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Abstract

The transverse hadronic energy ow has been measured in DIS events detected

in the 1993 and 1994 running periods at ZEUS on the HERA ring. The ow

has been measured in Q2 and y bins throughout the kinematic range available at

HERA for di�ractive and non-di�ractive events. The ow measurement has been

made using the ZEUS calorimeter with special attention paid to the very forward

region of the component: this is the region which maps to the �p central region at

low x and low Q2, the region where an energy ow measurement is considered to be

an unambiguous signal for the presence of BFKL dynamics.

In the measurement of these ows, a geometric unfolding procedure rather than

a bin-to-bin correction has been developed. Various sources of experimental system-

atic error are discussed and their e�ects estimated. The level of transverse energy

ow is found to be generally well described by the colour dipole model but not by

the matrix element parton shower simulation. The shape of the transverse energy

ow in the current jet region at low x and low Q2 is not well described by any model

used.

An unambiguous signal for BFKL dynamics has not been found in this analysis

mainly as a result of uncertainties in parton fragmentation.
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Chapter 1

HERA and the ZEUS Detector

1.1 Introduction

In 1991 HERA, the world's �rst electron-proton collider, was commissioned. The

�rst ep interactions were observed by two detectors, ZEUS and H1, in May 1992.

For a longer beam lifetime, electrons were replaced by positrons for most of the

running period of 1994.

The analyses presented in this thesis have come from data collected by the ZEUS

detector in the 1993 and 1994 running periods.

1.2 HERA

The construction of the Hadron Elektron Ring Anlage (HERA) began in April 1984

with work done by members of an international collaboration.

The site chosen was close to the Deutsches Elektronen Synchrotron (DESY)

laboratory in Hamburg, Germany. By August 1987 the 6.34km beam tunnel had

been �nished and in the autumn of 1990, the electron ring, equipped with nor-

mal magnets, and the proton ring, equipped with superconducting magnets, were

commissioned.

Machine tests continued with the separate acceleration of the electrons and pro-

tons until October 1991, when one bunch of electrons was collided with one bunch

of protons and ep luminosity was achieved at a collider for the �rst time ever.

9
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1.2.1 The injection system

Figure 1.1: The HERA injection system.

Protons are accelerated as H� ions in the proton linear accelerator (LINAC) to an

energy of 50MeV. These are in turn accelerated to 7.5GeV by the DESY-III proton

synchrotron and �nally to 40GeV in the PETRA storage ring. At this energy, they

are injected into HERA where they are accelerated to the design operating energy

of 820GeV.



1.3. ZEUS 11

Electrons and positrons are accelerated by LINACs I & II to 220 and 450MeV

respectively. They are transferred to DESY-II for further acceleration to 7.5GeV;

then PETRA accelerates these to 12GeV at which point they are injected into

HERA. The �nal stage of acceleration gives them an energy of 26.7GeV (1993) /

27.52GeV (1994).

1.2.2 Design parameters

Design value electrons protons
Injection energy 14GeV 40GeV
Beam energy 30GeV 820GeV
Particles per bunch 3:5� 1010 1:0 � 1011

Number of bunches 210 210
Centre of mass energy 314GeV
Current 60mA 160mA
Luminosity 1:5� 1031cm�2s�1

Bunch distance 28.8m
Bunch crossing time 96ns
Bunch length (1�) 7.8mm 110-150mm
Bunch width 0.3mm 0.32mm
Beam height 0.04mm 0.1mm
Energy loss per revolution 70.38MeV � 0
Filling time 15min 20min

Eventually, using the designed speci�c luminosity, 100pb�1 per year is expected.

In 1992, the ZEUS experiment collected 30nb�1. This had increased to 540nb�1 in

1993 and by 1994 the integrated luminosity collected by ZEUS was 3.2pb�1. For

1995 running, a luminosity 15pb�1 is expected.

During 1993 running, 84 paired bunches were �lled for each beam. An additional

10 unpaired electron bunches and 6 unpaired proton bunches were �lled to study

backgrounds. Mean currents in both beams were typically around 10mA. In 1994,

153 bunches were paired with an additional 15 unpaired electron bunches and 17

unpaired proton bunches. Electron beam currents were� 20mA and proton currents

were often in excess of 40mA. [1, 2]

1.3 ZEUS

A letter of intent from the ZEUS collaboration [3] and the technical proposal for

the ZEUS detector [4] were received by the directorate of DESY in 1985 and 1986
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respectively. The detector was approved in November 1986 and ZEUS was allocated

the south experimental hall of HERA.

There are over 500 physicists in the collaboration and about the same number of

technical sta� who come from over 50 institutes in 11 di�erent countries: the UK,

the USA, Canada, Germany, Israel, Italy, Japan, Poland, the Netherlands, Russia

and Spain.

Final installation of the detector was completed in the autumn of 1991 following

extensive testing of prototypes and the core components of ZEUS were operational

for the �rst running period in 1992. Upgrades in the detector including the addition

of new components have happened during each of the shutdown periods since then.

The ZEUS detector is a multi-purpose magnetic detector and in 1994 consisted

of the active components listed in table 1.1 (refer also �gure 1.2).
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Detector Name Acronym Purpose Detector Type

Vertex VXD Measurement of Drift chamber
detector primary vertex position �lled with

dimethylether
Central tracking CTD 3D track reconstruction Cylindrical drift
detector and dE

dx
measurement chamber �lled

with Ar;CO2; C2H6

Uranium (U)CAL Energy measurement of Depleted Uranium/
calorimeter F/B/RCAL leptons/hadrons Plastic scintillator

sampling calorimeter
Luminosity LUMI Luminosity measurement Lead scintillator ca-
monitor and detection of photo- lorimeter with Si

production e� and pads
radiative 

Hadron-Electron HES Identify electrons within Silicon pads
separator dense jets
Backing BAC Containment of particles Fe yoke absorber
calorimeter escaping CAL. Shower with Al prop-

tail catcher. ortional tubes
Leading proton LPS Detect remnant particles 6 Si detectors
spectrometer in roman pots
Veto wall VETO Veto interactions away Fe wall with 2

from interaction region scintillator plates
either side

Muon chambers F/B/RMUO Muon detection Streamer tubes
with planar
drift chambers
for FMUO

Transition TRD� Particle identi�cation 4 chambers, poly-
radiation det. propylene �bres

and Xe �lled
chambers

Small angle SRTD� Improve posn meas- Scintillator strips
rear tracking urement of charged in two planes
detector particles entering RCAL
Forward/Rear F/RTD� 3D track reconstruction 3(FTD),1(RTD)
tracking det. drift chambers
The C5 C5 Veto interactions away Si detector
counter from interaction region

Table 1.1: List of the active ZEUS components in 1994. Refer to the text for
detector performances. The status of the components marked \*" is also described.
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FMUON

BMUON

FDET

BAC

RMUON

BEAMPIPE

BCAL

RCAL

SOLENOID

RTD

CTD

VXD

FCAL

Figure 1.2: View of ZEUS as shown by the detector simulation program GEANT [6]
using ZEUS geometry description version NUM12V1.
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The RTD and SRTD were not operational in the 1993 running period. Imple-

mentation of the SRTD occurred in 1994.

The collective term for the FTD and the TRD components which are sandwiched

together is the FDET. This has recently been fully installed and will be tracking

particles during the 1995 running period but was not available for 1993 or 1994 data

analyses.

Parts of the detector essential for the analyses presented in this thesis are de-

scribed in more detail below. A more complete description of ZEUS is available in

[5].

The coordinate system of ZEUS is de�ned as a right-handed system with the

origin at the nominal interaction point (NIP) of ZEUS. The Z-axis points in the

direction of the incoming proton, also known as the forward direction, i.e. towards

the FCAL. The Y -axis points upwards and the X-axis towards the centre of the

HERA ring. The proton beam polar angle is 0� and the electron beam polar angle

is 180�.

1.3.1 The VXD

The vertex detector is a cylindrical drift chamber whose inner radius is 10.9cm and

outer radius is 15.9cm surrounding the NIP of ZEUS. It is divided azimuthally into

120 drift cells, each cell therefore occupying 3� in azimuth.

Each cell contains 12 sense wires lined up between the inner and outer radii.

These alternate between 13 �eld wires and 25 drift wires are placed on each side

of this plane. All of the wires are parallel to the beam axis. The entire detector

is �lled with dimethylether (DME) gas to provide a slow drift velocity which gives

accurate particle time resolution.

The VXD operates in a magnetic �eld of 1.43T which is provided by a supercon-

ducting SOLENOID. This sits radially between the CTD and the BCAL.

The VXD has a design performance of �(p)
p
� 9�10�4p (when used in conjunction

with the CTD) and an error on the primary vertex radius of � 50�m.

1.3.2 The CTD

The central tracking detector is the main component of ZEUS used for the tracking

of charged particles. It surrounds the VXD and its outer radius is 85cm. It also
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operates in the 1.43T magnetic �eld provided by the superconducting SOLENOID.

The polar angle coverage of the CTD is 15 < � < 164� (� is the polar angle from the

ZEUS NIP with respect to the proton beam direction).

Figure 1.3: Part of the CTD as drawn by the event-display program LAZE [9]. Each
of the CTD cells contains eight sense wires evenly-spaced down the centre of the cell.

The CTD consists of 4608 sense wires grouped into 8-wire cells. An azimuthal

distribution of angled cells forms a superlayer and there are 9 such superlayers in

the chamber as indicated in �gure 1.3.

The sense wires in the CTD are kept at voltages between 1.26kV and 1.31kV.

These wires are separated by ground wires (0V) and planes formed by the sense

and ground wires alternate with planes formed by �eld-shaping wires which are

maintained at voltages between 1.63 and 2.74kV [10].

Odd-numbered superlayers are known as axial superlayers and have their wires

parallel to the CTD axis. The even-numbered superlayers, known as stereo super-

layers, have their wires at a small angle (� 5�) to the chamber axis.
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Two methods are used to determine the Z-position of a track element. The

Z-by-timing method exploits the time di�erence of a signal arriving at the two

ends of a wire [13] whereas the Z-by-stereo method takes advantage of the even-

numbered superlayers. Signals on axial superlayers, when projected onto the end

of the chamber, can be aligned to form a track. Hits from the same track in the

stereo layers, however, are rotated due to the stereo angle. An extrapolation of this

projection along the Z of the chamber until the track matches that from an axial

layer gives the Z-position of that track [7]. The Z-by-timing method alone achieves

a Z position resolution of 4.5cm but is by far the faster system (several nanoseconds

versus several hundred milliseconds). The Z-by-stereo method achieves Z position

resolution of � 2mm.

A 50%Ar; 50%C2H6 mix was the designed gas for the CTD. However, mainly

for safety reasons, the mixture used to �ll the CTD for 1993 and 1994 running was

85%Ar; 5%C2H6; 10%CO2 [11]. A slight increase in the proportion of C2H6 to CO2

has been made for the 1995 run period.

In 1994 running, the CTD had achieved a tracking resolution of 180�m and
�(p2T )

p2
T

� (0:005)2p2T � (0:016)2 [12].

1.3.3 The UCAL

The most important part of ZEUS for the analyses to be presented in this thesis

is the uranium calorimeter. The calorimeter contains electromagnetic and hadronic

calorimeter sections. A large e�ort was made to make the energy resolution as good

as possible. It was seen that such a calorimeter must have equal responses to both

the electromagnetic and hadronic deposits (e=h = 1, where e and h are the responses

for electrons and hadrons). Such a calorimeter is said to be compensating.

Electromagnetic showers are produced by incident electrons, positrons and pho-

tons and their nature is well-understood [14]. Hadronic showers, on the other hand,

cannot be analytically described. They can contain both hadronic and electromag-

netic components even though the showers are hadron-initiated. The proportion of

these components varies from one shower to another even if the incident energy is

the same.

The ZEUS collaboration decided upon a calorimeter constructed using depleted

uranium 238U as an absorber [15]. A plastic scintillator was chosen as the readout
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material and by varying the relative thickness of alternating layers of absorber and

scintillator (the \sandwich"), full compensation can be achieved over a very wide

range of energies [5].

Construction

The UCAL is divided into three parts corresponding to di�erent ranges of polar angle

coverage: the forward calorimeter (FCAL), the barrel calorimeter (BCAL) and the

rear calorimeter (RCAL).

The energy which the calorimeter is required to absorb is a function of the polar

angle. It ranges from approximately the proton energy (820GeV) in the forward

direction to the electron energy (27GeV) in the rear. The mean particle energies are

somewhat lower, however, and a simulation of 1000 typical deep inelastic scattering

events using the physics generator ARIADNE and detector simulator GEANT (both

described in later chapters) reveals the particle energy spectrum of �gure 1.4.

Particle Energy versus Particle Angle in simulated DIS events
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Figure 1.4: Monte Carlo simulation of energy deposits in the ZEUS calorimeter for
1000 DIS events.

Because of this angular dependence, the FCAL has a depth of 7 absorption

lengths, �, the BCAL has a depth of 5� and the RCAL a depth of 4�. Much higher

jet energies can be contained with the surrounding BAC.



1.3. ZEUS 19

The polar angle coverage of the FCAL is 2:3 < � < 36:7�. It is divided into 23

vertical modules numbered with increasing X. Each module has a width of 20cm.

Each of these modules is in turn segmented into 20 x 20cm towers numbered with

increasing Y [51]. One module is divided up into three sections in Z, an inner

electromagnetic part (FEMC) and two hadronic parts (FHAC1 and FHAC2). The

FEMC part is further subdivided into four 20 x 5cm sections. Each of the sections

is called a calorimeter cell. (The central module has a 20 x 20cm hole in the middle

to accomodate the HERA beam-pipe.)

The polar angle coverage of the RCAL is 129:1 < � < 176:5�. The structure of

the RCAL is very similar to that of the FCAL except that REMC is subdivided into

two 20 x 10cm cells instead of four. The RCAL has only one hadronic section.

The BCAL covers the angles between the FCAL and the RCAL. It contains 32

wedge-shaped modules and, in a similar way to the FCAL, has an electromagnetic

part, BEMC, and two hadronic parts, BHAC1 and BHAC2. Each of these modules

has 14 towers with the EMC part containing four cells per tower.

All of the calorimeter towers are made with a sandwich of alternate layers of

3.3mm-thick depleted uranium and 2.6mm-thick plastic scintillator. This thickness

provides an e=h ratio of 1:00 � 0:02 in the energy range 10 to 100GeV [16, 17].

Charged particles traversing the scintillator produce light which travels by inter-

nal reection to wavelength shifters. The light is converted to a longer wavelength

by wavelength shifters and travels to the photomultipliers (PMTs) at the back of

the tower. An electrical signal is produced by these and passed out of the detector.

There are two PMTs for each cell (one at each side in X) as indicated in �gure 1.5.

This provides some redundancy and an indication of the X-position of a deposit.

Performance

To take advantage of the high resolution achievable by the calorimeter, an accurate

calibration must be performed. An ongoing procedure is the determination of the

calibration for all of the calorimeter channels.

The principal method for this is the use of the naturally-occuring radiation from

the depleted uranium (energy � 2:3MeV). In combination with this, a point-like

60Co source can be moved parallel to each scintillator's plate position. The variation

of calorimeter response to this is stable at the level of a few percent [18].
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Modules from the RCAL and FCAL have been calibrated at CERN using test-

beams with various particles at known energies. The results from these tests show

that there is a linear response of the calorimeter to incident energy at the level

of � 1%. The energy resolution is found to be 17.5%(�1%)=pE for electrons and

35%(�2%)=pE for hadrons and the time resolution better than 1ns for E > 15GeV.

At lower energies, this resolution is somewhat degraded by noise [16].

Photomultiplier
tubes

Wavelength

End

DU plate

scintillator
plate

scintillator
last Side

reflector

reflector

shifter

Figure 1.5: Schematic top-view of an FCAL tower. Particles are incident on the
right-hand face.
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1.3.4 The luminosity monitors

Two small lead-scintillator calorimeters are placed at -34.7m (LUMI-e) and -106.0m

(LUMI-) from the NIP. These form the luminosity monitors which serve two impor-

tant roles.

Firstly, the luminosity provided by HERA is measured based upon the Bethe-

Heitler process ep ! e0p where a photon is emitted by the electron at very low

angles [19].

The cross-section for this process is high and very well known. A signal detected

in either of the luminosity monitors whose energy sum is that of the incoming

electron is a detection of this process.

Secondly, the two monitors serve as tagging devices for collisions occuring at very

low Q2 (photoproduction processes) and for initial state bremsstrahlung in neutral

current deep inelastic scattering events (ISR-DIS).

In tagged photoproduction, a signal is encountered in the LUMI-e monitor with

no corresponding signal in the LUMI- detector. In ISR-DIS events, no signal is

encountered in the LUMI-e monitor but the emitted photon is seen in the LUMI-

detector.

Both of the LUMI detectors have been designed with an energy measurement

resolution of 0:16=
p
E.

1.3.5 The SRTD

The small angle rear tracking detector (SRTD) aims to improve the calorimeter

energy resolution for single particles and jets by recognising particles showering in

the dead material in front of the RCAL and correcting for the energy lost.

The SRTD covers an area of 68cm � 68cm around the beam-pipe (minus the

beam pipe hole) and sits at Z = �1:46m.
It consists of two planes of scintillator strips, each plane sectioned into four 24cm

� 44cm pieces. The strips have a 1cm width and are arranged either in the X or the

Y directions, the X and Y -strips being alternately positioned along the Z direction.

There are 272 strips in total which are read out via light �bres and photomultipliers.

Each of the planes is 0.5cm thick and they are separated by a support plane which

reduces cross-talk.

The SRTD can achieve a position resolution of 5mm in X and Y .
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1.3.6 The C5 counter

The C5 counter, so called because it is attached to HERA collimator number 5,

is a lead plate sandwiched between two scintillator plates within the beam-pipe.

It is placed perpendicular to the beams at Z = �315cm with an inner radius of

which varies from 12mm to 30mm depending on whether the collimator is \closed"

or \open".

The counter measures the rate of interactions produced by the beam, gives infor-

mation about the beam shapes and helps to reduce the proton-beam-gas background.

It has a time resolution of � 1ns.

1.3.7 The C4 collimator

Collimators and absorbers are used to reduce the synchrotron radiation emitted

from the beams. This protects the central parts of the detector from high radiation

rates.

Although these devices are not detectors,HERA collimator number 4 is found to

be especially important in the analyses presented in this thesis. Since this collimator

sits in the beam-pipe hole of the FCAL at a Z of 220cm, it is found that forward-

going particles can shower and scatter from it. This scattered energy can often be

detected by the calorimeter.

A much more thorough description of the C4 collimator is contained in section

4.4.1.

1.3.8 The veto wall.

The veto wall is an 87cm-thick Fe wall placed around the beam-pipe at Z = �7:5m.
Two planes of scintillator counters are attached to either side. The veto wall detects

and absorbs particles from proton-beam-gas collisions and veto-triggers such an

event if hits are detected on both sides of the wall.

1.3.9 The ZEUS trigger system

There exist two major constraints on experiments using theHERA beams. Firstly,

the beam-crossing interval is only 96ns. Secondly, there is a very high background

to signals which is associated with beam particles colliding with residual gas in the
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beam-pipes. The combination of e�ects leads to a signal in the region of 100kHz, of

which only � 2 � 3Hz are interesting ep events.

A multi-layered trigger system at ZEUS helps to remove this background whilst

keeping ep events [20].

� The �rst-level trigger (FLT) reduces the signal to � 1kHz. Since most compo-

nents cannot make a useful trigger decision in the 96ns beam crossing interval,

data from components is \pipelined". The CAL, for example, uses a switched

capacitor array to pipeline its (analogue) data whereas the CTD uses a digital

pipeline to store its hit information which is already digitised. A \sub-trigger"

decision can be made by each component participating in the FLT within 5�s

(96ns�52, the beam crossing interval times the pipeline length). Such a de-

cision from each of the components is passed to the global �rst level trigger

(GFLT) where an overall decision is made. An example is the use of the CTD

to pattern-recognise whether or not an event has produced a primary vertex

in the expected region. If such a vertex has been found then the CAL can be

used to add an jET j cut. Further clustering information from the analogue

calorimeter can be extracted. The GFLT then decides which events are likely

to be ep interactions. At the end of this stage, approximately 98% of the

events passed are background events.

� The second-level trigger (SLT) reduces the input from the FLT (� 1kHz) to

� 100Hz and has 1ms to make a decision. As with the FLT, sub-triggers from

components are passed to the global trigger (GSLT) where an event decision is

made. Since the time allowed for the decision to be made is much longer than

in the FLT, charged particle tracking, better vertex position determination,

muon, jet and scattered electron �nding is used in the event decision.

� The GSLT sends events which have passed its criteria to the event builder

(EVB). This collects all the data from the various components for these events,

merges the data into a ZEBRA bank [21] , reformats this according to the

ADAMO package [22] and sends it to the next trigger stage. (ZEBRA and

ADAMO are software packages which manage data structures.)
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� The third level trigger (TLT) is a farm of very fast processors which view the

event as a whole. The TLT can use more elaborate vertex �tting and track

�nding algorithms than there is time for at the SLT stage. The �nal rate after

the decision of the TLT is � 5Hz. After a positive decision, all the data from

an event is put on to the mass storage devices.

Once the events have been passed from the TLT, software is run which fully

reconstructs the events using information from all available components. The subset

of these events which correspond to neutral current deep inelastic scattering events,

those events useful for the analyses presented in this thesis, can then be selected

using other criteria described in the next chapter.



Chapter 2

Deep Inelastic Scattering at

HERA

2.1 The kinematics of the ep interaction

Figure 2.1: Inelastic neutral current ep scattering

Although there are many interesting areas of physics at HERA, only that of deep

inelastic scattering (DIS) will be covered in this thesis. Deep inelastic scattering

involves a high momentum transfer (> 1GeV2) from the lepton to the proton. This

momentum is carried by an exchanged virtual boson.

The analysis contained in this thesis is not concerned with charged-current (CC)

DIS interactions where the incoming lepton becomes a scattered neutrino as a result

25
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of the exchange of a virtual W� boson.

All other DIS interactions are of the neutral current (NC) type where the type of

the scattered lepton is identical to that of the incoming lepton. Such NC interactions

are the result of the exchange of a virtual photon (�) or virtual Z0 boson between

the lepton and the participating parton within the proton.

The neutral current scattering process e(k) + p(P ) ! e(k0) + anything is rep-

resented to �rst order by �gure 2.1. This is the representation given by the quark-

parton model (QPM) and does not include any quantum-chromodynamic correc-

tions. These corrections are discussed in the next chapter.

Since the �nal state of a NC interaction is not a�ected by the type of exchanged

boson, this text will refer to the vitual photon as meaning either the � or Z0.

Few events initiated by a Z0 exchange are expected in the data sample used in the

analyses presented in this thesis because of the suppression factor associated with

the propogator ( 1
q2+M2

Z

) [42].

During 1993 running, ZEUS collected 538nb�1 of e�p collisions of those which

HERA provided and a further 287nb�1 of e�p collisions during the �rst month of

running in 1994. For the remainder of the 1994 run period, ZEUS collected 2.9pb�1

of e+p collisions [1].

The change in lepton type does not a�ect the �nal-state of the NC DIS process.

Henceforth, the incoming and scattered lepton will be referred to as the incoming

and scattered electron.

In the following analyses, 180nb�1 of the DIS events seen in 1993 and 2.0pb�1 of

the e+p DIS events in 1994 have been used. Not all the data has been used since, as

will be seen later, the measurement of energy ows is dominated by the systematic

(as opposed to the statistical) errors.

The kinematics of the DIS process is described by the following variables:

� s, the centre of mass energy squared.

s = (k + P )2 = (Ee + Ep)
2 � (p

e
+ p

p
)2 � 4EeEp (2.1)

where Ee,Ep and p
e
,p
p
are the energies and three momenta of the incoming

electron and proton respectively when their rest masses are ignored.
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� Q2, the negative of the squared 4-momentum transfer carried by the virtual

photon.

Q2 = �q2 = �(k � k0)2 = �(Ee � E0

e)
2 + (p

e
� p0

e
)2 = 4EeE

0

e sin
2(
�

2
) (2.2)

(�e = 180� � � in ZEUS coordinates.)

� x(0 � x � 1), the Bjorken scale variable.

x =
Q2

2q:P
(2.3)

In the QPM, x can be interpreted as the fraction of the proton's momentum

carried by the struck parton.

� W 2, the square of the centre-of-mass energy of the �p system � the square

of the hadronic �nal state's invariant mass.

W 2 = (P + q)2 = P 2 + q2+ 2q:P =M2 �Q2+
Q2

x
� Q2(

1� x

x
) � Q2

x
(2.4)

where M is the rest mass of the proton. The last approximation is valid at

low x.

� y(0 � y � 1), the variable which describes the energy transfer to the hadronic

�nal state in the proton rest system.

y =
q:P

k:P
=

Q2

2x(k:P )
(2.5)

Now since

2k:P = (k + P )2 � k2 � P 2 = s�m2
e �M2 (2.6)

where me is the rest mass of the lepton, Q2, s, x and y are related by the equation

Q2 � sxy (2.7)

To a very good approximation at HERA the proton rest mass can be neglected,

since the hadronic massesW 2 involved are much bigger than the proton mass. Since

the beam energies of the electron and proton are known, only two of the kinematic

variables are independent.
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An additional variable to consider is �h. In the QPM approximation, �h is the

scattering angle of the struck parton. It can be found using the above variables [23]

as follows:

cos �h =

 
Q2(1 � y)� 4y2E2

e

Q2(1 � y) + 4y2E2
e

!
(2.8)

Also, it is useful to introduce the quantity rapidity which is de�ned for each

particle by its energy and momentum components:

� =
1

2
ln

 
E + ppara
E � ppara

!
= ln

 
E + ppara
p2perp +M2

!
(2.9)

where M is the rest mass of the particle.

Rapidity has a useful quality: when a longitudinal boost from the laboratory

frame to another frame is performed upon particles, their relative rapidities remain

the same. It is Lorentz invariant.

Ignoring the masses of the particles, rapidity approximates to the quantity pseu-

dorapidity which is related to the polar angle of the particle by

� � ln

 
2ppara
pperp

!
= � ln tan

 
�

2

!
(2.10)

At ZEUS, � = 0 is in the direction of the FCAL from the nominal interaction

point (NIP), the event's primary vertex, when the trajectory of the incident proton

is extrapolated. With this de�nition, the following table can be constructed:

�h � Where in ZEUS?
0 +1 incident proton direction
180 �1 incident electron direction
90 0 perpendicular to the colliding beams
2.3 3.9 bottom face of FCAL

At HERA, the incoming electron energy in 1994, Ee, was 27.52GeV and the

incoming proton energy, Ep, was 819.9GeV. From the above equations, s = 90264:5

GeV2(
p
s = 300GeV). Using these numbers, it is possible to construct the following

table which gives the scattering angles and energies when collisions occur in various

parts of the kinematic phase-space available at HERA. (All angles are quoted rel-

ative to the proton direction). Note the proximity of the electron scattering angle

to that of the struck quark jet at low x and Q2.
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Position in phase-space Q2 x y W E0

e �e �h
Low-x, low-Q2 6 9.5E-5 0.7 251 8.3 179.2 176.0
High-x, low-Q2 6 1.7E-3 0.04 60 26.4 179.8 85.1
Low-x, medium-Q2 40 6.3E-4 0.7 251 8.3 174.9 169.7
High-x, medium-Q2 40 1.1E-2 0.04 60 26.4 178.4 39.1
Low-x, high-Q2 500 7.9E-3 0.7 250 8.3 108.7 144.7
High-x, high-Q2 500 1.4E-1 0.04 58 26.4 160.1 11.5

An example of a NC DIS event which has been reconstructed in ZEUS by the

software package ZEPHYR [31] is shown in �gure 2.1.
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Figure 2.2: A high-Q2 NC-DIS event as seen in ZEUS. The scattered electron has
been labelled.
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2.2 Triggering and event selection

2.2.1 The triggering of DIS events

The trigger system described in the previous chapter reduces beam-gas backgrounds

considerably. From the set of events which this trigger system provides, a subset,

corresponding to neutral current DIS events, is required.

The obvious signatures for NC-DIS events are as follows:

1. An isolated electromagnetic cluster is deposited in the calorimeter (possibly

matched with an isolated track originating from the interaction region). The

basic trigger criterion is therefore an isolated energy deposit (i.e. not within a

jet) in the EMC section of the BCAL or RCAL. An isolated deposit in the EMC

section of the FCAL only is not considered to be su�cient. This is the �rst

indication of the presence of a scattered electron. The energy of this cluster

must be above some threshold to reduce the background from calorimeter

noise and photons produced from non-DIS events. The thresholds chosen are

E(BCAL)EMC > 5GeV or E(RCAL)EMC > 2GeV.

2. Studies have shown that the proportion of beam-gas events within a sample

can be signi�cantly reduced by employing a calorimeter timing cut [20]. This

calorimeter time is the average time for the �rst energy deposits to signal in

the calorimeter after the interaction has occured. An event is agged as ep if

jRCAL timej < 8ns and jFCAL time � RCAL timej < 12ns (see �gure 2.3). A

purer sample of events is selected with a tightening of this cut. DIS events are

selected only if the latter time di�erence is < 8ns.

3. The transverse momentum in a neutral current DIS event must be balanced.

From conservation of momentum, the kT of the struck quark jet(s) must equal

the kT of the scattered electron. In a charged current event, the scattered

lepton is a neutrino which is not seen in the detector. Detected transverse

momentum is therefore not balanced. Neutral current DIS events are triggered

if missing kT < 9GeV.

4. The quantity E�pz , also known as �, is an important kinematic variable in the
recognition of NC-DIS events. It is de�ned in the next section. For triggering
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Figure 2.3: Calorimeter times for beam-gas background events (larger spike) and ep
physics events (smaller spike to the right).

purposes, the TLT requires a � > 20GeV to qualify an event as NC-DIS. A

tighter cut is made later to provide an even purer NC-DIS sample.

Monte Carlo studies have shown that the ZEUS trigger system, whilst reducing

the number of input events by 104 � 105 times, accepts 97% of DIS events.

2.2.2 Electron �nding
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Figure 2.4: The � distribution of DIS and photoproduction events. Beam-gas back-
ground events (not shown) are contained in a large peak towards � = 0.
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Finding the scattered electron and measuring its energy is necessary for recognizing

and selecting NC DIS events.

Presently, there are 4 electron �nders used at ZEUS. All four are used in the

setting of DST bits, described in section 2.2.4, but only two are used in this analysis.

The preferred �nder in 1994, due to the purity with which electrons are found, is the

algorithm SINISTRA [24]. This �nder is based on a cone-algorithm which groups

candidate calorimeter cells into clusters. It subsequently uses neural network-based

pattern recognition techniques to select the most probable scattered electron cluster.

The other electron �nder used, and the main one used in the 1993 analysis, is

an algorithm which groups electromagnetic deposits in the calorimeter into islands.

Islands are energy-weighted surfaces derived from isolated groups of electromagnetic

cells. This electron �nder is called EEXOTIC [26].

The main and most important source of background to DIS events is that of

photoproduction where, in general, the scattered electron disappears through the

rear beam-hole and another particle is identi�ed in its stead [27].

A useful experimental variable, �, is de�ned as

� = E � pz =
X
i

(Ei � pzi) (2.11)

which is calculated with respect to the incoming electron direction. The summa-

tion is over all calorimeter cells and includes the energy deposit of the \found"

electron. For fully-contained events, energy-momentum conservation requires that

� = 2Ee � 54GeV. The loss of particles through the forward beam-hole has only a

small e�ect on � but the loss of the scattered electron reduces � signi�cantly. This

can occur if the scattered electron continues down the RCAL beam-pipe without

interacting with the calorimeter. Additionally, the electron �nder may not be able

to recognise the calorimeter cluster which correctly contains the scattered electron.

The value of � cannot be signi�cantly higher than 2Ee for genuine ep events

(plus a small amount (� 3GeV) to account for the measurement error caused by the

�nite resolution of the calorimeter). Higher values are indicative of events triggered

by cosmic muons passing through the detector. The 1993 DIS sample collected by

ZEUS for the structure function F2 analysis [38] has a � distribution which is shown

in �gure 2.4.
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At high Q2, the scattered electron has a high energy and angle. It is likely to

have caused an isolated signal in the BCAL and may have made a track in the CTD.

Such electrons are easily found by the �nding algorithms. At low Q2 and low x, the

less-energetic scattered electron can overlap with deposits made by the struck-quark

current jet. It is much more di�cult to isolate these electrons and the purity of the

algorithms diminishes. This reduces the acceptance of DIS events, de�ned as those

events found in a kinematic region divided by those produced in that region. The

lower the acceptance of a region, the greater the chance of a quantity derived for

that region being inaccurate.

2.2.3 Reconstructing the kinematic variables

To obtain the kinematics of an event, four parameters can be used: the scattered

electron energy, E0

e, the scattered electron angle, � (as de�ned in equation 2.2), the

QPM struck quark angle, �h and the energy contained in the jet formed by the

struck quark, F .

However, only two of the kinematic variables are independent. Therefore, the

experimental determination of them can in principle be derived from two of these

parameters. There are many ways to combine the two parameters to reproduce the

kinematic variables. Those methods used in this analysis are described here and are

derived fully in [23].

� Using the electron variables:

yel = 1� E 0

e

2Ee

(1� cos �); (2.12)

Q2
el = 2EeE

0

e(1 + cos �) and (2.13)

xel =
Ee

Ep

 
E0

e(1 + cos �)

2Ee � E0
e(1� cos �)

!
(2.14)

� Using the Jaquet-Blondel method:

yJB =

P
i(Ei � pzi)

2Ee

; (2.15)

Q2
JB =

(
P

i pxi)
2 + (

P
i pyi)

2

1� yJB
and (2.16)

xJB =
Q2
JB

s:yJB
(2.17)

where the sum runs over all calorimeter cells.
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� Using the \double-angle" method:

yDA =
sin �(1 � cos �h)

sin �h + sin � � sin(� + �h)
; (2.18)

Q2
DA = 4E2

e

 
sin �h(1 + cos �)

sin �h + sin � � sin(� + �h)

!
and (2.19)

xDA =
Ee

Ep

 
sin �h + sin � + sin(� + �h)

sin �h + sin � � sin(� + �h)

!
(2.20)

Kinematic resolution

Using the components installed for the 1993 analysis, the best method throughout

phase-space for reconstructing the kinematic variables is the double-angle method

[23]. With the addition of the SRTD, the 1994 analysis uses the electron method

for all events with xel < 10�3. This mixed method of reconstruction will be denoted

xmix; Q
2
mix; ymix. Figure 2.6 shows the resolution of both reconstruction methods

as determined from a Monte Carlo simulation. The details of the simulation are

discussed in the following chapters.

2.2.4 Event preselection

Before the main body of an event's data is loaded onto an analysis machine, the

event header is scanned. To save a great deal of time, a scheme has been developed

which allows a user to select whether or not an event is used, prior to its loading.

Using information collected online, certain ags are set or reset in the event header

which depend on particular conditions found in the event. The ags are known as

the DST (data summary tape) selection bits.

For 1993 data, only events which had bit 14 set were analysed further. Bit 14 is

de�ned in 1993 data as the so-called \JDIS" or \golden" DIS bit. This is set only

when all of the following criteria are satis�ed:

� The � of the event is greater than 35GeV

� Either EEXOTIC or SINISTRA �nds a scattered electron with E0

e > 5GeV

� The electron is found outside the \Box-cut" (see section 2.2.5) of 16cm. The

\Box-cut" refers to a square on the face of the FCAL centred at the beam-pipe

centre. Since the purity and e�ciency of the electron �nders are very low
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within this square, events whose only electron is \found" in this region are

removed.

� yJB > 0:02 to ensure that the event has deposited su�cient energy in ZEUS

to reconstruct the event

� The cosmic muon rejection routine, based on event topology (see also section

2.2.5, does not disallow the event

� The beam-halo rejection routine, also based on event topology, does not dis-

allow the event

� The routine, which removes events triggered by random calorimeter PMT noise

(sparks), does not disallow the event

For 1994 data, the full release of the SRTD software took place after the setting

of the DST bits. Therefore, a \loose" selection of events is used and then the new

software is run which takes advantage of this component. Each event from 1994

is �rstly selected when both bits 9 and 11 are set. Bit 9 is set in 1994 data set

when any of four available online electron �nders believes it has found an electron

with E0
e > 4GeV. Bit 11 is set in 1994 data when the event passes a loose � cut

(> 25GeV) .

To make sure that the relevant ZEUS components were in a state su�cient for

the accurate reconstruction of event qualities, a data quality routine is called. This

routine removes � 20% of 1994 events.

2.2.5 DIS background rejection

Since only NC DIS events are wanted for the analysis of energy ows, much care is

taken in the event selection. Major sources of background exist to these events, even

after triggering and preselection; notably, beam-gas and photoproduction. More-

over, only events whose kinematic variables can be adequately reconstructed are

selected.

For an event to be classi�ed as NC DIS, it must pass the following criteria:
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1. Event primary vertex cuts are made in an e�ort to reduce beam-gas back-

ground events. Both the 1993 and 1994 analyses use events only when �50 <
vertex Z < +40cm and vertex radius R < 8:5cm. The 1994 analysis uses a

tighter vertex Z < +25cm to remove any satellite events1 since the simulation

of their contribution is inadequate. Typically, 5% of events are removed by

these cuts [29].

2. A tighter calorimeter timing cut is used than that in the DIS trigger. For

both the 1993 and 1994 analyses, the event is accepted if jRCAL timej < 3ns

and jFCAL time � RCAL timej < 8ns. These cuts remove beam-gas back-

ground events. Approximately 5% of events triggered by the DIS trigger and

preselected in 1994 are removed by this cut.

3. To reduce the beam-gas background, photoproduction background and cosmic

muon events, a tighter cut is made on �. Only events with 35 < � < 60GeV are

accepted. The lower limit of 35GeV removes photoproduction and beam-gas

background events. The upper limit of 60GeV removes events which cannot

have been the result of an ep collision; for example that of a cosmic muon

passing through ZEUS.

4. The scattered electron must be found by the main electron �nder (EEXOTIC

or SINISTRA) where E0

e > 10GeV (to enhance purity). In addition, a \box

cut" is placed on the position of this electron. In 1993 data, the event is

allowed to pass if jXelj > 16cm and jYelj > 16cm measured from the centre of

the beam hole in the RCAL. In 1994 data, with the addition of the SRTD, the

box cut is reduced to 13cm.

5. The resolution of certain kinematic quantities becomes poor at the extremes

of the HERA phase-space [23]. Additionally, photoproduction background

becomes signi�cantly higher at very high values of y. Of course, photoproduc-

tion background also increases with a decrease in measured Q2. The following

broad kinematic cuts are made on the DIS events: yJB > 0:04, yel < 0:95,

Q2
DA > 10GeV2(1993), Q2

mix > 6GeV2(1994).

1A satellite event is an ep interaction at the HERA energy between the leading pilot bunch of
one beam and a colliding bunch of the other beam. The electron pilot bunch interactions constitute
the majority of these events which are perfectly acceptable for physics analysis.
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6. Initial state radiative DIS events are characterised by a low energy photon

being detected by the LUMI- monitor. High energies in this monitor distort

the reconstruction of kinematic variables and are removed. Only events with

E(LUMI) < 5GeV are accepted.

7. A certain class of events, di�ractive events, which are discussed in section 5.2,

are isolated from the other NC DIS events. In the 1993 analysis, a cut is made

on events which have no energy at � > �max = 1:5. In the 1994 analysis, the

di�ractive events are separated by a cut on xpom (de�ned in section 5.2 and

roughly proportional to �max) < 10�2.

8. A call is made to a muon rejection algorithm [28] which looks at various

components and the event topology to establish whether the event trigger is

due to a cosmic muon which has passed through the detector. These account

for � 0:1% of triggered DIS events.

9. Compton QED events can fool the DIS trigger. Such events are characterised

by very little activity in the detector. If 1 or 2 isolated electromagnetic conden-

sates are found in the calorimeter but nothing further, the event is classi�ed

as a Compton event. About 0:8% of events are of this type.

10. The LUMI monitors set ags when electron and proton bunches have collided.

If both ags are set, an ep interaction has occured. Non-ep events which pass

the DST selection cuts account for � 1% of events.
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Figure 2.5: The kinematic distribution of reconstructed NC DIS events in 1994 data.
The shifted vertex points refer to 32nb�1 [2] of ep interactions at a primary vertex
of Z � +65cm. Shown also are the kinematic ranges of some earlier experiments.
Plot extracted from [25].



40 CHAPTER 2. DEEP INELASTIC SCATTERING AT HERA

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-4 -3 -2 -1

log10(xelectron)

lo
g 10

(x
tru

e)

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-4 -3 -2 -1

log10(xdouble-angle)

lo
g 10

(x
tru

e)
Figure 2.6: The electron and double-angle methods of reconstructing xbj. Note the
improvement of the electron method over the double-angle method for x < 10�3. The
1994 analysis takes advantage of this.

Figure 2.7: A candidate for a cosmic muon event. The muon has passed through
the electromagnetic and hadronic sections of the RCAL. The resulting deposits have
fooled an electron �nder.
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Figure 2.8: A candidate for a Compton QED event. The two deposits in the
calorimeter are the e� and , a track indicates which is the e�.

Figure 2.9: A typical beam-gas event. Instead of the electron and proton beams
colliding, a proton has collided with a nucleus of the residual gas in the beam-pipe.
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Chapter 3

QCD Models and Motivation

3.1 The quark-parton model

The quark parton model (QPM), introduced in the previous chapter, gives the sim-

plest description of the partonic DIS process. Although this model is an approx-

imation, it is very useful for studying the basic scattering process. DIS in the

QPM is viewed as the scattering of a single valence or sea quark which carries a

momentum-fraction x of the proton's momentum P . It neglects all QCD radiation

and corresponds to the zeroth order expansion in the QCD coupling constant �s.

In the QPM model, the partonic �nal state contains two coloured objects, the

scattered quark and the proton remnant. The cross-section for the process is pro-

portional to the densities of partons within the proton and the proton remnant is

considered a spectator.

In the �p centre of mass system (hadronic CMS or HCM), these two coloured

objects lie in the +Z and �Z directions, each of them having an energy W=2. This

strict subdivision of phase-space is only applicable in the QPM picture.

When the partonic �nal state hadronises, there are two main jets of hadrons.

One is associated with the struck quark which hadronises to form the current jet.

The other is associated with the proton remnant.

This hadronisation, when coupled with other, non-perturbative, e�ects such as

the intrinsic (or primordial) kT of partons within the proton, destroys the simple

picture. Fragmentation produces a continuous chain of hadrons between these jets

leaving them with no clean separation. This region is called the central region.

43
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3.2 QCD corrections to the QPM

Quantum chromodynamics (QCD) is the �eld theory of strong interactions. In this

theory, spin-1
2
quarks (q) which are bound together by massless, spin-1 bosons called

gluons (g) make up the proton. In other words, QCD adds the concept of gluons to

the QPM which contains only quarks.

A less approximate approach to the description of DIS events involves the ad-

dition of QCD corrections to the QPM. In �rst order QCD, two �nal-state partons

are produced. These basic QCD processes are QCD Compton scattering (QCDC),

�gure 3.1b, and boson-gluon fusion (BGF), �gure 3.1c.

Figure 3.1: Lowest order QED and the addition of lowest order QCD corrections to
the DIS vertex.

In the simple QPM, the quantity F2, one of the proton structure functions, is

de�ned as

F2(x) =
X
f

e2fx(qf(x) + �qf(x)) (3.1)

where the sum runs over all quark avours. ef is the electrical charge of a quark of

avour f and the q; �q are the parton distribution functions for quarks and antiquarks
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of momentum fraction x. In other words, qf(x)dx represents the probability of

�nding a quark of avour f carrying a fraction of the four-momentum of the proton

between x and x+ dx.

With �rst-order QCD corrections, there is the addition of an energy scale de-

pendence (Q2) on F2 and the inclusion of a gluon distribution term. The e�ective

parton distributions evolve in both x and Q2 [33].

Recently, measurements by both the ZEUS [38] and H1 [39] detectors have

shown a steep rise in F2 at low-x. Analyses of these results using both detectors'

measurements show that the gluon distibution is the dominant contributor to this

rise [40] [41]. The growth of gluon density at small x is due to gluon radiation and

can be represented by �gure 3.2 [34].

Figure 3.2: The \gluon ladder" representation of NC DIS at low xbj

3.2.1 The DGLAP picture

A set of equations, the Dokshitzer-Gribov-Levin-Altarelli-Parisi equations [61], can

determine the Q2 evolution of the quark densities based upon the QCD corrections
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(q! gq; g! q�q) from any reference point (x;Q2
0). The evolution is based on terms

ln(Q2) of a QCD expansion.
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where i = 1:::2nf for all quarks and anti-quarks of avours 1 to nf .

The �rst term on the right-hand side of equation 3.2 states that a quark of

momentum fraction x can originate from a parent quark of momentum fraction y

where y > x. The probability for this to occur is proportional to �s � Pqq(x=y).
The second term states that a quark of momentum fraction x can originate from a

parent gluon of momentum fraction y, y > x. This has a probability proportional

to �s � Pqg(x=y).
These Pij are known as the splitting functions. By setting z = (x=y) they are,

to leading order, de�ned as:

Pqq(z) =
4

3

 
1 + z2

1� z

!

Pqg(z) =
1

2

�
z2 + (1� z)2

�

Pgq(z) =
4

3

 
1 + (1� z)2

z

!

Pgg(z) = 6
�
1 � z

z
+

z

1 � z
+ z(1 � z)

�
(3.4)

The following can be concluded from these equations:

� There is a singularity in Pqq which is due to the emission of soft gluons. This

is cancelled when virtual gluon diagrams are included into the process.

� There is an increase in the density of gluons at small x. This leads to an

increase in the presence of q�q pairs at small x. This can be seen from

Pgg
x!0
= 6=z

Pgq
x!0
= 4=3z
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Using these equations, the uncorrected QPM picture of the NC DIS interaction

is altered.

The DGLAP picture calculates the gluon ladder (�gure 3.2) using a leading loga-

rithmic approach [42]. In other words, each branch of the gluon ladder is calculated

independently by assuming that, going \up" the ladder, each successive gluon branch

has more kT than the previous one. The highest kT is associated with the topmost gq

vertex which is � Q. The link between this assumption and the ability to calculate

each separate branch is known as the Weisaker-Williams approximation.

This \strong-ordering" in the kT s of the gluon ladder, which also orders the

opening angles of the gluon emitted at each branch, is coupled to a strong-ordering

of the momentum-fractions: going up the ladder, the e�ective interaction x is lower

at each gluon vertex from energy-momentum conservation.

The virtual photon couples to the topmost quark which has been constructed by

a g ! q�q creation. This topmost quark is considered a sea quark of the proton. The

e�ective x of the event is de�ned at the �q=�q vertex.

3.2.2 The BFKL picture

At the very low values of x obtainable at HERA, the DGLAP equations with lead-

ing order splitting functions are expected to become unreliable [23]. The splitting

functions require higher order corrections and the DGLAP equations become less

useful. At such low values of x, powers of ln(1=x) become dominant in the QCD

expansion due to \soft" gluon emission and associated virtual gluon corrections.

An alternative parton density evolution equation has been developed by Bal-

istsky, Fadin, Kuraev and Lipatov [43], the so-called \BFKL" equation, which is

designed explicitly for this low-x region. The equation resums these logarithms to

leading order in �s ln(1=x).

It makes two characteristic predictions, namely the x�� growth of the gluon

density xg(x;Q2) with � � 0:5 and the relaxation of the strong-ordering of the

transverse momenta, kT , of the gluons along the ladder.

As mentioned earlier, the proton structure function F2 and the gluon density

have been seen by both detectors to rise sharply at low-x. However, this strong

rise might be mimicked by mechanisms using the conventional (DGLAP) evolution

equations [44]. It is not an unabiguous signal for the presence of BFKL dynamics.
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However, the relaxation of the strong kT -ordering and the resultant enhancement

of the transverse energy level in the central region between the current jet and the

proton remnant in DIS events at HERA may yield more conclusive results for the

presence of BFKL dynamics [45].

3.3 The MEPS model

Using QCD perturbation theory, the matrix elements for the QCD correction pro-

cesses QCDC and BGF have been exactly calculated to O(�s) (recently to O(�s�s)).

The O(�s) calculation has been included in the current generators available,

including LEPTO.

An exact description of parton emissions is thus available to the generators up to

a limit when very soft and collinear parton emissions give rise to divergences in this

calculation. These can be partly cancelled by higher-order corrections and partly

absorbed into the parton density functions.

In the MEPS model, a cuto� is imposed to avoid this divergent region. This is

done by requiring that
m2

ij

W 2 > ycut where mij is the invariant mass of the produced

parton pair. In practical terms, it is preferable to keep the cuto� as low as is

feasible to retain as large a region of analytically-calculable phase-space as possible.

It should be smaller than any experimental jet resolution so that no observable jet

emission is lost.

Beyond this cuto�, a parton shower approach is used to model the almost-

collinear emissions. This is a DGLAP-based approximation for low-angle gluon emis-

sion to all orders in perturbation theory.

In DIS, the struck quark can emit gluons both before and after the photon vertex.

The emissions prior to the interaction are known as initial state and those after as

�nal state. The gluons emitted can further emit partons. These cascade and become

initial and �nal state parton showers.

The initial state shower, in \chronological" order, consists of a set of partons,

close to mass-shell (� 1GeV), one or more of which may initiate a cascade. The

partons are predominantly gluons as inferred from the DGLAP splitting funtions.

In each branch of this cascade, one of the daughters continues towards the hard

interaction vertex (�q=�q) with an increased spacelike virtuality, while the other is
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on mass-shell or aquires a timelike virtuality (in which case it will develop a timelike

shower of its own). The initial state shower is a spacelike shower. It is ordered up

the parton ladder in increasing Q2, decreasing energies (decreasing x) and increasing

average opening angles as per the DGLAP representation.

The �nal state shower is characterised by a timelike quark (the struck quark)

showering into daughters which have decreasing o�-shell masses. At each branch of

the shower, the opening angles decrease as well as the energies.

This strict separation of the initial and �nal state parton cascades is a feature

of the MEPS model. It is an arti�cial separation and no interference between the

two showers is taken into account.

The parton shower approximation is leading-logorithmic, using the DGLAP evo-

lution equations and so-called Sudakov form-factors [36]. The evolution equations

give the contribution from the real diagrams as represented by the gluon ladder

diagram, whereas the form-factors sum the virtual corrections and unresolvable real

diagrams. The use of these form-factors limits the emission.

A �nal cuto� is applied to the parton showering model which is mainly used to

avoid collinear or infrared singularities.

The parton shower approximation is improved with the enforcement of a QCD

coherence condition, which is not inherent in the leading- logarithmic approach, and

use of a running �s. The coherence corresponds to infrared singularities and serves

to reduce gluon emission at certain angles due to destructive interference.

While all generators used to compare with the analyses which follow use the

splitting-functions of the DGLAP equations to describe the leading-order processes of

parton showering, the implementation of the coherence and running �s vary greatly

from one generator to another.

The parton showering incorporated into the MEPS model uses the DGLAP evolu-

tion equations to the collinear limit. This is an assumption of the model and means

that MEPS explicitly uses conventional dynamics in an attempt to reproduce the

qualities of a DIS event.

LEPTO6.1 is a software incorporation of the matrix-element-parton-shower (MEPS)

model [35]
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3.4 The colour dipole model

ARIADNE is the computational realisation of the colour-dipole model (the CDM)

[37]. Versions 4.03 and 4.06 have been used to analyse data collected in 1993 and

1994 respectively.

In the basic version of the CDM, QCD radiation of quarks and gluons is described

by a chain of radiating colour dipoles. In the case of, for example, emission of a

gluon from a q�q system, three coloured objects are produced: a quark, antiquark

and gluon. Further gluon emission from this state is treated as emission of two

independent dipoles where the transverse momentum of the second gluon is smaller

than that of the �rst. The resulting state continues the emission process, with the

kT of the emitted gluons decreasing at each stage.

This leads to a kinematical constraint for the allowed emission angle of each

gluon and corresponds to the strong angular ordering used by the parton shower

model.

In the DIS process, the CDM does not distinguish between an initial and �nal-

state cascade, unlike the parton shower model. All emission is described by radiation

from the colour dipole formed by the struck quark and the proton remnant.

Emission of wavelengths shorter than the size of an emitting dipole is suppressed.

This is implemented in the CDM by only allowing a fraction of the remnant to take

part in emissions, this suppression of emission has no analogy to the parton shower

approach.

One important extension required, especially at low x, is the inclusion of the

BGF process. First order matrix elements for the process are used followed by the

dipole emission. For technical reasons, this imposes a cuto� on the maximum kT of

gluon emission which is not inherent in the model. Furthermore, a dependence on

ycut is introduced. The inclusion of the BGF process into the CDM model results

in what will be called the CDMBGF model. Both versions of ARIADNE used in the

analyses simulate this model.

The CDMBGFmodel, as opposed to the MEPS model, does not explicitly use the

DGLAP equations when calculating the parton showers beyond the matrix-element

cuto� (ycut). There is no consensus as to whether the CDMBGF approach is sim-

ilar to that of BFKL-inspired calculations or that of the DGLAP or conventionally-
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inspired calculations. No generator currently exists which explicitly uses BFKL par-

ton evolution. The CDMBGF model at least gives us an opportunity to look at the

results of an approach which is not strictly conventional.

3.5 Hadronisation

Hadronisation describes the process of transforming partons into jet(s) of hadrons,

in other words the transition from the short to the longer distance behaviour of

QCD.

The process can be divided into the perturbative phase of gluon emission, as

in the parton shower model, and the non-perturbative phase of hadronisation. Al-

though this division seems clear by the de�nition, both phases are connected and

cannot be viewed separately. Many di�erent hadronisation models exist and the

relative importance of the phases di�ers in each.

At present, there is no clear understanding of the process of hadronisation. Phe-

nomenological models, containing many adjustable parameters, are used instead.

In the physical models MEPS and CDMBGF simulated by LEPTO and ARIADNE

respectively, the program JETSET version 7.4 [47] is added to simulate the hadro-

nisation process.

The JETSET model is an implementation of the Lund String Model [59]. In

this picture, a string is a narrow ux tube of colour force separating two coloured

partons. If the particles separate, the string is stretched. This stretching requires

energy since the colour force rises with increasing separation. At a high enough

string energy, a q�q pair can tunnel out of the vacuum. The string then breaks into

two and the subsequent four particles can continue separating. Therefore the inital

string will break up producing conventional hadrons. The splitting of the string is

governed by the Lund symmetric fragmentation function (see equation 6.1); hadrons

produced by the string splitting aquire some transverse momentum according to the

parameters of this function.

In the Lund model, gluons are viewed as \kinks" on otherwise straight strings.

Segments of the string will move due to the 4-momenta of these gluons and this

directly a�ects the momenta distribution of the �nal state hadrons.
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3.6 Summary

The hadronic �nal state of a DIS event has the following regions of interest in the

laboratory frame.

1. The current jet. This is a group of hadrons associated with the hadronisation

of the struck quark in the QPM. The centre of the jet is located about a polar

angle of �h degrees. (The angle of the struck parton in the QPM.) This region

is also known as the photon fragmentation region.

2. The proton remnant. The hadronisation of the remaining partons within the

proton after the collision. The small intrinsic transverse momentum (kT ) of

these partons leads to a narrowly-con�ned hadron jet which is not seen in the

ZEUS calorimeter.

3. The central region. A number of partons hadronises in the angular range be-

tween the current jet and the proton remnant. The momenta of these hadrons

depends, amonst other things, on the evolution process which takes place along

the gluon ladder.

Pseudo-

rapidity

Transverse Energy per

unit of pseudorapidity

Photon
fragmentation
region

(Current jet) Central
region

Proton
remnant

Figure 3.3: A qualitative depiction of the shape and relative level of ET ow in the
three regions in the �p centre of mass.

Final state hadrons in any one particular event are produced preferentially in

one azimuthal region due to conservation of momentum with the scattered electron.

Averaged over all events, the azimuthal production of hadrons is isotropic.



Chapter 4

Extraction of the Far-Forward ET
Flows

4.1 Introduction to energy ows

Energy ow is de�ned by the expression 1
N
:dE
d�

and can be pictured as the sum of

hadronic energy owing into one unit of pseudorapidity as a function of pseudora-

pidity. The N in the expression refers to the normalisation required when the energy

ow is calculated for N events. Averaged over all events in a kinematic range, an

energy ow is produced for the generalised DIS process. The conversion of energy

ow to transverse energy ow is simply the substitution of ET (E sin �, where � is

the polar angle between the forward direction and the direction of particle travel)

for E.

Indications of an enhanced transverse energy ow have been presented [48, 49].

However, the measurement of the energy ow is complicated since the �p central

region in low-x events at HERA maps to the very forward region �lab > 2(� < 15�)

of the detectors in the laboratory.

In this region, the resolution in � degrades rapidly with increasing �, the amount

of dead material in front of the calorimeter rises, boundary e�ects at the edge of

the detector become important and high-energy particles well outside the geometric

acceptance, interacting with beam pipe elements, spray into the calorimeter. All of

these e�ects are compounded with the fact that currently no reliable models for the

proton remnant fragmentation exist.

The analysis presented in this thesis is the �rst time that the energy ow has

been measured at � > 2:5 in ZEUS with an understanding of the measurement

53
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error.

4.2 Principle of correcting detector observation

The energy ow is determined from all calorimeter cells with energies above 60MeV

(EMC cells) and 110MeV (HAC cells). These values suppress calorimeter noise. The

pseudorapidity, �, is calculated from the angle between the proton direction and a

line connecting the measured NIP and the centre of the cell.

The distributions measured in this way are distorted with respect to the hadronic

energy ows of the true �nal state. Trigger biases, event selection cuts and the �nite

acceptance and resolution of the detector all combine to cause this distortion.

To correct for these e�ects, trigger and detector simulation programs are used in

conjunction with event samples generated from physics Monte Carlo programs.

For example, particles coming from the the primary interaction are stable hadrons

by the time they reach the ZEUS calorimeter. Nearly all of the energy of these

hadrons is contained and measured by the CAL. The e�ciency of this detection,

the dead material through which the particles must pass before depositing in the

calorimeter and the way in which the deposited hadronic energy is converted into

a signal must all be simulated. In this way, the signals appearing in the detector

in real events can be traced back to the hadrons which cause them. This translates

into information concerning the form of the partonic interaction.

The �rst stage of simulation is the creation of hadron 4-vectors using a physics

model. Two such physics simulation programs, LEPTO and ARIADNE, described in

the previous chapter, are used in this thesis for the correction of data. The ZEUS

collaboration uses a detector simulation program based on GEANT [6] to estimate

the trajectory and energy deposit of these hadrons through matter. A further stage

of simulation evaluates the triggering e�ect of these deposits. The results of this

event simulation are passed through the same reconstruction package, ZEPHYR [31],

as real events.

In principle, the simplest form of correcting these distortions is as follows:

f(had) =
f(obs) � f(sim:had)

f(sim:obs)
(4.1)
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where f(obs) is the uncorrected transverse energy ow which is observed in the

detector, f(sim:had) is the ow from the set of hadron 4-vectors produced by the

physics model, f(sim:obs) is the ow after taking these 4-vectors through the de-

tector simulation and f(had) is the measured hadronic transverse energy ow.

This correction method is also known as the bin-by-bin method since each mea-

sured range within the raw distribution (bin) is independently corrected back to the

undistorted value by the corresponding bin from the correction formula.

For the purposes of the analyses presented in this thesis, the observed transverse

energy ow is corrected back to the ET ow in the hadronic �nal state (HFS), also

called the hadron-level ET ow. The HFS is de�ned as those hadrons which are

stable by the time they reach the calorimeter. This includes the decay products of

weakly-decaying particles [32].

4.3 Measuring energy ow in the forward region.

4.3.1 The observed energy ow.

The starting point for understanding the forward energy ow is the analysis of energy

deposition in individual calorimeter cells, without any further clustering.

The observed transverse energy ow is calculated using the position of the geo-

metric cell-centres and calculating their angles with respect to the measured vertex

of the events. The source of this information is a table of data which is �lled by

the ZEUS data aquisition system. It contains a list of calorimeter cells and the

energy deposited in them for each event after calibration constants and online noise

suppression have been applied [51].

The result of this calculation is shown in �gure 4.2.

There are two main features of the observed energy ow:

1. The energy ow distribution exhibits \bumps" and \holes". It seems they are

modelled in the Monte Carlo but at a lower energy value. What is their origin?

2. There is an excess of transverse energy, which increases with increasing � (de-

creasing polar angle), found in the data over that predicted by ARIADNE4.03.

Is this excess an e�ect of inadequate detector simulation? If not, what does it

represent in terms of hadron energies?



56 CHAPTER 4. EXTRACTION OF THE FAR-FORWARD ET FLOWS

Two preclustering algorithms, the condensate and island algorithms, can be

used to predict the angles of particles incident to the calorimeter in the middle of

the detector (j�labj � 2:0). To calculate these angles, both algorithms use an energy

weighting of calorimeter cells by assuming that these cells are the result of one

particle's interaction with the calorimeter.

In the very forward region, there is a high angular density of particles compared

with that of cells. In other words, single cells may contain the energy deposits of

more than one particle (�gure 4.3a). Thus, neither condensates nor islands result

from single particles in the forward region of ZEUS (�gure 4.3b).

Since the position information cannot be extracted using the condensate or island

algorithms, there is no advantage gained by using them in the forward region in this

analysis.
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Figure 4.1: The top view of ZEUS in the forward region as drawn by GEANT with
ZEUS geometry description version NUM12V1.
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Cell energies in the calorimeter
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Figure 4.2: (a) The normalised transverse energy ow from uncorrected cell energies.
The solid histogram corresponds to 1993 DIS data, the dashed histogram to NUM12V1
Monte Carlo using ARIADNE4.03 (CDMBGF) and the dotted histogram to NUM12V1
Monte Carlo using LEPTO6.1 (MEPS). The statistical errors on the plots are < 1%.
The solid curve in (b) is the ratio of uncorrected observed ow from the data to the
uncorrected ow from ARIADNE4.03, the dashed curve is the ratio of the uncorrected
observed ow to the uncorrected ow from LEPTO6.1.
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Figure 4.3: Mean number of particles per cell (a) and condensate (b) as a function
of angle. The source of this plot is NUM12V1 Monte Carlo using ARIADNE4.03.
The islands algorithm, not shown here, produces a very similar distribution to (b).
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4.4 Detector simulation at angles � < 10�

A proper simulation of the detector response at polar angles � < 10�, i.e. in the

very forward region, is di�cult. The di�culties arise for several reasons:

� the particle multiplicity is large and the average energy per particle is high;

� the geometrical acceptance of the calorimeter on the face of the FCAL ends near

44mrad (� = 3:8). This corresponds to a distance of 10cm from the beamaxis

and is only 30cm away from the impact point of a 10�{particle (� = 2:4).

This range, 44 < � < 174mrad, corresponds to less than 2 FCAL towers so the

angular resolution is degraded;

� the amount of dead material in front of the calorimeter in this angular range,

measured in units of radiation length (X�), may be as large as 4. The distribu-

tion of the dead material is only approximately known and is not azimuthally

symmetric;

� there is a large amount of material at angles below the geometrical accep-

tance of the calorimeter. Examples are the beampipe ange near Z=214cm,

directly in front of the FCAL, and the C4 collimater just inside the beampipe

hole of the FCAL. Particles interact in this material and secondaries from these

interactions reach the calorimeter resulting in the acceptance of the calorime-

ter reaching as far as 6 units in pseudorapidity (angles as small as 5mrad).

The processes leading to these e�ects are complicated since the calorimeter

\sees" only the tails of highly energetic showers which may not be adequately

described;

� the physics processes that deposit energy in this region are not well understood

adding the complication of \uncertain physics" to a complicated detector sim-

ulation problem.

If one could reverse the polarity of HERA one could investigate the response

of the detector in this region using the kinematic peak electron test beam. The

kinematic peak electron test beam is a way of calculating the dead material in front of

the RCAL using data. Scattered electrons whose energy is known via other kinematic
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variables deposit a fraction of their energy in the calorimeter. This fraction is

position dependent and the amount of dead material at any scattered electron angle

from the interaction point can be mapped. Although scattered electrons in high Q2

events can deposit in the FCAL, too few events exist. If such electrons were available

in any numbers, the dead material in front of the FCAL could be mapped. Until this

is possible, one has to make do with the Monte Carlo simulation, try to understand

its shortcomings and correspondingly improve it as one goes along.

4.4.1 Geometry description

Figures 4.4, 4.5 and 4.6 show cuts through the detector perpendicular to the X, Y

and Z axes as it is seen by GEANT with the ZEUS geometry description NUM12V1.

Refer also to �gure 4.1 for labelling.

C4 NUM12V1

Figure 4.4: Top view of the forward region in ZEUS according to the NUM12V1
geometry description. The coordinate axes are centered at Z=230cm and are 5cm
long.

The large beampipe ange just in front of the FCAL and the C4 collimator just

inside the beampipe hole of the FCAL are very important: the ange is made from

stainless steel with a thin inlay of tungsten and the outer part is steel with a thickness

of 5cm. The jaws of C4 are made from tungsten.

The large ange inside the FCAL beampipe hole at larger values of Z is made

from steel; inserted into this is a �xed tungsten absorber which is 4cm thick.
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C4 NUM12V1

Figure 4.5: Side view of the forward region in ZEUS according to the NUM12V1
geometry description. The coordinate axes are centered at Z=230cm and are 5cm
long.

In front of the FCAL, visible both in �gures 4.4 and 4.5, there is 5mm of scin-

tillator for the presampler followed by a 15mm thick aluminium plate. Inside the

FCAL one sees the two HES gaps at 3 and 6 X�.

Note that the central part of the beampipe is o�set by �1cm in the horizontal

plane (X coordinate), i.e. towards the outside of the HERA ring and that the

FCAL is shifted by �3mm in the vertical plane, i.e. downwards with respect to the

HERA ring. Note also the two rings around the central part of the beampipe which

model the bellows installed here. The photograph in �gure 4.7 shows the actual

forward part of the central beampipe with the ange which is also visible in the

detector simulation (�gures 4.4 and 4.5). Note also the asymmetric arrangement of

the nitrogen cooling pipes. Underneath these pipes, only partially visible, there are

watercooling pipes which are welded to the beampipe. None of these asymmetrically

arranged pipes are modelled in the Monte Carlo.
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C4 NUM12V1

Figure 4.6: End view of the region around the forward beampipe in ZEUS accord-
ing to the NUM12V1 geometry description. The coordinate axes are centered at
Z=230cm and are 5cm long. (The proton beam direction is out of the page.) Cross-
sectional views at Z=213,216,223 and 230cm are superimposed.

Figure 4.7: Forward part of the new central beampipe installed during the 1994/95
shutdown. The pipes are used for nitrogen cooling and the arrangement of the pipes
is asymmetric. This arrangement is similar in the old beampipe which was installed
during the running periods from 1992 through 1994.
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4.4.2 Interactions in dead material

Figures 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 show the locations in the forward region

where particles start showering as calculated in the Monte Carlo. Physics genera-

tor ARIADNE4.03 has been used in conjunction with ZEUS geometry description

NUM12V1.

Figure 4.8: Position in the X, Z plane where primary particles interact as calculated
by the Monte Carlo.

Figure 4.8 identi�es the prominent role of the beampipe ange near Z=214cm

and the C4 collimator. Quite a large number of particles start showering in this

ange and secondaries from these showers may reach the calorimeter even though

the primary particles are emitted at angles well outside the geometrical acceptance

of the calorimeter.

This ange, the central part of the beampipe and a part of the C4 collimator are

o�set with respect to the beam axis by 1cm in the negative X direction. The e�ect

of this o�set is immediately visible as a shadowing e�ect in �gures 4.10 and 4.13:

more hits are seen at positive values of X near the beampipe ange near Z=214cm

(the shadowing object) and less hits at positive values of X inside the beampipe

wall between 270cm and 370cm (where the shadow \falls"). This e�ect results in an

asymmetry of the energy measured on the left and on the right side of the beampipe

hole in the FCAL as shall be discussed later on.
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Figure 4.9: Position in the Y , Z plane where primary particles interact as calculated
by the Monte Carlo.

4.4.3 Response to particles outside the geometrical accep-

tance

As indicated in the previous section, the acceptance of the calorimeter extends well

beyond the geometrical aperture. This is illustrated by �gure 4.14.

In the range 0:5 < � < 2:5, which is completely inside the detector, about 87%

of the energy of a pion (�+; ��) is seen with a resolution of 33% (integrated over the

nominal energy spectrum). For photons, 89% of the energy is seen with a resolution

of 17%.

In the range 4:5 < � < 5:0, which is already strictly outside the detector aperture,

only a very small fraction of the photons deposit energy in the calorimeter but pions

typically deposit 33% of their energy.

At � > 5, the acceptance dies out very rapidly but tails exist up to pseudora-

pidities as large as 6.
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Figure 4.10: X position in the range 200 < Z < 250cm where primary particles
interact as calculated by the Monte Carlo. The shaded histogram is the contribution
from photons.

Figure 4.11: Y position in the range 200 < Z < 250cm where primary particles
interact as calculated by the Monte Carlo. The shaded histogram is the contribution
from photons.
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Figure 4.12: Z position in the range 200 < Z < 250cm where primary particles
interact as calculated by the Monte Carlo. The shaded histogram is the contribution
from photons.

Figure 4.13: Position in the X,Z plane where primary particles interact as calculated
by the Monte Carlo. Note the excess of hits in the range 270 < Z < 370cm for
negative values of X.
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Figure 4.14: The ratio of measured over generated energy for photons and pions (�+,
��) in two di�erent � ranges. The two top plots show Emeas=Etru for 0:5 < � < 2:5
and the two bottom plots show the same quantity for 4:5 < � < 5:0.
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4.5 Corrections to the observed energy.

As shown in a previous paper [48], the Monte Carlo produces an adequate simulation

of the hadronic energy ow at �lab < 2:0 i.e. �lab > 7�. What new e�ects in the very

forward region are simulated and to what extent? What e�ect does this have on the

corrections from observed to measured energy ow? The observed ET ow (�gure

4.2) exceeds the simulated ET ow from ARIADNE4.03 in 1993 DIS events in the

range Q2 > 10GeV2 and x < 10�3. Certain features of the data such as the \dip"

near � = 2:8 and the \bump" near � = 3:2 are modelled but at a lower ET level.

4.5.1 Low energy background.

A low energy background, for instance from proton beam halo, which is not modelled

in the Monte Carlo may be investigated by varying the low energy cuto� in the

energy ow calculation. If such a background were present in the data, the agreement

between Monte Carlo and data should improve as the cuto� increases.

In fact, as can be seen in �gure 4.15, the opposite happens (to a small extent). If

the energy distributions of cells in the data and the Monte Carlo are similar in shape,

but the mean of the data distribution is greater than the mean of the Monte Carlo

distribution, the agreement between the plots will worsen as the cuto� increases. It

is likely that this is the cause of the slight divergence observed.
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Possible low energy background in excess forward energy
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Figure 4.15: Observed and simulated energy ow (1993 DIS data and ARIADNE4.03
using NUM12V1 geometry) for three values of low energy cuto�. The �gures are not
normalised, only relative di�erences should be considered. Solid histograms represent
data, dashed represent Monte Carlo.
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Source 1993 DIS NUM12V1 NUM10V3
�E(HAC1) (inner) 3.10 2.46 2.59
�E(HAC2) (inner) 2.12 1.59 1.75
�E(HAC1) (outer) 0.65 0.57 0.60
�E(HAC2) (outer) 0.42 0.35 0.37
�E(EMC) 0.98 0.94 1.05
Eright=Eleft(HAC1) (inner) 1.09 0.96 1.01
Eright=Eleft(HAC2) (inner) 1.17 1.09 1.09
Eup=Edown(HAC1) (inner) 1.15 1.06 1.07
Eup=Edown(HAC2) (inner) 1.12 1.05 1.01
Eright=Eleft(HAC1) (outer) 1.00 0.97 0.98
Eright=Eleft(HAC2) (outer) 1.05 0.92 1.03
Eup=Edown(HAC1) (outer) 1.03 1.02 0.95
Eup=Edown(HAC2) (outer) 1.02 0.97 0.97
Eright=Eleft(EMC) 0.90 0.95 0.95
Eup=Edown(EMC) 1.08 1.00 1.05

Table 4.1: Summary of the energy measurement features in beam pipe cells. Energies
quoted are the mean values (not the transverse component) measured in the centres
of the cells (in GeV). \Inner" refers to cells adjacent the beam pipe, \outer" to
cells one module further away. (The statistical errors on entries in this table are
negligible.)

4.5.2 Energy asymmetry.

An energy asymmetry is observed in FCAL HAC cells nearest the beam pipe. Since

the azimuthal energy ow is �-symmetric, azimuthal asymmetries in the ow must

come from detector e�ects.

Shown in �gure 4.16 are the mean energies measured in the eight FCAL HAC cells

adjacent the beam pipe and the eight cells one module further away. Shown also are

the mean energies from the EMC cells in the �rst tower adjacent the beam pipe. In

this region of the FCAL, there are four EMC cells (20 x 5cm (width x height) each)

for every HAC cell (20 x 20cm each). The energies quoted for the EMC cells are the

mean energy of each block of four cells. (The timing and imbalance cuts which are

applied to the data (section 4.5.4) have a small e�ect on the mean beam pipe cell

energies (� �1%) and a negligible e�ect on the energy asymmetries.) There are

several important points to note (see also table 4.1):

� More energy is observed in all cells immediately above the beam pipe than in
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those immediately below both in the data and the Monte Carlo. One of the

origins of this asymmetry is the fact that the FCAL position is shifted by 3mm

downwards with respect to the beam axis.

� More energy is observed in the HAC cells immediately to the right of the beam

pipe than in those immediately to the left. Version NUM10V3 of the Monte

Carlo reproduces this e�ect but at a lower level. Version NUM12V1 actually

reverses the asymmetry in the HAC1 cells.

� More energy is observed in the EMC cells immediately to the left of the beam

pipe than in those immediately to the right. Both Monte Carlo versions re-

produce this asymmetry but at a lower level.

One of the reasons for the right/left asymmetry may be the o�-centred posi-

tioning of the beam pipe ange (near Z = 214cm) with respect to the FCAL and

the C4 collimator inside the beam hole of the FCAL (see section 4.4). The level of

this e�ect appears not to be modelled either in NUM10V3 or in NUM12V1. These

two detector descriptions of the forward beam pipe region are shown in �gure 4.17.

Note that although version NUM12V1 contains a more detailed description of the

forward region, it does no better than version NUM10V3 in the prediction of the

energy asymmetries.

The discrepancy between data and Monte Carlo with regard to these asymmetries

is used in estimating the systematic errors.
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Figure 4.16: The mean energy (not transverse), in GeV, observed and simulated in
the FCAL cells nearest the beam pipe. 1993 DIS data with timing and imbalance
cuts applied (see text) is observed in row (a). Monte Carlo with NUM12V1 geometry
using ARIADNE4.03 is simulated in row (b). Monte Carlo with NUM10V3 geometry
for the same model is simulated in row (c). Imbalance cuts have also been applied
to the Monte Carlo.
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(a)NUM10V3 (b)NUM12V1

Figure 4.17: End views of the FCAL beam pipe region as described by the two simu-
lation versions indicated. The proton direction is out of the page.

4.5.3 Cerenkov e�ect in wavelength shifter bars.

Most particles deposit their energy inside the depleted Uranium scintillator sand-

wich. Some of this energy leaks into the wavelength shifter bars (there are two of

these for each cell, one for each photomultiplier tube (PMT)). The energy of the

deposit is known via a standard signal-to-energy conversion and this e�ect is mod-

elled in the Monte Carlo. The calorimeter timing is calibrated in such a way that

particles from the nominal interaction point (NIP) generate a signal at time = 0 if

they interact in this way.

Some particles that hit the wavelength shifters directly at small angles (< 40mrad)

may travel a large distance inside the wavelength shifter bars and produce a large

signal by the emission of Cerenkov light (�gure 4.18b) [5, 50].

This e�ect is not simulated in the Monte Carlo and is more likely to occur around

the beam-pipe cells for two reasons:

1. The sides of the wavelength shifters on the left and right beam-pipe cells

are adjacent the beam-pipe and therefore more exposed to particles from the

beam-pipe region. They do not have the protection of the Uranium sandwich.
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Figure 4.18: A schematic top view (not to scale) of the FCAL cells nearest to the
beam pipe. (Only one side of the calorimeter is shown.) Particles travelling along (a)
may shower far from the FCAL and scattered secondaries can enter the calorimeter
with a wide range of incident angles (see section 4.4). Particles within a certain
incident polar angle to the FCAL, (b), may travel a long way down a wavelength
shifter causing Cerenkov light to hit the PMT [5, 50].

2. The range of angles of the wavelength shifter bars in the beam pipe cells

(30{50mrad measured from the NIP) is a range still susceptible to particles

travelling a large distance down the bars and producing Cerenkov light.

This e�ect is characterised by large imbalances of the energy measurement be-

tween the two PMTs in the hit cell. Imbalance is de�ned as

Icell =
(Eleft � Eright)

(Eleft + Eright)
(4.2)

Note: The convention here is that \right" and \left" are de�ned as the positions

of the PMTs as viewed from the NIP.

If both wavelength shifters associated with a cell are hit in such a way that

Cerenkov light is produced, the value Icell is not predictable. However, the timing

signal in the PMTs generated by these hits is somewhat earlier than the showering

signals. Figure 4.19a shows the relative di�erence in PMT times versus cell imbalance

for the 1993 DIS data. Figure 4.19b is the same plot taken from [50] for a sample

with a much higher beam-gas background where the e�ect is strongly enhanced.
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Figure 4.19: The mean di�erence in the timings of the PMTs (units are s in plot (a)
and ns in plot (b)) plotted against the cell imbalance (equation 4.2). The errors on
the plots indicate the width of the mean di�erence. Plot (b) is taken from [50].
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4.5.4 Timing and imbalance cuts.
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Figure 4.20: The regions of PMT timing and cell imbalance indicating which hits
are used in the energy ow analysis and which are not. The time axis is relative to
each PMT's mean time. (The timing cuts are not applied to the Monte Carlo but
the imbalance cuts are applied.)

Figure 4.21 shows the observed and simulated timing distributions for all cells in

1993 DIS data and Monte Carlo ARIADNE4.03 with NUM12V1 geometry. Note that

the timing is not at all described in the Monte Carlo. An additional observation

is the energy spectrum for very late and very early cell hits (jtj � 64ns) which is

continuous in the data but has a discrete spectrum in the Monte Carlo.

Figure 4.22 shows the cell imbalances observed and simulated for the same event

samples as above. Note the asymmetric imbalance distribution in the uncut data

in (a) which is seen in (b) to come mainly from hits in the beam pipe EMC cells.

When a 200MeV cut is placed on the cell energy, the asymmetry in the imbalance

distribution disappears, as seen in (c), but the width of the distribution is still not

completely modelled in the Monte Carlo.
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Figures 4.23,4.24,4.25 and 4.26 show imbalance distributions for 1993 DIS data

and Monte Carlo ARIADNE4.03 with NUM12V1 geometry for EMC and HAC cells

adjacent the beam pipe. The positions of the tails in the data is simulated but the

widths are not, especially in EMC cells. This is not too important, however, since

the tails contribute a very small amount (< 1%) to the observed transverse energy

ow as can be seen in �gure 4.22c,d and also table 4.2.

Timing and imbalance information is used to identify and remove energy deposits

in the data which are not modelled in the Monte Carlo.

PMT timing adjustment using the C5 detector

Before the PMT signal times are used in the timing cuts, an adjustment for the

position of the vertex and the lateness of the colliding beams is made. Using the

method described in detail in [51]:

tcorr = t+
�
(
Cv

30
� Cl)� 10�9

�
(4.3)

� tcorr; t = corrected, observed PMT hit times (s)

� Cv; Cl = vertex Z (cm) and beam lateness (ns) as calculated from the C5

detector timings

(The corrections for 1993 DIS data are typically 2{3ns.)

Note: the polar angle correction to the time of ight is ignored since, in the very

forward region, this is negligible.
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Comparison of the PMT timings in data and Monte Carlo
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Figure 4.21: The left{hand plots show the PMT timing spectra for 1993 DIS data
(top) and ARIADNE4.03 Monte Carlo with NUM12V1 geometry (bottom). The right{
hand plots are the energy spectra of cells whose PMT timings are very late or very
early (jtj � 64 ns)
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Imbalance comparisons
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Figure 4.22: The cell imbalance (equation 4.2) distribution for FCAL cells adjacent
the beam pipe. The solid histogram in (a) represents the imbalance distribution
of all beam pipe cells observed in 800 events from 1993 DIS data. The dashed
histogram represents all beam pipe cells simulated in 800 events using ARIADNE4.03
with geometry version NUM12V1. The plots in (b) are all taken from the observed
1993 DIS data. The solid histogram is (the same as the solid histogram in (a)) for
all beam pipe cells, the dashed for EMC cells only and the dotted for HAC cells only.
Plots (c) and (d) correspond to (a) and (b) respectively but with a low energy cuto�
(Ecell > 200MeV). The contribution of high imbalance hits to the observed energy
ow is shown in table 4.2.
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Imbalance’ spectra of FCAL beampipe cells for ’JDIS93
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Figure 4.23: The cell imbalance distribution for all FCAL HAC1 cells adjacent the
beam pipe observed in 1993 DIS data. The plot for HAC2 cells (not shown) is similar.
The Y axis is a logarithmic scale. The proton direction is into the page. Note the
position of the tails in the left{hand and right{hand plots. The cell below the beam
pipe contains a dead PMT.
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Imbalance’ spectra of FCAL beampipe cells for ’NUM12
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Figure 4.24: The cell imbalance distribution for all FCAL HAC1 cells adjacent the
beam pipe simulated in ARIADNE4.03 with NUM12V1, geometry. The plot for HAC2
cells (not shown) is similar. The Y axis is a logarithmic scale. The proton direction
is into the page. Note that the positions of the tails in the plots is correctly modelled
but the tails are somewhat smaller.
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Imbalance’ spectra of FCAL beampipe cells for ’JDIS93
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Figure 4.25: The cell imbalance distribution for all FCAL EMC cells adjacent the
beam pipe observed in 1993 DIS data. The Y axis is a logarithmic scale. The proton
direction is into the page. Note the width and position of the tails in the distributions
left and right of the beam pipe hole. The imbalance distribution of cells containing
dead PMTs is seen as a spike at 0.



4.5. CORRECTIONS TO THE OBSERVED ENERGY. 83

Imbalance’ spectra of FCAL beampipe cells for ’NUM12
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Figure 4.26: The cell imbalance distribution for all FCAL EMC cells adjacent the
beam pipe simulated in ARIADNE4.03 with NUM12V1 geometry. The Y axis is a
logarithmic scale. The proton direction is into the page. The position of the tails is
modelled but the tails of the distribution are much smaller than those found in the
data.
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The position of the cuts

Usually, the energy in a cell is the sum of the energies measured in both PMTs. On

an event-by-event basis, some PMTs are excluded from the analysis if any of the

following occurs:

1. The recorded hit time in a PMT is more than 7.5ns earlier than the mean

time for that PMT. (The mean timings for each PMT are extracted by making

a Gaussian �t to the overall distribution of hits with Ecell > 200MeV. The

right{hand PMT timing distributions, as seen from the NIP, in the FCAL EMC

cells around the beam pipe are shown in �gure 4.27. Note the non-Gaussian

tails in the PMTs left of the beam pipe and above the beam pipe where the

wavelength shifter bars are directly exposed to low-angle particles.)

This cut eliminates out-of-time deposits which may stem from Cerenkov hits

in the wavelength shifters.

2. The recorded time in a PMT is more than 15ns later than the mean time

for that PMT. This cut is designed to exclude deposits from backscattered

particles or out-of-time interactions.

3. If the cell imbalance (Icell) is > +0:6 then the left{hand PMT is cut. If

Icell < �0:6 then the right{hand PMT is cut. If Icell � �1:0 (which can happen
in a few cases1) then both PMTs are excluded from the event. Imbalances >

�0:6 cannot originate from a particle hitting the depleted Uranium scintillator

sandwich but only if a particle hits only the wavelength shifter or a PMT

sparks.

For all cells which have had either of their PMTs excluded, the cell energy is set

to twice the energy of the remaining PMT. For cells where both PMTs are excluded,

the cell energy is set to 0. The range of the above cuts is summarised in �gure 4.20.

The result of the cuts

The e�ect of applying each of the above cuts to the beam pipe cells in the data is

shown in table 4.2. Clearly, all the cuts a�ect only a small proportion of PMTs. The

1Imbalances> �1 may occur. This happens when one of Eleft or Eright becomes negative due
to the subtraction of the average calorimeter Uranium noise pedestal from a cell with a very small
signal.
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Hit selection %PMTs (right) �Eright %PMTs (left) �Eleft

All hits 100.0 1.10 100.0 1.00
jIcellj > �0:6 and t < �7:5ns 0.6 0.19 0.1 0.52
jIcellj < �0:6 and t < �7:5ns 3.0 0.18 2.2 0.18
jIcellj > �0:6 and t > �7:5ns 0.8 0.09 0.1 0.08
jIcellj < �0:6 and t > 15ns 2.4 0.06 3.9 0.05
All cuts 93.2 1.14 93.7 1.03

Table 4.2: A summary of the e�ect on the PMTs in cells adjacent the beampipe in
1993 DIS data when timing and imbalance cuts are applied to these cells. Energy
quoted is the mean energy (not transverse) in GeV of the PMTs.

energies deposited outside the cut boundaries are small compared to those within.

The candidates for Cerenkov hits which result in high imbalances and/or early

timings seem to be at low energies; this is in contrast to earlier �ndings [50] but

note that the event sample in [50] was chosen speci�cally to enhance this e�ect. We

conclude that Cerenkov hits only contribute a small amount to the observed energy

ow.
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t1(adjusted)’ spectra of FCAL beampipe cells for ’JDIS93
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Figure 4.27: The hit times measured in 1993 DIS data by the right{hand PMTs
of FCAL EMC cells adjacent the beam pipe. Only hits with EPMT > 200MeV and
jIcellj < 0:6 are plotted; the timing for these hits is considered to be well{detemined.
The times have been adjusted by the C5 vertex and lateness (see text). The Y -axis
scale is logarithmic. The proton direction is into the page and the view is from the
NIP.
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4.6 Geometric unfolding.

After discussing the contributions to the observed energy ow which are not mod-

elled by the Monte Carlo, we use the Monte Carlo to unfold the purely geometric

e�ects which are modelled.

The geometric correction to the measured energy ow can be separated from the

energy losses. In this way, the systematic errors can be isolated and understood

more easily.

Due to energy leakage into the calorimeter from particles showering on dead ma-

terial nearby and due to the degradation of angular resolution in the region � > 2,

a bin-by-bin correction method for the energy ow is not su�cient (see section 5.1).

A more general procedure to unfold the geometric e�ects has been designed for this

analysis.

We de�ne the dispersal coe�cients

f i;j =
�i;j

�i
(4.4)

where �i is the simulated energy in the ith � bin from the Monte Carlo and �i;j is

the amount of energy which particles generated in bin j have deposited in bin i. (Ni

bins = Nj bins). By construction, f i;j is normalised to 1, i.e.

X
j

f i;j = 1 (4.5)

f i;j can be interpreted as the probability that energy reconstructed in bin i has been

generated at bin j.

In order to unfold back to the hadronic energy ow we fold the dispersal coe�-

cients with the observed energy, � i, in each bin i:

Ei =
X
j

f j;i:� j (4.6)

� Ei is the geometrically-unfolded energy ow in the ith � bin.

In other words, we take each observed energy bin, i, and re-distribute it to the

likely true bins, j, from which it originates. This is extended over all observed bins.

In practical terms the procedure works as follows:
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1. The simulated energy ow from a standard Monte Carlo sample is extracted

(Figure 4.28a). The standard for the 1993 data analysis is the NUM12V1

description of ZEUS through which particles from the ARIADNE4.03 generator

are tracked from a vertex whose distribution is based on data taken in the

summer of 1993. (In the 1994 analysis, ARIADNE4.06 is used with the summer

1994 sampled vertex distribution.)

2. The energy deposited in all cells within a �xed � range is summed. (The

assignment of cells to a bin of � is dependent on the vertex which varies from

event to event. The overall event vertex distribution must therefore be similar

for the data and the Monte Carlo.)

3. Those particles which have hit cells in this � range are found by a navigation

through the Monte Carlo data. The 4-vectors of these �nal state hadrons are

now available.
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Figure 4.28: (a) is the simulated energy ow from the ARIADNE4.03 Monte Carlo
sample using NUM12V1 geometry. The solid histogram in (b) is the (not normalised)
dispersal function for the range 2:63 < � < 2:92 i.e. the energy{weighted angular
distribution of particles which have been reconstructed in the range denoted by the
dashed lines. Note that this function extends to �-values greater than 5 units of
pseudorapidity.
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4. The generated � distribution of particles weighted with the transverse energy

which each particle deposits in the �xed � range is calculated. Figure 4.28(b)

shows an example distribution for a �xed � bin. Figure 4.29(a) shows these

distributions for all �xed bins.

5. The distributions are normalised to 1. These are now called the dispersal

functions and can be envisaged as the probability of the energy measured in

a �xed � bin being generated at a second (the same or di�erent) � bin.

6. The geometrically corrected energy ow is obtained by summing the dispersal

functions weighted with the observed energy in each respective � bin. The

result of this unfolding is shown in �gure 4.29(b).
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Figure 4.29: (a) shows the dispersal functions for all �xed � bins. The solid plot in
(b) represents the geometrically unfolded energy distribution for the 1993 DIS data
sample. The dashed plot in (b) represents the geometrically unfolded distribution for
the ARIADNE4.03 Monte Carlo sample with NUM12V1 geometry.
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Figure 4.30: The RMS of the dispersal functions which give the e�ective � resolution
for each bin.

4.7 Systematic errors.

4.7.1 Errors on the observed energies.

Cuts made to the 1993 data are varied and the transverse energy ows from cells

re-calculated. The errors shown in table 4.3 indicate the approximate percentage

error on the observed energy across the entire � range.

All of the errors (except the statistical one) are considered to be asymmetric

when calculating the resultant error values i.e. all positive variations and all negative

variations are summed independently in quadrature to yield the �nal positive and

negative variations on the central values. The resultant errors are the quadrature

sum of those in the table. The observed energy ow from the data is replotted with

the resultant error bars in �gure 4.31. Note that the dominant error is the choice of

electron �nder indicating the di�erent levels of background in the two samples.
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Source of error %error

Statistical < �0:5
Tight timing cuts < �1
(jIcellj < �0:6 and �6:75 < t < 15ns)
No timing cuts +1
(all Icell and t)
Allowing events with < �0:5
� > 33GeV
Only allowing events with < �1
� > 40GeV
Electron �nder changed �3
from EEXOTIC!SINISTRA

Table 4.3: E�ect of the alterations made to the event selection and PMT timing on
the observed transverse energy ow in the 1993 DIS data.

4.7.2 Errors on the geometric unfolding.

The energy correction factors and angular dispersal functions are derived from ARI-

ADNE4.03 Monte Carlo geometry version NUM12V1 with the 1993 summer vertex

distribution. Those cuts which are relevant to Monte Carlo are applied in the same

way as they are applied to the data.

Cuts and event parameters are systematically altered in the Monte Carlo to

estimate the resultant systematic error on the angular dispersal functions. The

factors are re-calculated and applied to the observed, standard-cut data. To account

for the systematic errors on the observed energy ow, the standard Monte Carlo

geometric unfolding is applied to the high and low errors found in 4.7.1. These are

included in the resultant calculation. Table 4.4 lists the approximate error on the

geometrically-unfolded transverse energy ow resulting from each of the checks.

Since the geometric unfolding of the transverse energy ow relies upon the de-

scription of the forward region in the Monte Carlo, it is not surprising that the

error resulting from the change NUM12V1!NUM10V3 is large (see �gure 4.17). An-

other variation which results in equally-sized errors is the change of input model

CDMBGF!MEPS; generator ARIADNE4.03!LEPTO6.1.

The resultant error on the geometrically-unfolded transverse energy ow is the

quadrature sum of those checks listed in the table (and the resultant error found in
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Description of alteration What the check determines %error

vertex Z ! Z � 1:0cm a mismeasurement of the �1.5
vertex Z ! Z + 1:0cm primary vertex �1.5
Ecells ! Ecells � 5% an inconsistent FCAL �2
Ecells ! Ecells + 5% energy scale in data �2

and Monte Carlo
EEXOTIC!SINISTRA e� �nder e�ect of di�erent �2.5
� > 33GeV event selection < �0.5
� > 40GeV < �1
Adjust beam pipe cell energies the e�ect due to the +2

level of �-asymmetry
found in the data

NUM12V1!NUM10V3 geometry the stability of unfolding �10
ARIADNE4.03!LEPTO6.1 generator to a change of forward �9

region description or
lower energy ow

Table 4.4: Approximate systematic errors on the geometrically-unfolded transverse
energy ow.
The Monte Carlo event acceptance with standard cuts in the kinematic range of
the 1993 analysis is � 80%. Acceptance is de�ned as accepted events/produced

events.
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Cell energy with systematic errors
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Figure 4.31: The normalised observed transverse energy ow from calorimeter
cells with resultant systematic error bars on the 1993 DIS data points. Simulated
Monte Carlo transverse energy ows using NUM12V1 geometry for the ARIADNE4.03
(CDMBGF, larger histogram) and LEPTO6.1 (MEPS, smaller histogram) models are
shown for comparison.

4.7.1). The unfolded transverse energy ow for data with the resultant error bars is

shown in �gure 4.32.

4.7.3 Energy correction factors.

The energy correction factors are estimated (using the Monte Carlo) by dividing the

true transverse energy ow by the geometrically-unfolded transverse energy ow. In

practical terms, this is identical to dividing the transverse energy ow as given by

the angles and energies contained in the Monte Carlo table of hadron 4-vectors by

that calculated by taking energies from the hadronic energy deposited by particles

in the calorimeter as predicted by GEANT and angles from the 4-vector table.

The hadronic transverse energy ow in the data is obtained by multiplying the

geometrically-unfolded ow by the energy correction factors for each of the checks

made in 4.7.2. The acceptance curves for all the checks are obtained independently

from the geometric unfolding. These curves are plotted in �gure 4.33, superimposed

for each systematic check. Note that the Monte Carlo predicts some acceptance in

the � > 4:3 range which is outside the angular coverage of the FCAL as measured
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Systematic error on unfolded data
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Figure 4.32: The normalised geometrically-unfolded transverse energy ow with re-
sultant systematic error bars on the 1993 DIS data points. Geometrically corrected
Monte Carlo energy ows using NUM12V1 geometry for the ARIADNE4.03 (CDM-
BGF, solid histogram) and LEPTO6.1 (MEPS, dashed histogram) models are shown
for comparison.

from the NIP. This is due to hadrons showering in dead material in front of the

FCAL such as the beam pipe ange and the C4 collimator (see section 4.4).

The error on the hadronic transverse energy ow averaged over all �, from each

of these checks, is displayed in table 4.5.

The resultant errors on the hadronic ow are the quadrature sum of the errors

from 4.7.2 and the errors on the energy correction factors.

To verify the validity of the unfolding and energy correction procedure, when

the calorimeter deposits simulated by ARIADNE4.03 are unfolded and corrected, the

resultant transverse energy distribution is exactly the same as the \true" hadronic

transverse energy distribution predicted by the Monte Carlo.
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Alteration %error
vertex Z ! Z � 1:0cm �1.5
vertex Z ! Z + 1:0cm �1.5
Ecells ! Ecells � 5% +5
Ecells ! Ecells + 5% -5
EEXOTIC!SINISTRA e� �nder �1
� > 33GeV < �1
� > 40GeV < �1
NUM12V1!NUM10V3 geometry �5
ARIADNE4.03!LEPTO6.1 generator �5

Table 4.5: Average systematic errors over the � range of the ET ow on the energy
correction factors.
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Figure 4.33: The calorimeter energy acceptance curves (inverse energy cor-
rection factors) for the Monte Carlo systematic checks. The largest devia-
tions (dotted and dashed histograms) are seen for NUM12V1 !NUM10V3 and
ARIADNE4.03!LEPTO6.1.
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4.8 Hadronic ET ow measured in 1993 DIS data.

BIN �� RMS(�) ET ET high ET low % err(high) % err(low)
1 1.66 0.31 2.12 2.48 1.90 17.07 -10.51
2 1.97 0.33 2.22 2.33 1.92 4.82 -13.60
3 2.28 0.35 2.11 2.32 1.86 10.14 -11.77
4 2.58 0.43 2.20 2.37 1.86 8.00 -15.37
5 2.89 0.48 2.01 2.13 1.74 6.21 -13.09
6 3.20 0.50 1.88 2.00 1.75 6.49 -6.90
7 3.50 0.54 1.79 2.02 1.56 12.43 -12.85
8 3.81 0.60* 1.72 2.05 1.53 19.39 -11.11
9 4.12 1.73 1.91 1.56 10.41 -9.70
10 4.43 1.66 1.91 1.49 15.40 -10.07
11 4.73 1.51 1.83 1.27 20.81 -16.19
12 5.04 1.47 1.87 1.09 27.65 -25.44
13 5.35 1.31 2.19 0.51 67.55 -60.59

The measured transverse energy ow is given in the table and the result is plotted

in �gure 4.34.

The � resolution comes from the RMS width of the dispersal function for that �

bin. These are plotted in �gure 4.30. In the bin marked \*", the RMS is not a good

measure for the resolution since the dispersal function no longer has a simple, one-

peak structure. The resolution quoted in this bin is an estimate from extrapolating

an exponential �t to the previous bins.

In bins 9{13 (not plotted), the � resolution is not known and the energy accep-

tance is small. We choose the �nal displayed measurement to be at � � 4:1 (�high

of bin 8) where the energy acceptance is � 30%.

It must be noted that the shape and level of the unfolded and corrected data

is dependent upon that of the \true" Monte Carlo distribution which unfolds it.

This can be seen from the level of error introduced by using a completely di�erent

\true" distribution. The results presented can certainly be used to compare to

Monte Carlo to show inconsistencies but they do not necessarily represent the true

transverse energy spectrum.

Care must be taken when comparing to any other theoretical description where

an analysis of the data must be iterated using the new description as a \true"

distribution.
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Hadronic transverse energy flow
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Figure 4.34: The transverse hadronic energy ow measured in the 1993 DIS data in
the kinematic range indicated. The vertical error bars indicate the total systematic
error. The horizontal error bars correspond to the � resolution. The statistical error
on the points is negligible. Hadronic transverse energy ows from the ARIADNE4.03
(CDMBGF, dashed histogram) and LEPTO6.1 (MEPS, dotted histogram) generators
are shown for comparison.
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Chapter 5

Energy ows throughout phase

space.

5.1 Motivation and method

In the previous chapter, it was seen that the statistical error on the transverse energy

ow measurement in the central region for 1993 data was negligible.

It was decided that, with the six-fold increase in the number of events which

ZEUS collected in 1994, the analysis should extend to cover all of the kinematic

phase-space available at HERA and to cover the entire angular range of the detec-

tor.

With the full implementation of the SRTD in 1994, DIS analyses can extend to

lower Q2 with higher accuracy in the determination of the angle and energy of the

scattered electron [30].

The kinematic range of a portion of DIS events collected in 1994 is shown in

�gure 5.1. The data is divided into 24 bins in y and Q2 represented by the solid

lines on the �gure. In addition, the kinematic bin used for the 1993 analysis is

also included in the 1994 analysis for comparison purposes. The statistical error

on the energy ow measurement becomes unimportant when more than a couple

of thousand events occupy a bin. An event selection technique is used which stops

�lling a bin if, say, 2000 events already occupy it. In this way, needless analysis of

events is avoided. The structure of the kinematic dispersal of events in �gure 5.1

shows the e�ect of using this method.

In order to correct the energy deposits back to the hadronic �nal state, the

Monte Carlos have been generated from Q2 = 4GeV2. This Q2 is lower than the

99
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Q2 minimum of the data to correct for migrations due to kinematic reconstruction

errors.

Kinematic bin allocation for the 1994 analysis
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Figure 5.1: Kinematic distribution of accepted 1994 DIS events.
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Bin �x Q2 range (GeV2) �Q2 (GeV2) y range �y Accep(%)
1 0.00095 6.0 to 10.0 7.6 0.04 to 0.15 0.089 88.9
2 0.0004 6.0 to 10.0 7.6 0.15 to 0.30 0.213 91.4
3 0.0002 6.0 to 10.0 7.6 0.30 to 0.70 0.415 75.5
4 0.002 10.0 to 20.0 13.7 0.04 to 0.15 0.076 93.7
5 0.0007 10.0 to 20.0 13.5 0.15 to 0.30 0.215 94.8
6 0.0004 10.0 to 20.0 13.7 0.30 to 0.70 0.421 82.4
7 0.004 20.0 to 40.0 27.2 0.04 to 0.15 0.078 96.4
8 0.0014 20.0 to 40.0 27.0 0.15 to 0.30 0.215 98.0
9 0.0007 20.0 to 40.0 26.8 0.30 to 0.70 0.434 81.9
10 0.008 40.0 to 80.0 54.2 0.04 to 0.15 0.077 97.7
11 0.003 40.0 to 80.0 54.3 0.15 to 0.30 0.212 96.4
12 0.0014 40.0 to 80.0 55.1 0.30 to 0.70 0.446 82.1
13 0.015 80.0 to 160.0 107.4 0.04 to 0.15 0.078 96.6
14 0.006 80.0 to 160.0 110.0 0.15 to 0.30 0.212 96.8
15 0.003 80.0 to 160.0 109.2 0.30 to 0.70 0.428 81.9
16 0.029 160.0 to 320.0 211.2 0.04 to 0.15 0.081 95.1
17 0.011 160.0 to 320.0 216.2 0.15 to 0.30 0.209 96.9
18 0.006 160.0 to 320.0 218.8 0.30 to 0.70 0.419 84.3
19 0.062 320.0 to 640.0 450.0 0.04 to 0.15 0.081 94.8
20 0.021 320.0 to 640.0 422.7 0.15 to 0.30 0.218 95.4
21 0.011 320.0 to 640.0 427.5 0.30 to 0.70 0.439 90.9
22 0.10 >640.0 993.1 0.04 to 0.15 0.107 94.9
23 0.06 >640.0 1098.3 0.15 to 0.30 0.211 94.3
24 0.03 >640.0 1250.8 0.30 to 0.70 0.469 92.4

Table 5.1: The kinematic ranges and means measured in the 1994 analysis bins. Also
shown are the event acceptances calculated using ARIADNE4.06 with the NUM12V1
geometry description.

The calorimeter cell timing and imbalance cuts are calculated independently and

in exactly the same way for the 1994 data as for the 1993 data. The magnitude and

position of these cuts (not shown) is almost exactly the same as for the 1993 analysis.

Considering the success of the geometric unfolding method described in the pre-

vious chapter, this method is extended to cover the entire � range of ZEUS (�gure

5.1a). The method is principally the same as for the 1993 analysis.
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Figure 5.2: Top plot: dispersal functions for the entire angular coverage of ZEUS
used to correct 1994 data. Bottom plot: comparison of the unfolding method with a
standard bin-by-bin correction method in a typical kinematic bin. Note the instability
of the standard method in the far-forward region of ZEUS.
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5.1.1 Systematic error checking

One conclusion of the 1993 analysis is that there are only a few important sources

of error in the measurement of ET ow. In consequence, a number of error checks

can be discounted since their contribution to the overall error is small.

In contrast to the 1993 analysis, the 1994 ET ows are corrected back to the

hadron level with ARIADNE4.06, an updated version of ARIADNE4.03. In addition,

the default electron �nder is chosen to be SINISTRA as opposed to EEXOTIC since

updates in the code have increased its �nding purity.

One of the important sources of error is the change in the geometrical description

of ZEUS used by the Monte Carlo simulation in the far-forward region of the

detector (notably the change in the description of the C4 collimator). This type

of alteration, used in the 1993 analysis, is not available for 1994 data since there is

presently only one version of simulation with the correct vertex distribution (version

NUM12V1). An estimate of the magnitude of this error is made for the 1994 data.

At � > 2, �ET = 10% which becomes �ET = 15% for � > 4.

Due to this estimation and the exclusion of the smaller sources of error, the overall

error is calculated symmetrically. That is to say, the magnitude of a deviation from

the central measured value due to an error check is added in quadrature with the

others to produce the overall error. In the 1993 analysis, the positive and negative

deviations were considered separately.

The following table is a list of the magnitude of error found by each of the checks

made on the 1994 data:

Source of error Error at high Q2 Error at lowQ2

Geometric as above as above
Model ARIADNE4.06 ! LEPTO6.1 �5% �8%
Event selection, E0

e(10 ! 8GeV) �1% �7%
Event selection, �(35! 33) �1% �7%
E0

e �nder SINISTRA ! EEXOTIC �3% �12%
Overall �10% �20%

As can be seen clearly, the background contribution of photoproduction events

becomes important at low Q2.
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5.2 Di�ractive events

5.2.1 Description

In the data, we observe a substantial fraction of events which have a very low energy

in the FCAL (�gure 5.3a). They are not observed in the prediction of the LEPTO

simulation. The events are clearly classi�able as DIS but lack energy in the �p

central region.

(a)
FCAL BCAL RCAL

η=−0.75η=1.1

electron

c)

scattered electron

proton

Figure 5.3: (a) A large-rapidity gap event seen in ZEUS. (b) The �max distribution
for data and LEPTO Monte Carlo. Both plots come from [52].

We can de�ne the variable �max as the pseudorapidity of the hadronic cluster

closest to the proton beam axis in the forward region. To eliminate noise, this cluster

is required to have an energy of at least 400MeV. A cut on this variable makes some

distinction between the normal DIS events and these other, large-rapidity gap or

di�ractive, events [52].

The LEPTO generator produces a negligible number of events with �max < 1:5

(�gure 5.3b) unlike the distribution observed in the data. This cut, used in the 1993

ET ow analysis, strongly reduces the di�ractive events' contribution to the energy

ows.
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More useful than simply disregarding di�ractive events is their extraction and

analysis. It is thought that di�ractive scattering is caused by the exchange of a

colourless object, the pomeron (denoted P), between the incident proton and the

hard-scattering (�q=�q) vertex. There is no consensus as to what partonic con-

stitution of the pomeron is but its structure function has been measured [53]. A

di�ractive process is represented in �gure 5.4b. The scattered proton can either

break apart or not (since the pomeron is a colourless object, the proton can simply

lose momentum and remain stable by its exchange).

Figure 5.4: A schematic representation of the normal DIS process, (a), and the
di�ractive DIS process, (b). The pomeron exchange is denoted by the dotted line.

In di�ractive events, the visible invariant mass in the detector, Mx, is equal to

the mass of the �P system. This is small compared with the invariant mass of the

�p system, W .

It is useful to separate di�ractive events according to the variable xP (xpom). xP,

de�ned similarly to xbj, is the 4-momentum of the proton carried by the pomeron.

It can be evaluated using the expression

xP =
(M2

x +Q2)

(W 2 +Q2)
(5.1)

and it is easy to see that di�ractive events will have small values of xP.

Figure 5.2.1a shows the proportionality between xP and �max. In the following

investigation, the dependence of the transverse energy ow is studied as a function

of xP.
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Unlike LEPTO, ARIADNE contains a simulation of di�ractive events. Figure

5.2.1b shows the distributions of xP as seen in the data and as predicted by ARI-

ADNE4.06. Clearly, the model does not describe the number of di�ractive events

adequately1. Quantitatively, the proportion of di�ractive events measured as a func-

tion of event kinematics is shown in table 5.2.
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COMPARISON OF RECONSTRUCTED Xpom
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Figure 5.5: (a) The proportionality between xP and �max measured in 1994 DIS
data. The top right-hand corner contains normal DIS events. The two lines show
the cuto�s for 1993 data (�max > 1:5) and 1994 data (xP > 0:01). (b) The xP
distribution measured in 1994 data and predicted by ARIADNE4.06. The peaks of
these plots are normalised to compare the relative proportions of di�ractive events.
Note that the scale is logarithmic.

5.2.2 Di�ractive energy ows

The correction method to obtain the hadron-level ET ows for di�ractive events is

exactly the same as for other DIS events. Figure 5.6 shows the ET ows in two

di�erent kinematic regions. 1994 data and ARIADNE4.06 are compared. Note that,

as well as the poor description of the relative number of di�ractive events to normal

DIS events, the peak positions and shapes of the ows are di�erent.

1There exist some dedicated di�ractive event generators such as NIKZAK[63] and POMPYT[62].
These describe the di�ractive component of ep scattering much more adequately.
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As mentioned earlier, the lack of transverse energy ow in the �p central region

is con�rmed. Only the current jet remains visible. The pomeron exchange picture

of di�ractive events predicts that this jet contains three regions analogous to the

�p interaction: the struck quark jet, the �P central region and the P remnant.

Since xP < 0:01, there is insu�cient energy to resolve these regions [55].

The level of ET ow in the central region is raised by the same proportion of

di�ractive events excluded from the full sample.

Example diffractive E T flows in data and ARIADNE
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Figure 5.6: Hadron-level ET ows in two kinematic bins for di�ractive events (events
with xP < 0:01). The systematic and statistical error, added in quadrature, is shown
on the data plot.
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Bin 1994 ARIADNE Bin 1994 ARIADNE Bin 1994 ARIADNE

1 20.0 12.7 2 30.3 13.7 3 26.3 9.2
4 13.3 8.7 5 22.1 9.9 6 21.1 9.6
7 5.5 7.8 8 12.1 7.9 9 16.6 8.0 +
10 1.9 6.2 11 7.6 8.0 12 14.1 7.8 Increasing
13 �0 2.5 14 2.6 5.3 15 7.0 3.6 Q2

16 �0 1.8 17 �0 1.6 18 4.9 3.7 +
19 �0 �0 20 �0 �0 21 1.7 3.3
22 �0 �0 23 �0 �0 24 �0 �0

=) Increasing y =)
Table 5.2: The % of events with xP < 0:01: the measured di�ractive component.
The statistical errors on the data measured in 1994 are � 0:1% and those on ARI-
ADNE4.06 are � 0:2%. In the 1993 bin (x < 10�3; Q2 > 10GeV2), the 1994 data
di�ractive component is measured at 21:0% and the ARIADNE component at 9:5%.
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5.3 Results of the 1994 analysis

Figure 5.7 shows the measurements obtained for the 1994 data ET ow analysis.

The top plot indicates the e�ect of two di�erent cuts on xP . As expected, a cut at

xP > 0:01 increases the average energy in the �p central region as di�ractive events

are excluded. The cut at xP > 0:02 starts to remove normal DIS events which causes

the unpredicted drop in ET ow. This comparison con�rms the lower cut on xP as

the more useful di�ractive event discriminator.

Included in the lower two plots of �gure 5.7 are the comparisons of ET ows from

three physics generators. Two of the generators have been described earlier and the

third, HERWIG5.8, is described fully in the manual produced by its author [56]. In

basic terms, HERWIG is a general-purpose event generator for high energy processes

with particular emphasis on the detailed simulation of parton showers. Colour co-

herence between inital and �nal state partons is included as is soft gluon interference

within jets. The hadronisation model used by HERWIG di�ers from the stretched-

string approach used by LEPTO and ARIADNE: the HERWIG model involves clus-

tering together partons below a threshold energy which then form hadrons. The

default settings of the HERWIG program, without the incorporation of a special

\soft underlying event" feature, have generated events whose energy ow is shown

in the �gure.

At high-Q2, all the generators describe the position and height of the current

jet region. HERWIG5.8 and LEPTO6.1 fail to reproduce the level of ET ow further

forward in ZEUS whilst ARIADNE4.06 predicts the level of the far-forward ow but

not the level immediately forward of the current jet region.

At low-Q2, the level of the current jet region measured in the data is almost

predicted by LEPTO6.1. Neither ARIADNE4.06 nor HERWIG5.8 predict this level.

ARIADNE4.06 again over-estimates the ET level and HERWIG5.8 predicts a much

lower level. Further forward, only ARIADNE4.06 reproduces the ET ow level mea-

sured in the data. The other two models lack transverse energy in this region.

Figures 5.8 and 5.9 show the non-di�ractive ET ows (xP > 0:01) in all 1994

kinematic bins. The data points show the systematic and statistical error added

in quadrature. The horizontal � axis ranges from -4.1 to 5.5. Since the detector

acceptance is very low at � > 4:5, points further forward are only useful as a guide.
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Note how the prediction of the CDMBGF model is much closer to the data, except

in the region slightly further forward of the current jet. The MEPS model does not

describe the data at all well in the �p central region, especially at low-Q and low-x.
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Hadron-level E T flows
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Figure 5.7: The top plot shows the e�ect, in a particular kinematic bin, of two cuts
in xP on the hadron-level ET ow measured in 1994 data. The two lower plots give
a comparison of the data with non-di�ractive ET ows predicted by three popular
physics generators. Statistical errors are shown as horizontal bars in the top plot.
Full errors are shown in all plots as error bars.
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Non-diffractive Transverse Energy Flows
Hadron Level (1/N)(dET/dη)
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Figure 5.8: 1994 data versus the ARIADNE 4.06 prediction. The lower right-hand
plot is the kinematic bin used in the 1993 analysis.
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Figure 5.9: 1994 data versus the LEPTO 6.1 prediction.
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5.4 Comparison of 1993 and 1994 results

As a useful check, a subset of the 1994 analysis is equivalent to the kinematic and

angular region of the 1993 analysis. Figure 5.10 shows the stability of the transverse

energy ow measurement taken from the two di�erent years' running periods. The

two ows are in good agreement in the forward region even though the event selection

criteria are di�erent for both. This indicates that the stability of the measurement

of the ET ows in the forward detector region.

The partonic level ET ow calculated using BFKL dynamics is shown in the plot.

No hadron level calculation is yet available. The e�ect on the level of the ow of

the hadronization of the partons is not analytically calculable but most predictions

estimate an increase in the level of the ow of around 400-500MeV [46]. This brings

the BFKL prediction and our measurement into good agreement.

Hadronic transverse energy flow
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Figure 5.10: Corrected 1993 and 1994 non-di�ractive ET ows in the 1993 kinematic
bin. CDMBGF (ARIADNE 4.03) and MEPS (LEPTO 6.1) predictions are shown for
comparison. Also shown is the parton-level ET ow prediction from Golec-Biernat
et al.[46]



5.5. ENERGY FLOWS VERSUS X 115

5.5 Energy ows versus x

One of the predictions of BFKL dynamics is a rising transverse energy ow in the

�p central region with decreasing xbj [46]. Conventional dynamics predicts a falling

ow with decreasing xbj as can be seen later in �gure 5.11. We can extract, for small

�xed ranges of Q2, a transverse energy ow versus x plot. The three y-bins in each

Q2 interval in the 1994 analysis are equivalent to having three x-bins.

To compare the transverse energy ow level in the central region for each of these

bins requires a boost to the hadronic centre of mass system (HCM). Each individual

hadron should be boosted. However, since the multiplicity of hadrons cannot be

measured in the far-forward region due to the degradation of angular resolution, an

accurate boost of hadrons cannot be achieved.

However, at low values of Q2, the transverse component of the boost can be

neglected (within errors) and a suitable approximation can be made by a purely

longitudinal boost. By neglecting the hadron masses, this is equivalent to a simple

translation of the pseudorapidity axis [48]. This translation is made using

��(= �hcm � �lab) � 1

2
ln

 
4xE2

p

Q2

!
(5.2)

Which further simpli�es, at low-x, to a dependency on y alone.

Mean y �lab(�hcm = 0)
0:08 � 3:0
0:21 � 2:5
0:42 � 2:1

Taking all 9 of the x-bins in the lowest 3 Q2 intervals, the boost translations are

calculated. The transverse energy ow at �hcm = 0 is extracted from the laboratory

frame measurements and displayed in �gure 5.11.

The pseudorapidity interval between the proton remnant and the current jet is

� (lnW ) in the QPM from equation 5.2. As y (/ W 2) decreases, the width of this

central region decreases. The contribution of energy associated with the current

jet but measured at �hcm = 0 will become more signi�cant in the measurement of

transverse energy ow in the central region at low y. Due to this e�ect, at lower x

the measurement may be arti�cially high and not, for example, a signature of BFKL

dynamics.
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To determine whether this is the case, a measurement is made further away from

the current jet. The acceptance of the detector is � 40% at � = 4:2. This allows us

to measure the transverse energy ow in all y bins at �hcm = 1:2. The result of this

measurement is shown in �gure 5.12. No signi�cant di�erence in the shape of the

two distributions can be seen.

The errors displayed on the plots are statistical (bars) and full systematics (lines).

There is certainly some correlation between the systematic error on these points,

e.g. an event selection cut can a�ect all the points in the same way. The quantative

correlation has not been calculated since the boost to the hadronic centre of mass

system will be much more e�ective using information obtained with the FDET

(after the 1995 running period).
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Figure 5.11: Evolution in xbj of the non-di�ractive transverse energy ow at �0:5 <
�hcm < +0:5
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Evolution of E T flow corresponding to ηhcm=1.2
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Figure 5.12: Evolution in xbj of the non-di�ractive transverse energy ow at +0:7 <
�hcm < +1:7
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Chapter 6

Altering the conventional model

It is clear that the MEPS model as simulated by LEPTO6.1, which explicitly uses

conventional (DGLAP) dynamics to describe all stages of the partonic DIS process,

does not describe the transverse energy ows found in ZEUS. This does not in itself

imply the presence of BFKL dynamics.

The MEPS model has been simulated by the default version of LEPTO6.1 with

the exception of the default value of ycut. This has recently been updated, from

experimental results from jet rate studies, to ycut = 0:005 from the earlier default

ycut = 0:015. Fragmentation and hadronisation in the predictions of the MEPS

model have used the default settings of the JETSET7.4 simulation program. Are

there parameters which can be altered to make the model describe the data?

There are many parameters to both LEPTO and JETSET which the user can

freely change. LEPTO parameters a�ect purely partonic processes whilst JETSET

parameters a�ect the hadronisation process. Although not an exhaustive list, the

following alterations have been made to either LEPTO or JETSET to try to reproduce

the level and shape of the ET ow measured in the data:

� The variable ycut determines how soft parton emissions become before the

matrix element calculations give way to the approximate parton shower model.

The LEPTO parameter PARL(8) rede�nes the value of ycut. A lowering of this

parameter to ycut = 0:0001, seen in �gure 6.1, has a dramatic e�ect on the

level of transverse energy ow in the �p central region. By lowering ycut,

the hard scattering amplitude is calculated to lower values of parton emission

energy than the default (more ME, less PS). Although this alteration may not

119
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be physically motivated, it is interesting to note the sensitivity of the ET ow

to the parameter.

� The default scheme for fragmentation implemented by JETSET7.4 is the Lund

string fragmentation model. The JETSET parameter MSTJ(1)=1 invokes this

scheme.

Another interesting fragmentation model, although one not widely used nowa-

days, is one developed by Field and Feynman called independent fragmentation

[60]. This is used by JETSET when MSJT(1)=2. The e�ect of this is shown

in �gure 6.2 where it is clear that independent fragmentation gives a worse

description of the data than the string model.

� The longitudinal fragmentation function describes how large a fraction of the

energy available is taken by a newly-created hadron. Its form can be chosen

independently of the fragmentation scheme and is de�ned in terms of z. If,

for example, a q�q pair is considered to separate in the +z and �z directions

along a straight line, the z variable is selected as the fraction of the E + pz

taken by the created hadron from the E + pz available.

By default, JETSET uses the Lund symmetric longitudinal fragmentation func-

tion. Default parameters give the function the form

f(z) / 1

z
(1� z)0:5 exp

 �0:9m2
?

z

!
(6.1)

A number of other functions are available by altering JETSET parameters,

namely MSTJ(11) and PARJ(51-59). After making a selection of mainly arbi-

trary changes, on function in particular gives an enhanced transverse energy

ow level in the �p central region. I have termed it custom fragmentation

and it has the form

f(z) = (1� z)1:8 (6.2)

which can be seen in �gure 6.1. Although, again, this alteration may not

be physically motivated, the sensitivity ET ow to the form of longitudinal

fragmentation function is an interesting observation.
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� A less arbitrary approach to the alteration of longitudinal fragmentation func-

tion is found from looking at the limits placed on the functions by other HEP

experiments. Results from measurements designed to place such limits are

shown in �gure 6.3. These come from TASSO[66], L3[67], DELPHI[65], OPAL

in 1990[68] and two di�erent forms of function from OPAL in 1994[69]. The

details of the parameter changes are discussed in the references.

Compared to the arbitrary function mentioned above, there is much more

constraint on the range of level of the ET ow level. This range indicates

a sensitivity of ET ow level in the �p central region on the longitudinal

fragmentation function to a few hundred MeV.

� The LEPTO parameter PARL(3) (default=0.44GeV) gives the width, �, of the

Gaussian of transverse momenta of the primordial partons within the proton.

The parameter PARL(14) (default=0.44GeV) gives the width, �, of the Gaus-

sian of transverse momenta when the non-trivial target remnant is split into

a particle and a jet. An increase of both of these parameters to 2.0GeV and

a decrease to 0.1GeV results in no noticeable di�erence in the shape and level

of the ET ow seen.

� Parton showering can be turned o� using the LEPTO parameter LST(8)=2.

This results in a suppression of the ET ow level at all angles.

� The QCD corrections to the QPM can be switched o� using LEPTO parameter

LST(8)=0. This results in a large suppression in the level of the ET ow in

the �p central region and an enhancement of the level of the current jet peak

i.e. less descriptive of the data.

� The inclusion of electromagnetic and weak corrections to the Born cross sec-

tion is made with the default setting of the LEPTO parameter LPARIN(2)=1.

Turning o� these corrections (LPARIN(2)=0) has no noticeable e�ect on the

shape or level of the ET ow.

� The default parton density function used for the MEPS simulation is the

MRSA[57] scheme. Changing this to MRSD�[58] has no noticeable e�ect on

the shape or level of the ET ow.
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� The JETSET parameter MSTJ(13) gives ET to endpoint quarks in a single jet

system. The default value is 0 and any change up to 1GeV has no noticeable

e�ect on the shape or level of the ET ow.

� The inclusion of the calculation of Bose-Einstein e�ects is not made in the

default version of JETSET (MSTJ(51)=0). An inclusion of these e�ects has

no noticeable e�ect on the shape or level of the ET ow.

� The JETSET parameter PARJ(33) is used, together with the quark masses, to

de�ne the remaining energy below which the fragmentation of a jet system is

stopped and the �nal two hadrons are formed. The default value of 0.8GeV is

lowered to 0.15GeV but this has no noticeable e�ect on the shape or level of

the ET ow.

� An invariant mass cuto� mmin of parton showers, below which partons are

assumed not to radiate further partons, is altered by the JETSET parameter

PARJ(82) (in conjunction with PARJ(81) and MSTJ(44)). The default value

of 1GeV is lowered to 0.6GeV with no noticeable e�ect on the shape or level

of the ET ow.

� The JETSET parameter MSTJ(49) allows the user to select probabilities of

branchings in parton emission which are not inspired by conventional QCD

(the default). A scalar gluon toy model is selected for comparison (MSTJ(49)=1).

This suppresses the ET ow in the �p central region by a few hundred MeV

i.e. even lower than the level measured in the data.

� The branching mode for time-like showers is selectable in JETSET parameter

MSTJ(42). The default mode, MSTJ(42)=2, uses coherent branching which

is explicitly angular ordered. By changing MSTJ(42) to 1, the conventional

branching mode is used which does not use angular ordering in the parton

emission. No noticeable e�ect on the shape or level of the resulting ET ow is

seen.

� An override of the normal Q2 de�nition is provided by JETSET parameter

MSTP(22). This is used to obtain the maximum of parton shower evolution.

No available change to this de�nition results in a noticeable change in the

shape or level of the ET ow.
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� The parameter PARP(62) (default = 1.0GeV) de�nes in JETSET an e�ective

cut-o� Q or kT value, below which space-like partons are not evolved. A

lowering of this parameter to 0.44GeV has no noticeable e�ect on the shape

or level of the resultant ET ow.

� The width, �, of the px and py transverse momenta distribution for primary

hadrons can be selected with PARJ(21) of JETSET. The default value of

0.36GeV is increased to 2.0GeV with no noticeable e�ect on the shape or

level of the resultant ET ow.
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Effective model parameters
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Figure 6.1: The e�ect on the transverse energy ow of changing ycut and the lon-
gitudinal fragmentation function to the function described in the text. The non-
di�ractive 1994 ET ows are shown for comparison.
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Effect of altering fragmentation LUND to INDEPENDENT
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Figure 6.2: The e�ect on the ET ow of altering the default Lund string fragmen-
tation scheme to independent fragmentation. Two variants of independent fragmen-
tation are shown, one with a variation of gluon jet fragmentation \INDEP variant"
and the other with increased gluon jet kT \INDEP inc.kt". The non-di�ractive 1994
ET ows are shown for comparison.
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Limits on fragmentation parameters
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Figure 6.3: ET ows from various limits set on the parameters of the Lund symmetric
longitudinal fragmentation function. (OPAL1994(p) uses the Petersen fragmenta-
tion function [64]). The default LEPTO6.1 (MEPS default) and non-di�ractive 1994
ET ows are shown for comparison.
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Conclusions

The transverse energy ows from deep inelastic scattering events collected by ZEUS

in the 1993 and 1994 running periods have been measured by correcting ZEUS

calorimeter cell energies back to hadronic �nal state particles.

Similar event selection procedures were adopted for both years' data; the main

exception being that in 1994 the addition of the SRTD component enabled more

accurate event reconstruction.

For the analysis of the event data collected in 1993, an �max cut was placed on

events to allow only non-di�ractive DIS events to pass through the analysis. For

those events collected in 1994, an xP (roughly proportional to �max) cut was placed

on events to separate and independently analyse di�ractive DIS events.

In the kinematic range xbj < 10�3; Q2 > 10GeV2, up to the HERA kinematic

limit, the transverse energy ows in the �p frame central region transform to the

very forward region of the ZEUS detector. The errors on the measurement of

calorimeter cell energies in this region have never been well-understood until now.

It is found that the main sources of these errors are caused �rstly by the inadequate

description of this part of the detector in the Monte Carlo simulation and, secondly,

the large disparity between the predictions of the two physics generators which are

used to correct back the cell energies to the hadronic �nal state. Both of these error

sources independently contribute approximately 10% to the overall error which is in

the region of 15%.

The transverse energy ow in the �p central region in this kinematic range is

at (or slightly sloping in the proton direction) at a level of � 2GeV/unit of rapidity.

This level is well-described by the colour dipole model (CDM) whereas the matrix
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element parton shower model (MEPS) predicts too-little ET ow by as much as

1GeV/unit of rapidity.

Looking at a large part of the kinematic range available at HERA with the

events collected in 1994 the following conclusions can be drawn:

� The level of the ET ow found in data in the �p central region in all kinematic

ranges is predicted by the CDM. The MEPS model fails to predict this level

at lower values of Q2.

� Both of the models fail to predict the level and shape of the ET ow in the

current region at low Q2 and low xbj (high W ). The \peaked" shape of the

current jet ET ow predicted by the models is not reproduced in the data.

� In the �p centre of mass system, the average ET ow level per unit of rapidity

is at or seems to rise slightly as xbj decreases. However, this rise cannot

be con�rmed using the currently available measurement since the systematic

errors encountered are presently far too high. A fuller understanding of ZEUS

in the Monte Carlo in the future should reduce these errors.

The CDM predicts this rising trend in the data fairly well whereas the MEPS

model predicts the opposite: a slight fall in ET ow level as xbj decreases.

� The current default version of the HERWIG physics generator, used for com-

parison purposes in this thesis, fails to predict the shape and ow of ET found

in the data, especially at low Q2 and low xbj.

� None of the models in their default form completely describes the measured

transverse energy ow throughout phase-space.

There are many di�erent parameters which govern the generation of events by

the MEPS model. The testing of the sensitivity of the ET ow to alterations in

these parameters ascertains the predictivity and stability of the model. Importantly,

since the MEPS model explicitly uses the conventional DGLAP approach to parton

evolution at every stage of generation, the alteration of these parameters indicates

how close the prediction of this approach can be to the result found from the data.
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Although not all of these parameters were changed, all of those which were

considered as having a possible e�ect on the level of the ET ow were independently

altered. Only two of these parameter changes had any signi�cant e�ect in making

the ET ow level rise.

1. The �rst is the reduction of the ycut which increases the component of the

matrix element calculation with respect to the parton shower approximation

in the overall calculation. Since the change of this parameter is roughly 2

orders of magnitude for the resulting ET ow to rise signi�cantly, it is likely

that the change has no theoretical justi�cation.

2. The second is the alteration of the fragmentation parameters which, of course,

would also a�ect the hadronisation of the CDM particles if altered in that gen-

erator. The uncertainties in the level of ET ow resulting from \reasonable"

changes in the fragmentation parameters are 200-300MeV. A rather more dras-

tic change of parameters and type of fragmentation function result in uncer-

tainties of 1GeV and more. Although, again, this sort of alteration may not be

theoretically justi�ed when considering consistency with other measurements,

the nature and dynamics of the hadronisation process are, at present, very

poorly understood. The theoretical objections to changing the hadronisation

process are much less well-de�ned.

The MEPS model cannot, for the most part, be made to reproduce the ET ow

shape and level found in the data without rather extreme parameter changes being

made. In addtion, the CDM does reproduce the level of the ET ow in the data in

the �p central region; this model does not explicitly use conventional dynamics to

evolve partons.

However, because of the uncertainties of the fragmentation process and because

there is no de�nite answer to the question of whether the CDM exhibits BFKL-

like behaviour, the e�ect of BFKL dynamics in parton evolution has not yet been

conclusively seen at ZEUS even though there exists some circumstantial evidence

for its presence.
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