one can condition on the exact observations as in the previous
paragraph.
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3.1.2 SAMPLING FROM �(x) / exp(� 1
2
xTQx+ bTx)

A typical form of the conditional density when deriving full conditionals for GMRF in MCMC
algorithms (examples are shown in Section 5), is

�(x j rest) / exp

�
�1

2
xTQx+ bTx

�
: (4)

Note that Q is the precision matrix and the mean is implicitly given as Q�1b, similar to the
case in Section 3.1.1. To sample from (4) I therefore compute the band Cholesky decomposition
Q = LLT and solve the following systems: Lv = b, LT� = v, LTy = z, and then add up to
obtain the sample x = �+ y.

3.1.3 SAMPLING FROM xjAx = b

A more general problem is to sample x conditioned on Ax = b (or with Gaussian noise added)
where A is a k � n matrix with rank k. A conditional sample can be obtained using that

x�Q�1AT
�
AQ�1AT

��1
(Ax� b) ; (5)

where x is an unconditional sample, has the correct conditional density. Eq. (5) is commonly
refered to as conditioning using Kriging (Cressie, 1993, Sec. 3.6.2). In (5) one needs to compute
V = Q�1AT , which requires solving QV i = (AT )i for each of the k columns. Since the band
Cholesky decomposition is already available as Q = LLT , I solve QV i = (AT )i by a forward
substitution Lu = (AT )i and a back-substitution LTV i = u. I compute W = V (AV )�1 only
once, and for each sample one then need to compute Ax� b, pre-multiply with �W and add x.

3.2 EVALUATION OF THE LIKELIHOOD

It is important to compute the likelihood for a sample x from a zero mean GMRF. The band-
Cholesky factorisation of the (permuted) precision matrix, allows for fast evaluation of the likeli-
hood, as jQj1=2 equals

Q
i Lii. Hence, the log-likelihood l(x) is

l(x) = �n

2
log 2� +

X
i

log(Lii)� 1

2
xTQx: (6)

If x is simulated by solving LTx = z, then xTQx equals zT z, hence l(x) can be evaluated with
no extra costs. The computation of the log-likelihood for the conditional sample in Section 3.1.1
and Section 3.1.2 is similar.

For a sample from xjAx = b as in Section 3.1.3, I have no fast way to evaluate the likelihood.
However, in application using MCMC for doing inference for x, one only needs the ratio of the
likelihood evaluated at two samples x and x0. The identity

l(x0 j Ax0 = b)� l(x j Ax = b) = l(x0)� l(x)

can then be used, see Rue & Husby (1998) for application and proof.
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4 SAMPLING A GMRF ON A LARGE GRAPH

For a GMRF on a really large graph it will still be inconvenient to sample or evaluate the like-
lihood. This is both due to the CPU required and the amount of memory needed to store the
band-Cholesky factorisation, although they are much related. To give an idea of how large a
“large graph” is, my Sun Ultra 2 computer, can at the time of writing handle lattice-cases up to
size 256� 256 with a 5� 5 neighbourhood. Beyond that, the performance drops due to memory-
problems.

I will discuss two strategies to sample a GMRF on a large graph. The first approach reduce the
computational burden using blocking-strategies, like a Gibbs sampler for sampling, and pseudo-
likelihood as an approximation to the likelihood. The second approach reduce the memory-
requirement (mainly) by using a divide and conquer strategy to divide the problem into simpler
ones using iterative linear solvers for large linear systems. Both strategies can of course be com-
bined.

4.1 BLOCKING-STRATEGIES

To sample a GMRF on a large graph can be approached similarly as MCMC is used to sample
complicated non-Gaussian densities. It is easy to construct a (Gibbs) block-sampler for a GMRF,
by dividing the graph into subgraphs fGig and sample successively from �(xGi

j x�Gi
) using

the algorithm in Section 3.1. The subgraphs do not need to be disjoint, however, [iGi = G. To
illustrate the computational savings using this strategy, consider a n1�n1 lattice with a (2m+1)�
(2m + 1) neighbourhood. Assuming disjoint subgraphs, where each Gi is a n1=k � n1=k lattice,
the relative computational burden is 1=k2 for computing all the band-Cholesky factorisations,
and 1=k doing repeated sampling.

The pseudo-likelihood approach use PL(x) =
Q

i �(xi j x�i) as an approximation to the likeli-
hood. It seems more sensible to use a block-version of the pseudo-likelihood: partition the graph
into disjoint subgraphs and combine the conditional likelihoods in each subgraph into

PLBlock(x) =
Y
i

�(xGi
j x�Gi

):

PLBlock(x) can easily be obtained by using the algorithm in Section 3.1 to compute the condi-
tional densities, and then use (6) to evaluate each (conditional) likelihood.

The intuitive way to partition a graph, is to divided it into subgraphs with few links inbetween
them. In this way the dependency is large within each subgraph and less inbetween the sub-
graphs. How sensitive the performance is to the blocking structure is unknown, but Roberts &
Sahu (1997) gives the convergence rate for block Gibbs-sampling a GMRF which can be computed
and compared for small problems.

Note that computing the permutation of the nodes is still feasible even for large graphs, and
suggest implicitly ways to divide the graph into subgraphs. (Think of the permuted precision
matrix as the precision matrix for an (one-dimensional) autoregressive process of order bw.) As an
example, consider the GMRF defined on the graph induced by the map of Germany in Figure 1,
leading to the precision matrix in Figure 2. Assume we want to divide the graph into 4 subgraphs.
We can do this in an automatic manner by using the permuted set of nodes: the first subgraph
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consists of those nodes where the permuted node are in 1; : : : ; n=4, and so on. This (automatic)
procedure will then produce subgraphs by dividing (near perfectly) the map into four connected
and homogeneous regions.

4.2 USING A DIVIDE AND CONQUER STRATEGY

For large graphs, the memory requirements for the band-Cholesky factorisation is nbw and often
O(n3=2). The reason is that the sampling algorithm in Section 2 needs a splitting of the precision
matrixQ = LLT . Iterative solvers for large, sparse and positive definite linear systems, can solve
Qx = b using only O(n) memory. I will show how we can construct a sampling algorithm based
on a divide and conquer strategy (using the Markov property), that mainly based on iterative
solving systems like Qx = b. This strategy can be used for dividing large graphs into smaller
ones such that the algorithm in Section 2 applies for each subgraph.

4.2.1 SOLVING LARGE, SPARSE AND POSITIVE DEFINITE LINEAR SYSTEMS

The sampling algorithm in Section 2 and Section 3 use the band-Cholesky factorisationQ = LLT

to sample and solve equations like Qx = b. The divide and conquer strategy, derives a sampling
algorithm that are based on solving equations like Qx = b for a large but sparse positive definite
Q. We can solve such equations using iterative techniques which needs only O(n) memory.
Again, this is a standard-problem in numerics, see for example Golub & van Loan (1996), Saad
(1996), van de Velde (1994), and good public code like for example Oppe, Joubert & Kincaid
(1988) exists. The basic method is an iterative conjugate gradient algorithm that search for the
minimum of 1

2
xTQx� bTx in direction orthogonal in Q-norm to all previous search directions.

Note that the solution of the minimalisation problem is the solution of Qx = b. Only matrix-
vector products likeQv needs to be computed. Additionally, the system is (linearly) transformed
to improve the conditioning of Q and hence the convergence rate.

4.2.2 THE DIVIDE AND CONQUER IDEA

The divide and conquer idea is best illustrated when the graph is a lattice, and we assume for the
moment a zero mean GMRF defined on a n1 � n1 lattice with a 3 � 3 neighbourhood. Assume
also that n1 is odd, n1 = 2c + 1. Generalisations to general graphs are imidiate after the idea is
clear.

Let xc denote the c’th column. Define xA = (xT1 ; : : : ;x
T
c�1)

T and xB = (xTc+1; : : : ;x
T
n1)

T , so that
x = (xTA;x

T
c ;x

T
B)

T . We split Q similarly

Q =

2
4QAA QAc 0

QcA Qcc QcB

0 QBc Qcc

3
5 :

Note that QAB is zero since xc is a separating subset for xA and xB . Assume for a moment
that we can simulate xs from its marginal density �(xs). (We will later show how to compute
�(xs).) A sample from the joint density �(x) is then completed by sampling xAjxc and xB jxc
from their from the conditional densities. Similar to Section 3.1.1, the conditional precision matrix
and mean for xAjxc is QAjc = QAA and �Ajc = Q�1

AAQAcxc, and similar with xBjc. Note that
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both QAjc and QBjc have similar nice band structure as Q, so we can solve the equations for
the conditional means using the iterative methods described in Section 4.2.1. Hence, we have
divided our problem into two separate smaller ones of the same type as the original one.

The remaining task is to compute the marginal density for xc. Since only the precision matrix Q
is available, we need to compute the covariance matrix�cc for xc. Starting with Q� = I , we can
write out the equations for block-column c in �

Q

2
6666664

�1c

...
�cc

...
�n1c

3
7777775
=

2
6666664

0

...
I
...
0

3
7777775
: (7)

The right hand side is zero except for a n1 � n1 identity matrix I . Note that (7) defines n1 linear
systems, each with coefficient matrix Q, hence is solved using iterative techniques as described
in Section 4.2.1. From the kth solution we can extract column k of �cc. We simulate xc using
the classic procedure by computing the Cholesky decomposition �cc = LLT , and then compute
xc = Lz, where z is a n1 � 1 vector of iid standard Gaussian variates.

4.2.3 SUMMARY

The divide and conquer step in Section 4.2.2 demonstrate how we can split a problem into two (or
more in general) smaller ones of the same type, if we know the marginal density of the separating
subset. We solve the linear systems using iterative methods (which has no memory requirement)
as described in Section 4.2.1. After the divide and conquer step is performed, we continue to
apply the divide and conquer step on each subproblem that is “to large”, otherwise we switch to
the basic algorithm in Section 2.

The generalisation from a lattice to a general graph is immediate. The only problem is how to
automaticly extract a (minimal) separating subset which divide the problem into smaller ones
of approximate same size. As in Section 4.1, the computed permutation of the nodes are again
useful. Those nodes which has a permuted node in the interval n=2� bw=2 to n=2 + bw=2 (with
obvious integer corrections) will be a separating subset. It might not be strictly minimal, but
quite close. Anyway, we can easily correct for this if needed.

5 APPLICATIONS

In this section I will demonstrate how the algorithm can be used to improve MCMC algorithms
for analysing models within disease mapping (Section 5.1) and space varying regression (Sec-
tion 5.2), and then discuss applications in Bayesian spatial non-parametrics, Hierarchical Bayesian
space-time models, Bayesian imaging and parameter estimation.

5.1 DISEASE MAPPING

The spatial mapping of risk for a particular disease, based on observed incidence/mortality in
counties or other administrative zones, is of importance for formulation and validation of aeti-
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ological hypotheses (Besag et al., 1991; Mollié, 1996). The basic model (Besag et al., 1991) is as
follows. Suppose the area of interest is divided into n regions, as shown in Figure 1. Let y1; : : : ; yn
be the number of deaths from the disease of interest during the study period. The common as-
sumption is that yi is Poisson distributed with mean eiri where e = (e1; : : : ; en)

T are known
constant accounting for number of inhabitants etc. The relative risks r are assumed to be de-
composed as log ri = ui + vi, where v are independent Gaussian zero mean random effects with
unknown precision �, and u is an improper GMRF with density as in (1) where � in unknown.

A single-site MCMC algorithm for this model is easy to construct (Besag et al., 1991; Mollié, 1996).
Using Gamma priors for � and �, the corresponding full conditionals are still Gamma and hence
easy to sample from. For v, one can use a component-wise random walk Metropolis step. The
full conditional for the remaining term u is

�(u j rest) / exp

0
@�1

2
�
X
i�j

(ui � uj)
2 +

X
i

(uiyi � ei exp(ui + vi))

1
A : (8)

A natural choice is to use single-site update for ui, using adaptive rejection sampling algorithm
(Gilks, 1996) since �(ui j rest) / �(u j rest) is log-concave. Armed with the new algorithms for
GMRFs, we can easily construct efficient block-sampling of u. Since the full conditional for u
is not a GMRF due to the exponential term exp(ui), we approximate the exponential term in a
neighbourhood around ui as

exp(u0i) � Ai +Biu
0
i +

1

2
Ciu

0
i
2 (9)

where the coefficients depends on ui. Hence, we can use the following (non-homogeneous)
GMRF as the proposal density going from u to u0

q(u! u0 j rest) / exp

0
@�1

2
�
X
i�j

(u0i � u0j)
2 +

X
i

�
u0iyi � ei exp(vi)(Biu

0
i +

1

2
Ciu

0
i
2
)

�1A

which is of the form of (4) with

Qij =

� P
k�i �+ ei exp(vi)Ci; i = j

��; i � j

and bi = yi � ei exp(vi)Bi. The block-proposal for u is then accepted with probability minf1; Rg,
where

R =
�(u0 j rest)
�(u j rest)

q(u0 ! u j rest)
q(u! u0 j rest)

: (10)

Note that R measures ratios of accuracy of approximations, hence will not depend heavily on n,
a fact also noted by Shephard & Pitt (1997).

Let us return to the quadratic approximation (9) to the exponential. A natural (and common)
choice is to use a Taylor expansion around ui. Studying (10), it seems more important to provide
an “overall” good fit to the full conditional for u in the region where u0 is expected to be located,
rather than a precise fit around u. Hence, I will use the approximation found by

(Ai; Bi; Ci) = argmin

Z ui+�

ui��

�
exp(u0i)�

�
Ai +Biu

0
i +

1

2
Ciu

0
i
2

��2
du0i
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� 0.1 0.2 0.25 0.3 0.35 0.4
Accept-rate (%) 18.9 22.8 28.2 28.4 26.6 23.2
Step-length 7.7 7.3 7.8 7.6 7.4 7.5

TABLE 1: The average accept-rate and the average step-length (for accepted proposals) for the
block-update of the u in the disease mapping example.

where � is a crude guess of the posterior range of ui.

To study the (computational) performance of the GMRF part of the MCMC algorithm, I ran the
model on some oral cavity cancer mortality for males in Germany (1986–1990) analysed by Knorr-
Held & Raßer (2000). The map is shown in Figure 1, and the neighbours to each region i are all
other regions j adjacent to i. This graph has n = 544 nodes with average 5:2, minimum 1 and
maximum 11 neighbours. The sampling of the GMRF specified by (4) took about 0:008 seconds
on a Sun Ultra 2 Model 1296 with a 296 MHz SUNW UltraSPARC-II processor. This is quite fast
even though this is a small graph. The costs of the block-update of u is then about 2 � 0:008

seconds.

Table 1 shows the average accept-rate and step-length for acceptedu-proposals inQ-norm (where
Q is the prior precision matrix for u) for varying values of �. The tabulated values have to be
compared with the accept-rate of 16:3% and step-length 7:6 using the Taylor expansion. As the
results shows, the performance of the block-update for u is quite robust for changes in �, and
a reasonable � improves the accept-rate compared to using Taylor expansion, keeping the step-
length approximately constant. Note that the average acceptance rate will tend to increase with
increasing �, and also the efficieny (and need) of block-updating u compared to single-site up-
dating of u.

5.2 SPACE VARYING REGRESSION MODEL

Assunção et al. (1999) study regional factor productivities and the degree of factor substitution in
the Brazilan agriculture. The model is a spatial linear regression model with (smooth) spatially
varying regression coeficients. MCMC is used for the inference. I will demonstrate that the new
algorithm can efficiently provide a sample from the full conditional for the regression coeficients,
instead of using a single-site update. The graph is more complicated than in Section 5.1.

Brazil is divided into 558 regions similar to Germany in Figure 1. Each region has a standard
regression model yi = cTi �i+�i with region specific covariates ci, coeficients �i, and iid Gaussian
noise with variance �2. The dimension of �i is 5. Assunção et al. (1999) assume a smooth GMRF
prior for the �i’s such that �i and �j are similar in ��1 norm if i � j. Region i has all adjacent
regions as neighbours. The full conditional of � = (�1; : : : ;�n)

T is then

�(� j rest) / exp

0
@�1

2

X
i�j

wij(�i � �j)T��1(�i � �j)�
1

2

X
i

(yi � cTi �i)2=�2
1
A ; (11)

with known weights wij . Note that (11) defines a non-homogeneous GMRF on a quite compli-
cated graph: if region i has mi neighbours, then �ij has 4+5mi neighbours. This defines a graph
with 2790 nodes with average 31:7, minimum 4 and maximum 74 neighbours. We can write (11)
in the form of (4), with the i + 5j’th element of x equal to regression coefficient j in region i,
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which I denote as xij for short. The expressions for Q and b in (4) are obtained from (11) as

Qij;i0j0 =

�
(��1)jj0

P
k�i wik + ��2cijci0j0 i = i0

�(��1)jj0wii0 i � i0
(12)

and bij = ��2yixij . To obtain one sample from (11) on the same platform as in Section 5.1, takes
not more than 0:6 seconds. Appendix B discuss computational details for this example.

5.3 OTHER APPLICATIONS

BAYESIAN NON-PARAMETRICS Heikkinen & Arjas (1998) propose a model for non-parametric
Bayesian estimation of a spatial Poisson intensity. The hierarchal prior model generate a real-
isation as follows: first a point pattern is generated from a Poisson process, then the Voronoi
tessellation and the corresponding Delaunay graph are constructed (tile j 6= i is a neighbour to
tile i iff they share a common edge), finally a GMRF x is added with constant values at each tile.
Additionally, there are unknown parameters. I will now outline how their MCMC-algorithm can
be easily improved using the new algorithms.

First I consider the full conditional for the GMRF, which is of the same form as (8),

�(x j rest) / exp

�
�1

2
xTQx+ bTx+ cT (exp(x1); : : : ; exp(xn))

�
(13)

for some Q depending on the Delaunay graph (and “the rest”), and vectors b and c depending
on “the rest”. Hence the same procedure as in Section 5.1 can be used to construct a block-update
step of the x conditioned on the rest. (Heikkinen & Arjas (1998) use single-site updates.) Further,
when a hyperparameter or a change in the Delaunay-graph is proposed in the MCMC algorithm,
the acceptance probability contains the ratio of normalisation constants including terms like jQj.
A rapid evaluation of this determinant is important and is easily done using the result in Sec-
tion 3.2. Hence, the local approximation of this ratio used in Heikkinen & Arjas (1998) can be
replaced with the exact ratio. Finally, for very large graphs (order of 10 000s of tiles and above),
the strategies described in Section 4 can be used, both with respect to sampling the GMRF and
computing/approximating the ratio of normalisation constants.

HIERARCHAL BAYESIAN SPACE-TIME MODEL Wikle et al. (1998) propose a Hierarchal Bayesian
space-time model to achieve flexibility and methods for the analysis of environmental data dis-
tributed in space and time. The model consists of several stages: measurement process, large- and
small-scale features, spatial structures and dynamics, priors on parameters, and hyperparame-
ters. The processes are defined on a lattice or grid in space-time, with extensive use of GMRFs
and linear relations. The model in analysed using MCMC. The proposed model is quite compli-
cated and I will not go into (all) the details. However, the Appendix in Wikle et al. (1998) give all
the full conditional densities in their model and half of them is a GMRF on a lattice. Hence, our
new algorithms will be useful doing MCMC from the proposed model.

BAYESIAN IMAGING There are several application within imaging. One example is the high-
level Bayesian model of Qian, Titterington & Chapman (1996). The task is to locate a near circular
object in an electron microscopy image. The object of interest is represented by a deformable
template model with one (GMRF) texture within the object, and another outside the object. Two

13



texture-fields are defined on the hole image, but only observed inside and outside, respectively,
of the object. The algorithm for sampling conditional GMRFs, can then be used to sample each
of the two texture-fields (on the hole image), hence one can construct a MCMC algorithm for
exploring the posterior. Qian et al. (1996) avoids this problem by not sampling from the posterior,
but rather use a site-wise optimisation algorithm to locate a local mode in the posterior. Another
example is the hierarchal Bayesian model of Aykroyd (1998), where a prior on the coefficients
in the precision matrix for the GMRF mode for the pixels, is modelled as a GMRF. Efficient
block-sampling in the MCMC algorithm is again possible.

PARAMETER ESTIMATION The rapid evaluation of the likelihood makes maximum-likelihood
estimation of parameters in a GMRF possible without having to compute an approximation for
the likelihood as for example in Griffith & Sone (1995) and Kiiveri (1992).
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A COMPUTATIONAL AND ALGORITHMIC DETAILS

The basic algorithm goes in three steps.

1. Permute the indices in Q using a permutation matrix P such that Qperm = PQP T , has
small bandwidth bw.

2. Compute the band-Cholesky factorisation Qperm = LTL.

3. Solve (using band-solvers) LTxperm = z where the zi’s are independent standard Gaus-
sians, and apply the inverse permutation x = P Txperm. Then, x is a sample from the zero
mean GMRF.

Although these steps are rather basic for a numerical trained researcher, I will describe shortly
each step for the statistical oriented reader, before reporting some timing results.

STEP 1. The problem of how to permute the indices in a sparse matrix to obtain a small band-
width, is a standard problem in numerics, see for example George & Liu (1981) and Saad (1996)
for an overview. Common algorithms are based on level-sets: a level set is defined recursively
as the set of all unmarked neighbours of all the nodes of a previous level set. Starting from
a clever chosen initial node in the graph, the level sets are constructed and traversed by in-
creasing number of degree. The order by which the nodes are traversed in this algorithm de-
termines the permutation of the indices. As always, further improvements exist which I do not
discuss. Anyway, good, efficient and free implementations of such algorithms exists. I have used
the algorithm as described by Lewis (1982) and the public-domain implementation available as
http://www.netlib.org/toms/582 .

STEP 2. Computing the band-Cholesky factorisation is a standard problem in numerics. The
knowledge that L in Qperm = LTL is a lower triangular matrix with (lower-)bandwidth bw,
simply says that we do not need to compute all the zeros as in a full Cholesky factorisation.
Hence, great computational savings are obtained. High-quality routines for computing the band-
Cholesky factorisation are available in the public-domain Lapack -library written in Fortran (An-
derson et al. 1995), which can be down-loaded from http://www.netlib.org . The appropriate
routines are dpbtf2 (level 2) or dpbtrf (level 3).

STEP 3. To solveLTxperm = z I make use of the band-linear solver dtbsv in the Lapack -library
refered to in Step 2. Again, the band-version offers computational savings due to the excessive
amount of known zeros, compared to a full back-substitution.

SOME TIMING RESULTS I will now present some timing results for a 100� 100 lattice with vary-
ing neighbourhood when the implementation of the algorithm is run on a Sun Ultra 2 Model 1296
with a 296 MHz SUNW UltraSPARC-II processor. For a 200 � 100 lattice, say, the CPU will be
doubled as the computational cost is linear in the largest dimension. With a 3�3 neighbourhood
the algorithm used 0:92 seconds for the first sample and then produced iid samples using 0:07

seconds each. When I increased the neighbourhood to 5 � 5, the algorithm used 2:80 and 0:11

seconds, and for a 7� 7 neighbourhood 6:00 and 0:15 seconds.
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OTHER ALTERNATIVES A more state of the art package for computing bandwidth reducing
permutations, is METIS (http://www-users.cs.umn.edu/˜karypis/metis/ ). (For the graphs I
have considered in this report, the performance is comparable.) There are other alternatives to
computing the band-Cholesky factorisation (but stillQ = V V T for some lower sparse triangular
matrix V ) as the best permutation (in terms of number of non-zeros in V ) of the nodes do not re-
sult in narrow bandwidth; the non-zeros may lie well off the diagonal. This is especially a benefit
for large graphs, and there exists several packages for this purpose, like PSPASES (http://www-

users.cs.umn.edu/˜mjoshi/pspases/ )and SUPERLU (http://www.nersc.gov/˜xiaoye/SuperLU/ ).
There are also versions of these packages for shared memory and distributed memory parallel
machines, which immediate gives a parallel implementation of the sampling algorithm (with
high performance).

B THE GMRFS I M-LIBRARY

GMRFsimis a library written in the C-language, with an implementation of the algorithm for sam-
pling from a GMRF with extensions to various forms for conditional sampling, evaluations of
the likelihood, and doing a MCMC block-sampling from (13). GMRFsimcan handle both general
graphs and lattices. The library is available at the URL http://www.math.ntnu.no/˜hrue/GMRFsim .

To give an idea how easy it is to make use of the library, let us study the C-code needed (in
condensed form) to sample from (11).

double �compute b vector() f
for(region=0;region<n regions;region++)

for(indx=0;indx<5;indx++)
b[indx+region�5] = data precision � data y[region] � data x[region][indx];

return b;
g
double Q function beta(int node, int nnode) f

region = node=5; indx = node � 5�region;
rregion = nnode=5; iindx = nnode � 5�rregion;
if (region == rregion)

Qvalue = sigma inverse[indx][iindx] � accumulated weight[region]
+ data precision � data x[region][indx] � data x[region][iindx];

else
Qvalue = � sigma inverse[indx][iindx] � weight[region][rregion];

return Qvalue;
g
double �sample beta() f

if (!graph) graph = gmrf g read graph from file("brasil.graph" );
cmean = compute b vector();
bchol = gmrf g Q solve(cmean, NULL, graph, Q function beta);
gmrf g sim(beta, cmean, bchol, NULL, graph, Q function beta);
return beta;

g

Some comments to the code are needed. The function compute b vector return b as bij =

��2yixij as defined in Section 5.2, while Q function beta return element Qij;i0j0 defined in
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(12). The arguments of Q function beta are either neighbours in the graph or equal. Since our
internal numbering is region 2 f0; : : : ; 557g and index 2 f0; : : : ; 4g within each region, I need
to compute these numbers from the node-numbers f0; : : : ; 2789g in the graph.

The main function sample beta proceed in the following manner. The first time sample beta

is called, the graph for the problem is read from the file brasil.graph . The file consists of lines
in the following format

2790
0 14 5 6 7 8 9 10 11 12 13 14 1 2 3 4
[and so on]

The first number is the number of nodes in the graph, which are numbered as 0; : : : ; n � 1. The
second line says that node 0 has 14 neighbours, which are node 5; 6; 7; 8; 9; 10; 11 and so on. The
remaining lines in the file are similar.

After compute b vector has computed the b-vector, I call GMRFsim-function gmrf g Q solve

to compute the conditional mean. gmrf g Q solve solves Qx = b. The input to this function
is b which is over-written by the solution x. The function itself returns the band-Cholesky fac-
torisation bchol of Q, where the non-zero structure of Q is defined in graph and values by
the function Q function beta . After computing the conditional mean cmean, I use the GMRF-

sim -function gmrf g sim to sample from the GMRF. The band-Cholesky factorisation bchol is
known, so this step is fast. Hence, the returned beta contains a sample from (11).
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