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Abstract
These lectures describe the motivation for flavour physics, and the theoretical
and experimental methods. I discuss the determination of the fundamental pa-
rameters from inclusive and exclusive decays of the flavoured mesons K, B,
and the phenomena of CP violation. Theoretical tools for mastering the prob-
lems of QCD, such as heavy-quark effective theory and factorization are ex-
plained.

1. INTRODUCTION

1.1 Flavours in the Standard Model (SM)

The particles (or fields) of the standard model (SM) and most gauge theories [1] are divided into gauge
fields associated with the gauge group and ‘matter fields’. In the SM (see the lectures by Bardin), the
gauge group is SU(3)C ⊗SU(2)L⊗U(1)Y which is spontaneously broken to SU(3)C ⊗U(1)Q by the
Higgs field. The gauge fields (gauge bosons), i.e. the photon, the W and Z bosons, and the gluons, are
determined by the gauge group. All have spin one.

On the other hand, the number and properties of matter fields (quarks, leptons, neutrinos) are largely
arbitrary. Their number, transformation properties, and other characteristics (mass, couplings, etc.) are
essentially determined by experiment (see the particle data book [2] for the current numbers). Theoretical
considerations, such as anomaly cancellations [3] only weakly limit their freedom. The Higgs field is
introduced in a similarly arbitrary way as the matter fields, but because it triggers ‘symmetry breaking’
by which the W and Z bosons become massive, it is usually viewed as a ‘different’ kind of field.

In the SM, all matter fields, the quarks and leptons, are fermions. Because the gauge bosons have
spin one, left- and right-handed fields can transform in different ways under the gauge group∗. The ab-
sence of right-handed couplings to the W bosons implies that the right-handed fields are SU(2) singlets.
The left-handed ones are doublets, because there are only two different charges of quarks and leptons.
This situation implies that the particles are massless if the gauge symmetry is unbroken.

There are in fact three complete ‘generations’ of particles. The generations all have the same in-
teractions with the gauge particles; only their masses (and the couplings to the Higgs field) are different.
In a notation† adapted to their SU(2) properties, we have three generations(
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∗The coupling of fermion fields ψ to gauge fields is proportional to ψ+γ0γ
µψ. A fermion field ψ can be projected into left-

and right-handed components via the projectors PL, PR defined by 1 ± γ5/2. Since PLγ0γ
µPR = 0, etc., the gauge bosons

only ‘connect’ left-handed fields to left-handed fields, etc.
†We denote the fields by the name of the corresponding particle. Therefore, u means the field that in the usual free field

description destroys an up-quark and generates an anti up-quark.
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ψi ψj ψi ψj

V µ φ

Fig. 1: Generic couplings of a vector and a scalar to two fermions.

The index L or R means that these particles have chirality −1 or 1. We call the particles left- and
right-handed, respectively. The primes will be discussed below. The term Flavour denotes the different
particles; therefore, we have u flavour, d flavour, etc.

We also often have the notation

Q1 =

(
uL
d′L

)
Q2 =

(
cL
s′L

)
Q3 =

(
tL
b′L

)
(4)

and d1R instead of dR etc.

Problem

Discuss helicity and chirality (see, for example, the textbook by Itzykson and Zuber).

In principle, one can also add to each generation a right-handed neutrino. In the absence of neu-
trino masses, these are unnecessary. As we discuss here only the physics issues unrelated to the neutrino
masses, I shall leave these out (see S. Bilenky’s lectures for a thorough description of this field and its
exciting developments).

The interaction vertex (see Fig.1) of fermion fields ψi, ψj with spin one (gauge) particles and spin
zero particles (Higgs particle) is in general (i, j label the different fields)

igijγµ(a+ bγ5) , (5)

ihij(ay + byγ5) . (6)

The non-Abelian gauge invariance of the theory implies the important fact that the coupling con-
stants gij can be chosen to be of the form gδij without loss of generality‡. Thus, the coupling to the SM
gauge bosons Aµ takes the diagonal form

Lgauge =
∑
i

Q̄iγ̄
µAµQi + .... (7)

We see that all generations couple in exactly the same way.

On the other hand, the hij are arbitrary (complex) matrices. In the SM, the only scalar is the Higgs
field. The interactions of the matter fields§ are conveniently written in the form of the interaction
Lagrangian density¶

‡This choice is stable; for instance, it cannot be changed by higher orders in perturbation theory.
§I write here only the quark fields. The leptons can be treated in exactly the same way.
¶The Φ̃ in the second term stands only for mathematical correctness; the relation to φ is φ̃ = iτ2φ

∗.
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Lint = Q̄iY
d
ijdjφ+ Q̄iY

u
ijujφ̃+ h.c. (8)

The basis of the fields in which the couplingsLgauge to gauge bosons take the simple diagonal form
above, is called the interaction basis. It is, however, not physically useful. To see this, we consider fur-
ther the coupling to the scalar field where we introduce spontaneous symmetry breaking. From Bardin’s
lectures we know that the scalar field is then replaced by a non-zero constant plus a space-time dependent
field, the physical Higgs field, which in these lectures it will not be necessay to consider explicitely; thus

φ ∼
(

0
v√
2

)
L

, (9)

where v ≈ 250 GeV. This means that the interaction [Eq. (8)] is replaced by ‘mass terms’ for the quarks.
Using the notation Mu

ij = Y u
ijv/
√

2 and Md
ij = Y d

ijv/
√

2 we now have‖

Lmass = d̄′LiM
d
ijdj + ūLiM

u
ijuj + h.c. (10)

We see that these mass terms are not diagonal; it means that a free up-quark could become a charm
quark, etc. This is of course wrong. We therefore need to diagonalize this expression. Without loss of
generality Mu

ij can be chosen to be diagonal. The down-quark mass matrix Md
ij is then diagonalized by

a unitary transformation to the mass or physical basis of the fields, denoted again by dLi but without the
primes!∗∗ Thus,  d′

s′

b′

 = V

 d
s
b

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 d
s
b

 . (11)

The unitary matrix V is the famous Cabibbo–Kobayash–Maskawa matrix [4]. It is obtained by diagonal-
ization of Md, i.e. by demanding that V †MM †V be real and diagonal.

We now have to replace in Eq. (7) the fields d′ by the unprimed physical ones, in order to obtain the
weak interactions of the physical quarks. It is straightforward to see that because of unitarity the couplings
to the electrically-neutral gauge bosons (the Z, the photon and the gluons) are diagonal in flavour. The
V † and V matrices associated with the d′ in Q̄ and Q in Eq. (7) cancel by virtue of the unitarity relation
V †V = 1. Only the couplings to theW violate flavour, i.e. include transitions from one flavour to another.
Therefore, whilst the neutral interactions remain as in Eq. (7), the charged ones pick up the matrix V:

Lint = LCC + LNC , (12)

where
LCC =

g2

2
√

2

∑
i

(ūLiγµVijdLj)W+
µ +

g2

2
√

2

∑
i

(d̄LjγµV ∗ijuLi)W
−
µ , (13)

and
LNC = e

∑
f

qf f̄γµfA
µ +

g2

2 cos ΘW

∑
f

f̄γµ(vf − afγ5)fZµ . (14)

The sum goes over all fermion fields f uiL, uiR, etc. The coefficients qf are the charges of the fermion f
and

vf = T f3 − 2qf sin2 ΘW af = T f3 . (15)

The T f3 are zero for the right-handed fields and 1/2 (or −1/2) for up-quarks and neutrinos (or down-
quarks and charged leptons). The products of the fields multiplying the gauge fields are called currents;
for instance, Jµ = e

∑
f qf f̄γµf is the electromagnetic current. Similarly, we have a charged current,

coupled to W , and a neutral current coupled to Z. The couplings are shown in Fig. 2.

‖Terms quadratic in the fields are called mass terms. When they are diagonalized in flavour, they give the physical masses.
∗∗In the SM, the right-handed fields dR, like the ui, are also the same in both of the bases.
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(a)

Z0

(b)

γ

(c)

G

(d)

Fig. 2: The basic vertices representing the interactions of the quarks with the gauge bosons. The labels i and j represent the

flavour quantum number (i, j = u, d, c, s, t, b).

W

Fig. 3: Approximation of the W -exchange interaction, by the four-fermion current–current vertex.

From these Lagrangians one obtains an effective charged current Hamiltonian, valid at energies
below the mass of the W by exchanging a W between two currents. The W exchange yields a factor
1/M2

W and thus the effective coupling for the resulting four-fermion interaction (Fig. 3) is

GF√
2
VijV

∗
kl =

g2
2

8M2
W

VijV
∗
kl , (16)

for a transition djL → uiLūkLdlL. Here, GF is the Fermi constant,

GF = 1.10−5 GeV−2 (17)

which is determined with high precision from the µ decay.

The fact that neutral currents are diagonal in flavour (see Eq. (7) is trivial, because the three gen-
erations have exactly the same gauge interactions. Before the experimental discovery of charm in 1974
(the strange quark was discovered much earlier) this was not the case, and the SM was rejected because it
seemed to have sizeable flavour-changing neutral currents (FCNC), contradicting experiments (smallness
of the rate K → µµ̄). For this reason, Glashow, Iliopoulos, and Maiani (GIM) introduced (theoretically)
a charm quark in 1970 [5] to complete the generation of the s quark and to be able to make use of the
unitarity of V . The discovery of charm in 1974 was thus a great success.

Much as the W , Z exchange also gives rise to an effective four-fermion interaction. Since it does
not change flavour, we shall not consider it further. However, it contributes to fine parity violating effects
in atoms and nuclei and played an important role in the development of the SM.

As already mentioned, only the charged currents contain flavour changes. Therefore, it is the charged
weak interactions from which much can be learned about new flavours, and it is therefore essential to study
them with high precision. Flavour physics is the study of all aspects related to the different flavours. Some
of these issues are mentioned below.

The values of the flavour-related parameters

The flavour parameters in the SM include the fermion masses

mu md ms mc mb mt (18)

me mµ mτ mνe mνe mνe (19)
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and the CKM matrix elements  Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (20)

Most of the present flavour physics is concerned with determining these parameters with the highest
precision possible. It turns out that quite an elaborate theoretical machinery is needed to isolate the values
from the data. For instance, the up-quark is always inside the hadrons, so its mass cannot be determined
without taking into account the binding energy of the hadron, but this is very difficult to do. For light
quarks a method known as chiral perturbation theory (applicable to low-energy hadronic physics) can be
employed [6]. The general rule is that only quark masses above roughly 1 GeV (proton mass) are directly
related to the mass of the hadron in which they live. Various technologies yield the approximate values
[2]

mu ∼ 4 MeV md ∼ 4 MeV ms ∼ 120 MeV (21)

mc ∼ 1.5 GeV mb ∼ 4.5 GeV mt ∼ 170 GeV . (22)

Similar and different techniques are employed to find the values of the CKM matrix elements. Roughly,

V ∼

 1 λ λ3

−λ 1 λ2

λ3 −λ2 1

 , (23)

where λ ∼ 0.22 is the sine of the Cabibbo angle. Both sets of values show a characteristic hierarchical
pattern. What is the reason for this? Various ideas exist about how to model this structure, including the
recent excitement about extra dimensions [7], but most appear to be mathematical games [8].

Why are there different flavours; how many are there?

In the SM, the flavours are added largely according to phenomenological need. There are sev-
eral theoretical constraints, the invariance structure (dictated by the gauge symmetry), and the so-called
anomaly cancellation [3]. They essentially amount to the requirement that new particles must come as
a whole generation. Attempts exist to introduce so-called flavour groups which unify the flavours, or to
link the number of flavours and their properties to geometrical structures in higher dimensional spaces.
In all these theories, the different generations would not only have different masses, but also different
interactions. By investigating very carefully all the properties of the various flavours, these fine details
might one day be found.

CP violation

The properties of the fields under transformation play an essential role in modern physics theory.
Of particular importance have been the Lorentz transformations (which lead to relativity) and the discrete
transformations P, C, and T (or CP) which we consider here [9, 10]. The parity transformation P inverts
the spatial coordinate, whilst the time reversal operation T inverts time. In a quantum field theory, these
transformations also affect the fields. In general we write for a transformation (x, t) −→ (x′, t′)

Φ(x, t) −→ (RΦΦ)(x′, t′) . (24)

Here,RΦ is a ‘representation’ of the transformation group. An example is the transformation of a fermion
field Ψ under parity. We have Ψ(x, t) −→ γ0Ψ(−x, t). A theory is said to be P invariant if this transfor-
mation (supplemented with a few others) does not change the Lagrangian used to describe it.

The charge conjugation operation C transforms particles into antiparticles. Its action on the fermions
can be written as Ψ −→ CΨ̄T where C is a combination of Dirac matrices (in the usual notation, C= iγ2γ0

and Ψ̄T is the transposed Ψ̄ = Ψ†γ0.
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Instead of T, one usually uses the combined transformation CP, because it is mathematically easier
to handle (T is a so-called anti-unitary operator). It is well known that any field theory (but not necessarily
strings) obeys the so-called CPT theorem [11], i.e. they are invariant under the combined transformation.
Therefore, T and CP are equivalent. (The issue of CPT violation has received renewed interest in the
context of string theories: see Ref. [11] for some new developments.)

Whilst the strong, electric and gravitational forces obey all these symmetries, parity violation has
been an integral part of weak interactions since 1957 [12]. CP violation, discovered in 1964 [13], is not
so well understood. It can be implemented in a straightforward way into the SM, as we see below, but
many people feel that CP violation could actually shed light on new physics; it is therefore in the cen-
tre of modern research. The occurence of CP violation is crucial. As shown by Sakharov in 1967 [14],
it is responsible for the fact that there is hardly any antimatter in the universe. Since antimatter would
annihilate with matter, the stability of the universe requires CP violation. But it is known that SM CP
violation cannot account for matter–antimatter asymmetry [15] (for a overview of astroparticle physics,
see the lectures by J. Garcia-Bellido). Thus other sources of CP violation must be present, and flavour
physics might be a way to investigate this.

Using the above rules for the transformations, it follows that under the CP transformation

W+
µ −→W−µ (25)

Ψ̄1γµΨ2 −→ Ψ̄2γµΨ1 . (26)

Using this in the charged current interaction

LCC =
g2

2
√

2

∑
i

(ūLiγµVijdLj)W+
µ +

g2

2
√

2

∑
i

(d̄LjγµV ∗ijuLi)W
−
µ , (27)

we find that the CP transformed expression is

LCPCC =
g2

2
√

2

∑
i

(d̄LjγµVijuLi)W−µ +
g2

2
√

2

∑
i

(ūLiγµV ∗ijdLj)W
+
µ . (28)

The two expressions are different if the elements of V are complex: phases indeed indicate CP violation.
But since phases in quantum mechanics are not measured, the argument is a bit more complicated because
it is often possible to redefine fields such that certain phases are absorbed. In our case, V is a unitary 3×3
matrix. Since a unitaryN×N matrix hasN2 parameters,N(N−1)/2 of which are real andN(N+1)/2
are phases, and since for N quark doublets Q we can redefine 2N − 1 phases for N quark doublets Q,
we have altogether

N(N + 1)/2− (2N − 1) = (N − 1)(N − 2)/2 (29)

physical phases. Thus for one or two generations, there is no physical phase and no CP violation within
the SM, and for three there is one phase ††. This result of Kobayashi and Maskawa in 1973 [4] indicated
that there must be three generations if CP violation is to be described by the SM. This shows that CP
violation and flavour are strongly connected.

These questions and similar ones constitute the entire issue of flavour physics. Unlike interactions
between gauge bosons, the values of these parameters are not known with high precision. In particu-
lar, the phases of the CKM matrix elements are very poorly determined. Therefore, it is widely believed
that flavour physics offers the possibility to investigate and discover new physics. In the SM, all flavour
physics has its origin in the couplings to the Higgs fields. But there is no underlying theoretical frame-
work. In the following I will discuss some of the current issues:

• measuring the CKM matrix elements precisely;

††Illustrate below in some detail the freedom of choosing the phase. It is possible to give a reparametrization invariant measure
of CP violation [16].
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• CP violation in K and B physics;

• rare decays, mainly kaons;

• hadronic decays of B mesons.

The task of precisely determining parameters and finding deviations from the SM implies much
theoretical technology and hard work. Although I shall try to be general, some topics must be discussed
in detail; flavour physics at this stage is largely nitty-gritty work for phenomenologists and theorists, and
often not very exhilarating. But the outcome may well be. So please be patient.

2. THE CKM MATRIX

A general 3× 3 unitary matrix V can be written as

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

 (30)

where cij = cos θij and sij = sin θij with i, j = 1, 2, 3 [2], δ is the phase necessary for CP violation.
cij and sij can all be chosen to be positive and δ may vary in the range 0 ≤ δ ≤ 2π. However, the
measurements of CP violation in K decays force δ to be in the range 0 < δ < π. Phase δ can be eliminated
if any two quarks of the same charge have the same mass and if any of the sij vanishes ‡‡.

Problem

Set s12 = 0 and show by redefinition of the fields that δ can be eliminated. Start with u1 −→ eiδu1.

The first element, Vud is obtained by measuring the rates of superallowed β decays of nuclei, where
the d quark inside a neutron goes over into a u quark which is part of the proton. The rate is proportional
to |GFVud|2 but the bound state and electromagnetic effects render the proportionality difficult. Most of
these have been calculated, with the result [2]

Vud = 0.9736± 0.001 . (31)

Chiral perturbation theory applied to K → πeν yields

|Vus| = 0.2205± 0.0018 , (32)

and somewhat less reliable methods yield

|Vcs| = 1.010± 0.16 , |Vcd| = 0.224± 0.016 . (33)

Of much recent interest are the matrix elements occuring in B physics, Vcb and Vub. Both are de-
termined from semileptonic B decays which are fed by the transitions b → ceν and b → ueν. Both
inclusive and exclusive decays are employed; theoretically, the heavy quark method is used. At present,
we have [17, 18, 19]

|Vcb| = 0.0385± 0.001 (exclusive) |Vcb| = 0.0401± 0.001 (inclusive) (34)

and
|Vub| = 0.0041± 0.0007 . (35)

‡‡Any CP violation is proportional to (m2
u − m2

c(m
2
u − m2

c)(m
2
u − m2

t )(m
2
c − m2

t )(m
2
d − m2

s)(m
2
d − m2

b)(m
2
s −

m2
b)s12s23s12 sin δ.
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The errors are essentially statistical; the systematic errors, such as theoretical uncertainties, can be larger.
Much work is currently being carried out to reduce these unertainties [10]. At present, the various groups
measuring these quantities report slight disagreements.

Using the approximate values in Eq. (23) we can rewrite the unitary matrix V to high precision in
the so-called Wolfenstein parametrization [20]

V =

 1− λ2

2 λ Aλ3(%− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− %− iη) −Aλ2 1

+O(λ4) . (36)

Here λ = |Vus| = 0.22; we have four parameters λ,A, %, and η, as expected for a unitary 3× 3.

To test the validity of the SM, we need to compare this specific matrix with a large number of ex-
periments. A convenient way to do this are the so-called unitarity triangles. Unitarity of V implies that
its rows and columns are orthogonal. As an equation, this means

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (37)

and more such relations. Since the Vif are complex numbers, this relation can be represented as a triangle
in the plane of complex numbers. The products of the matrix elements appearing here are measured: for
instance the decay amplitude for b̄→ ūud̄ is proportional to VudV

∗
ub.

To an excellent accuracy VcdV
∗
cb is real and equal to Aλ3. It is therefore customary to rescale the

triangle by dividing all the terms by this number. Then the basis has length 1 and the coordinates of the
plane are % and η. The triangle is shown in Fig. 4, the sides are related to the products by

1
Aλ3

VudV
∗
ub = %̄+ iη̄ ,

1
Aλ3

VtdV
∗
tb = 1− (%̄+ iη̄) . (38)

Here, following Buras [21], the quantities

%̄ = %(1− λ2

2
) η̄ = η(1− λ2

2
) (39)

are introduced to take into account even higher powers of λ.

ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Fig. 4: Unitarity triangle in the complex (%̄, η̄) plane.

I stress again that the triangle is just a graphical representation of the properties of the CKM matrix.
It is convenient because it relates observables in a direct way. There are various other triangles that can be
drawn, but this one is the most useful in connection withB physics. The major effort in phenomenological
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flavour physics is to determine from experiment the elements of the CKM matrix with the largest possible
accuracy. Certain observables give the length of the sides, but others can also determine the anglesα, β, γ.
Much theory is needed for this task. For instance, Vtd involves the t quark, so it can only occur if the top
quark is virtual, and thus the loops must be calculated. However, the biggest problem is that quarks are
confined into hadrons. Thus in order to obtain reliable results, one must be able to deal with the strong
interactions (QCD). Up to now there are huge difficulties in treating these in a satisfactory way, except
for high-energy (above several GeV) processes, because of the asymptotic freedom of QCD.

3. A SCHEME FOR ORGANIZING QCD CORRECTIONS

3.1 Effective Hamiltonian, renormalization

As pointed out before, the major theoretical problem is to master QCD, the strong interaction effects. For
this, the idea of the effective Hamiltonian has been devised [21, 22].

For processes at low energies, theW boson does not appear as a physical particle, but it affects the
interactions of the lighter particles. As mentioned before, the exchanges of the W boson give rise to the
weak interaction which we describe by an ‘effective Hamiltonian’ (the word ’effective’ expresses the fact
that it is not the fundamental interaction but the effective one at low energies). For a transition b→ uūd
we have

Heff =
GF√

2
VijV

∗
kl

(
d̄γµ(1− γ5)u

)(
ūγµ(1− γ5)b

)
. (40)

To this, we now must add QCD corrections coming from loops of gluons [Fig. 6 (a)]. We divide the
gluon momentum q into two ranges, q2 ≥ µ and q2 ≤ µ, where µ is the so-called renormalization scale
whose value is chosen preferably in the energy region of the process considered. In the high q2 regime,
asymptotic freedom of QCD allows perturbative calculations. Below µ, non-perturbative techniques are
needed because the gluon cannot be considered a simple free particle. The occurence of a scale µ can be
understood from the simpler case of QED, quantum electrodynamics. We consider the scattering of an
electron on a photon. The Hamilton operator is

H = e(Ψ̄γµAµΨ) , (41)

where e is ‘the electric charge’ and Ψ, Aµ the electron and photon fields. We are interested in the ma-
trix element 〈H〉. The renormalization procedure leads to a ‘renormalized’ charge, eR(µ), defined at an
arbitrary energy scale µ, the renormalization point. To see this, we consider radiative corrections to the
matrix element; as in Fig. (5) the momentum integral diverges and we introduce a cutoff Λ. To balance
it, a so-called counterterm is added to the theory which can only depend on Λ and on µ (it cannot depend
on the physical momentum p because we want to define a theory valid for all momenta. The loop integral
over the internal momenta yields then for the total charge

e −→ eR(µ) + correction + counterterm (42)

∼ eR(µ) + e3
R log(

Λ2

p2
)− e3

R log(
Λ2

µ2
) (43)

at momentum p2. The dependence of eR is necessary: because we do not want physical results which
depend on an ‘artificial’ scale µ, the dependence of the counterterm must be cancelled by eR.

At the renormalization point, as expected, this is simply eR. The logarithmic behaviour is well
known and follows from the form of the integral. Neglecting the electron mass, the integral is essentially∫

k

1
k

1
k

1
k2

d4k . (44)
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e

e e

γ

γ

Fig. 5: Vertex correction in QED. The two electron lines bring a factor of 1/k each, the photon 1/k2.

There are four momenta in the denominator and a d4k ∼ dkk3 in the numerator. This yields an integral
over dk/k which is proportional to a logarithm. Thus we can write

〈H〉 = eR(µ)〈Ψ̄γµAµΨ〉 = eR(µ)

(
1 + log(

µ2

p2
)

)
. (45)

Mathematically, we can view the last two terms as an integral over loop momenta from p2 to µ2. We see
that the matrix element we wish to calculate depends on the product of a coupling, defined at µ, and the
matrix element of the operator which contains the integration up to µ. If µ is chosen near p2, the matrix
element is simple; thus it is often said that the renormalization scale should lie near the physical one.
However, in a complete calculation, the dependence on µ cancels between the coupling constant and the
matrix element. Usually this happens only when perturbation theory is carried to an arbitrary order. Since
this is not possible, there always remains a µ dependence in a calculation at some order.

The same procedure is now applied to the QCD gluon corrections to the effective Hamiltonian as
in Fig. 6(a). Since we are interested in momenta far below the W mass, we take MW À µ. The loop

g

(a)

W

(b)

g

Fig. 6: Radiative corrections renormalizing the basic vertices. (a) is the correction to an effective four-fermion vertex, (b) takes

into account W exchange.

momenta must be integrated from the low scale to the cutoff λ. But for momenta higher than M −W
the picture is invalid, and must be replaced by Fig. 6(b). Thus we split the total calculation in an integral
from p2 to µ using Fig. 6(a) and from µ to Λ using Fig. 6(b). This gives us the sum of∫

k small

1
k

1
k

1
k2

d4k , (46)

and ∫
k large

1
k

1
k

1
k2

1
k2 −M2

W

d4k , (47)
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which yields

log(
µ2

p2
) + log(

M2
W

µ2
) . (48)

We see again that the integration is split into a low-energy part and a high-energy part; the W mass acts
as a cutoff on the otherwise divergent integral.

In analogy with the example from QED we then write for a matrix element of a typical four-fermion
operator

A(I → F ) =
GF√

2
VCKMC(µ)〈F|O(µ) |I〉 , (49)

where the so-called Wilson coefficient contains log(M2
W /µ

2) and the matrix element log(µ2/p2). VCKM

is the relevant product of CKM matrix elements. Again, the matrix element contains the low-energy ex-
citations, the Wilson coefficient the high-energy one.

In general, here basicW exchange gives rise to several effective operators, by applying the operator
product expansion (OPE). Instead of Eq. (49) one then writes

A =
GF√

2
VCKM

∑
i

Ci(µ)〈F|Oi(µ) |I〉 . (50)

The list of operators includes the usual four-fermion operators plus the operators that can be ob-
tained from it through the various gluon exchanges. For instance, a gluon can alter the colours of the
quarks. To see this, look at the operator in Eq. (40). When we also write the colour indices i, j explicitely,
it reads

O2 =

(
d̄iγ

µ(1− γ5)ui

)(
ūjγµ(1− γ5)bj

)
, (51)

where the indices i and j are separately summed over. This means that the two factors are colour singlets.
Exchanging a gluon between two quark lines as in Fig. 6 (a) also leads to the colour structure

O1 =

(
d̄iγ

µ(1− γ5)uj

)(
ūjγµ(1− γ5)bi

)
, (52)

which must be considered a new operator. QCD not only induces four other Fermi operators, but also
others, and often many contribute to a given process, even if their particle structure does not quite look
right [21].

The gluon loop brings with it a factor of the strong coupling constant α (0.2 at the Upsilon mass)
apart from log(M2

W /µ
2). Since the scales M2

W and µ2 are far apart (remember µ is to be chosen in the
physics range, say mB), the logarithm can be large. Thus it is useful to sum up the powers of
α log(M2

W /µ
2) in the Wilson coefficients. This important fact is explained below.

3.2 Calculating the µ dependence in the Wilson coefficients

A typical gluon loop as in Fig. 6(a) yields a factor αs log(µ2). This follows again from the integrand in
the momentum integral which is of course the same as in Eq. (41).

Similarly, a two-loop diagram with two gluons yields two parts, one proportional to [αs log(µ2)]2,
the other proportional to αsαs log(µ2). Since the effective argument in the logarithm is M2

W /µ
2, the

quantity αs log(µ2) is not so small and its powers should be summed up. The terms proportional to
[αs log(µ2)]N with N = 1, 2, 3, ... make up the leading log approximation (LLA) and those proportional
to α[αslog(µ2)]N the next-to-leading log approximation (NLLA). Using the renormalization group tech-
niques (see again Ref. [21] for an excellent review) one finds, for instance, at LLA the typical result

C(µ) =
[
αs(µ0)
αs(µ)

] γ(0)

2β0

C(µ) , (53)
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where γ(0) is the coefficient in front of the logarithm and β0 describes the running of αs. This shows how
the Wilson coefficient at scale µ depends on its value at another scale µ0 where it can be easily calculated.
Because of asymptotic freedom, µ0 is usually chosen quite high µ0 ∼MW .

The complete calculation consists of three steps:

• Determine C(µ) (matching calculation). As mentioned, this is done at the scale µ0 ∼MW where
the Wilson coefficients are matched to the full theory, i.e. with all particles, including theW . In the
LLA the lowest-order expression can be used, in the NLL the orderαs corrections must be included.

• Determine the ‘anomalous dimensions’ γ(0)/2β0 in the LLA (leading gluon loop) or the NLLA
(one loop more).

• Calculate the µ dependence in the matrix elements. This is the hardest step, since for non-pertur-
bative calculations the µ dependence is essentially impossible to determine. One exception is in-
clusive decays where the usual perturbative methods apply.

The µ dependence should cancel between all contributions. Since we cannot usually include very
high orders, a small dependence remains, which becomes smaller with increasing order of the calcula-
tion. As mentioned, the value of µ must be chosen near the physical scale. For instance in B physics it
should be aroundmB . To quantify the uncertainty coming from neglecting higher orders or being unable
to determine the µ dependence, one lets µ vary in the interval mB/2 ≤ µ ≤ 2mB .

An example where this procedure has been very successful is the inclusive decay b → sγ where
the matrix element can be calculated. The LLA result for the branching ratio is (2−3)10−4, whilst at the
NLLA one obtains (2.8− 3.2)10−4 in the SM. This is in excellent agreement with the experiment [23].

In kaon physics, the natural scale would be µ ∼ mK . However, at this low scale, QCD becomes
highly nonperturbative. And even if effective methods are available, such as chiral perturbation theory,
the scale-dependence may be different from that of perturbative QCD. For instance, while QCD has a
logarithmic dependence, another method may lead to a quadratic behaviour. In this situation one must
choose, ad hoc, an intermediate value, say 1 GeV. For a list of relevant references, see Ref. [24].

4. LOOP PROCESSES AND THE UNITARITY TRIANGLE

As mentioned, a major effort in particle physics is the determination of the unitarity triangle. Whilst some
elements are determined by tree level processes, the elements Vtd, Vts, Vtb, occurring for instance in the
side AB of the unitary triangle, can be obtained only from loops where the t quark is virtual. There are
many useful observables, among them the parameter ε from kaon physics or BB̄ mixing.

Since flavour loops are of general importance, we shall discuss them in some detail; historically
they have played a crucial role (GIM)[5].

4.1 The Glashow, Iliopoulos, Maiani (GIM) mechanism

Consider the effective neutral current interaction vertex in Fig. 7

d̄γµsZµ (54)

which gives rise to the highly suppressed decay K → µ−µ+. In the SM, only the W bosons can change
flavour, and so the contribution to the vertex comes from loops (Fig. 8) with u, c or t quarks) and W
bosons.

From the form of the CKM matrix in Eq. (23) we see that the contributions of u and c are, respec-
tively, proportional to

VusV
∗
udF (mu) ∼ λF (mu/MW ) (55)

VcsV
∗
cdF (mc) ∼ −λF (mc/MW ) . (56)
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s d

V µ

Fig. 7: Effective s d V µ coupling of a neutral vector to an s and a d quark.

u, c, t

s d

W

Z0, γ

(a)

u, c, t

s d
W W

Z0, γ

(b)

u, c, t

s d

W

g

(c)

Fig. 8: Loop (so-called penguin) diagrams which contribute to the FCNC process s→ d. Diagrams (a) and (b) are electroweak

penguins while diagram (c) is a gluonic penguin graph. Instead of external s and d quarks, one can also have b and s, etc. Then

the diagrams contribute to FCNC transitions such as b→ s.

When we add the two (divergent) parts, we obtain the finite result

λ

(
F (mu/MW )− F (mc/MW )

)
∼ λm

2
u −m2

c

M2
W

. (57)

There is an important cancellation between the two parts; the result is finite and small, as desired. Without
a c quark, the result would be useless. This was the original motivation for introducing the c quark before
it was experimentally discovered [5].

This mechanism is universal: While the neutral gauge bosons do not change flavour in lowest or-
der, loops of charged particles give rise to effective flavour-changing vertices. In theories beyond the SM,
there can also be neutral loops, such as a squark–gluino loop if there are flavour changing gluino couplings
in supersymmetric theories. In order to investigate the CKM matrix elements related to the t quark or in-
vestigate heavy virtual particles in general, we must consider loop diagrams. They allow processes not
possible at the tree level (likeK → µ−µ+), often called rare decays, and are important for mixing and CP
violation. Because they probe virtual particles, they can discern new physics. This so-called GIM mech-
anism, now so obvious, played a fundamental role in shaping the SM. As this GIM mechanism is very
important, I would like to continue discussing it a bit more. In general, an s to d transition is proportional
to

VusV
∗
udF (mu) + VcsV

∗
cdF (mc) + VtsV

∗
tdF (mt) . (58)

If all the quark masses were equal, this sum would be proportional to VusV ∗ud + VcsV
∗
cd + VtsV

∗
td which

vanishes by the unitarity of V . This implies that the transition amplitude is proportional to the mass dif-
ferences, which renders the effects finite and often small. Everything applies to any other neutral flavour
transition, such as b → s or c → u with the obvious replacements. The dependence on the mass differ-
ence can be quadratic, m2

u −m2
c/M

2
W ∼ 10−3 as in Eq. 57. But in more complicated diagrams induced
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through QCD corrections, it can also be logarithmic, i.e. proportional to log(m2
u/m

2
c) which is consid-

erably larger. This ‘logarithmic GIM’ can then lead to enhancements, which are important in b → sγ
and particularly in the rare charm decay c → uγ. In this case, similar loops contribute but the internal
quarks are d, s. At lowest order, the quadratic GIM suppression factor m2

s −m2
d/M

2
W ∼ 10−6 is enor-

mous and the resulting branching ratio is around 10−18. The QCD corrections soften this to a logarithmic
dependence αs log(m2

s/m
2
d) and the resulting branching ratio becomes 10−8 [25].

4.2 K and B meson mixing

Another important flavour-changing effect is the ‘mixing’ between the K0 and the K̄0 mesons and be-
tweenB0, B̄0. We introduce the subject here, and develop it as far as necessary to continue the discussion
of the unitary triangle. More on this comes later. The formulas are written only for kaons, but the expres-
sions forB mesons are analogous. Any good textbook on weak interactions gives these and more detailed
expressions.

If CP is conserved, the states |K0〉 and |K̄0〉, which themselves are not eigenstates of CP, combine
to form eigenstates with definite CP properties:

|K1〉 =
1√
2

(|K0〉+ |K̄0〉) CP |K1〉 = |K1〉 (59)

and

|K2〉 =
1√
2

(|K0〉 − |K̄0〉) CP |K2〉 = −|K2〉 . (60)

But because of the small CP violation observed, the physical states (the mass eigenstates) are

|KS〉 =
|K1〉+ ε̄ |K2〉

(1 + |ε̄|2)
1
2

and |KL〉 =
|K2〉+ ε̄ |K1〉

(1 + |ε̄|2)
1
2

(61)

(the parameter ε̄ depends on the phase convention chosen for the relation between |K0〉 and |K̄0〉).
The ‘mixing’ between the states K0 and K̄0 manifested in Eq. (59) can be seen as a transition K0

to K̄0 and requires a ∆S = 2 Hamiltonian. In the SM, it only arises through the well-known box diagram
shown in Fig. 9. (Actually, this statement is not quite correct: There are so-called long-distance effects,
commented on later, which also contribute. See, for example Ref. [26].) We use the Dirac notation with
‘bras’ and ‘kets’ to denote quantum mechanical states.

In the language of the effective Hamiltonians we have then

H∆S=2
eff =

G2
F

16π2
M2
W

[
λ2
cη1S0(xc) + λ2

t η2S0(xt) + 2λcλtη3S0(xc, xt)
]

×
[
α(3)
s (µ)

]− 2
9

[
1 +

α
(3)
s (µ)
4π

J3

]
O∆S=2(µ) + h.c. . (62)

The renormalization scaleµmust be chosen to lie between the kaon mass and 1 GeV and the usual notation
is introduced: xi = m2

i /M
2
W and λi = VidV

∗
is (unitarity allows us to eliminate the dependence on λu and

we set xu = 0).

As we know (see previous and future discussions), the non-perturbative QCD effects for K0–K̄0

mixing are all contained in the matrix elements of the single local composite operator

O∆S=2(µ) = s̄γµ(1− γ5)d s̄γµ(1− γ5)d . (63)

The remaining terms in Eq. (62) can be calculated in perturbation theory. In particular, the functions Si
describe the loops, and the η′s the anomalous dimensions; J3 plays a similar role. The values can be
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u, c, t u, c, t

d s, b

s, b d

u, c, t

u, c, t

Fig. 9: Box diagrams which contribute to K0–K̄0 and B0–B̄0 mixing. The wavy lines are W bosons. A similar graph with

obvious replacements also gives rise to D0–D̄0 mixing, but it is small.

found in Ref. [21]. We note that for small x, S0(x) behaves as x. Also this diagram shows a (quadratic)
GIM effect.

As mentioned repeatedly, the difficult part is evaluating the matrix element of the operator in
Eq. (63), i.e.

〈K̄0 | s̄γµ(1− γ5)d s̄γµ(1− γ5)d |K0〉 ≡ 8
3
m2
Kf

2
KBK(µ) . (64)

The motivation for writing the matrix element in this form and introducing the parameterBK comes from
the vacuum saturation approximation. This is an often used concept and I digress a bit here. The matrix
element of the operator above can be pictured as in Fig. 10 where the vertex represents the operator,
and the s̄d pair on the left (and the d̄s on the right) are thought to merge into the K0 (and K̄0) mesons.
The calculation involves a most complicated maze of all possible gluon exchanges at all energies, quark–
antiquark pairs, etc. Only one gluon is drawn.

s̄

d

s

d̄

K0 K̄0

O∆S=2

Fig. 10: One gluon contribution to the matrix element of the operator O∆S=2.

Now, the quark pairs to the left and the right of the vertex are colour singlets, i.e. the quarks and
the antiquarks left and right have ‘opposite’ colour. This means that the exchange of gluons from left
to right is suppressed, since the monopole terms, depending on the charges only, cancel. There are four
exchanges between left and right. It is like in electromagnetism: The forces between neutral objects are
weaker. Thus, as a first approximation, we neglect these gluons and consider only those within the pairs.
In this case, the matrix element ‘factorizes’: When we write

〈K̄0 | s̄γµ(1− γ5)d s̄γµ(1− γ5)d |K0〉 =
∑
I

〈K̄0 | s̄γµ(1− γ5)d |I〉〈I|s̄γµ(1− γ5)d |K0〉 (65)

and neglect all gluons from left to right, only the intermediate state |I〉 = 0 occurs. This state now has
strongly interacting particles. We now use the well known expression

〈K̄0 | s̄γµ(1− γ5)d |0〉 ≡ −ifKpKµ , (66)

where pK is the kaon momentum and fK is the kaon decay constant measured in the leptonic decay to be
fK = 159.8 ± 1.8 MeV. Then the total matrix element is proportional to (fKpKµ)(fKp

µ
K) = f2

Km
2
K .

The remaining factor 8/3 is group-theoretical. Note that all gluons which are only left or only right
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(as the one in the figure) are included. Thus in the factorization approximation we haveBK = 1. BK(µ)
depends on the renormalization scale, one introduces the renormalization group invariant BK by:

B̂K = BK(µ)
[
α(3)
s (µ)

]− 2
9

[
1 +

α
(3)
s (µ)
4π

J3

]
. (67)

This factorization approximation is important and much used in studying the hadronic matrix
elements. It often gives a good starting value, but it is impossible to assess its validity without a careful
calculation.

In the present case, there are several calculations of BK . A compilation of lattice results gives
B̂K = 0.90 ± 0.06 [27], the 1/N approximation B̂K = 0.70 ± 0.10 [21]. From the relation (107) that
relates the parameter ε to the imaginary part of the ∆S = 2 matrix element in Eq. (64) one obtains

ε = C B̂K Imλt {Reλc [η1S0(xc)− η3S0(xc, xt)]− Reλt η2S0(xt)} ei
π
4 , (68)

where

C =
G2
F f

2
KmKM

2
W

6
√

2π2(∆MK)
= 3.78× 104 (69)

and the mass difference ∆MK = MKL −MKS . The experimental value of ε is 2.2810−3eiπ/4 [2].

When rewritten in terms of the parameters A, ρ̄, η̄ of the unitary triangle, this yields

η̄
[
(1− %̄)A2η2S0(xt) + P0(ε)

]
A2B̂K = 0.224 . (70)

This equation traces out a hyperbolic curve in the ρ̄, η̄ plane. Because of the uncertainty in BK it
becomes a rather wide area; nevertheless it substantially constrains the allowed region for the parameters
ρ̄ and η̄.

Mixing has also been observed in the B-system. The contributing graphs are analogous, one just
replaces the d quark by a b quark. For Bs mixing, the quarks are b, s instead of s, d. There is no mixing
between a Bd and a Bs. Why? Remember basic quantum mechanics.

Because of the values of the CKM matrix elements, the major contribution comes from the box
with two internal top quarks. The effective ∆B = 2 operator is clearly proportional to (VtdVtd). Using
the formulas given below [Eq. (81)] to calculate the physical quantities from the matrix element, we get
for a generic Bq meson

∆Mq =
G2
F

6π2
ηBmBq(B̂BqF

2
Bq)M

2
WS0(xt)|Vtq|2 , (71)

where FBq is the Bq-meson decay constant.

Applied to Bd and Bs we get, using the central values of the various parameters,

∆Md = 0.50/ps ·

√
B̂BdFBd

200 MeV

2 [
mt(mt)
170 GeV

]1.52 [ |Vtd|
8.8 · 10−3

]2 [ ηB
0.55

]
(72)

and

∆Ms = 15.1/ps ·

√
B̂BsFBs

240 MeV

2 [
mt(mt)
170 GeV

]1.52 [ |Vts|
0.040

]2 [ ηB
0.55

]
. (73)

Here, we have defined the renormalization group invariant parameters B̂q in analogy to Eq. (67).

There are many calculations of FBd and B̂d. A typical values is

FBd ∼ 220 MeV (74)
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with an error of around 20% [27]. However, the ratio√
B̂BdFBd√
B̂BsFBs

∼ 1.14± 0.08 (75)

is known with better precision.

From the measured B0 mass difference and Eq. (72) one obtains the value of |Vtd|, i.e. circles in
the unitary triangle around the cornerB. Because B̂BdFBd is not so well known, they are relatively wide
bands. To go further, one also uses Eq. (73). For the central values of the parameters mt, |Vts| and ηB
(note that unitarity fixes |Vts| rather well) we get

∆Md = 0.50/ps · 1.44
∆Ms

15.1/ps


√
B̂BdFBd√
B̂BsFBs

2 [
mt(mt)
170 GeV

]1.52 [ |Vtd|
8.8 · 10−3

]2 [ ηB
0.55

]
. (76)

Here, all values on the right (except, of course |Vtd| which we want to determine) are relatively well
known.

At the moment, there exist only lower bounds on ∆Ms which translate into upper bounds on |Vtd|
(see Fig. 11). As the lower bound increases and is replaced eventually by a measurement, |Vtd| decreases.
The measurement of ∆Ms is difficult because it is relatively big and the Bs mesons must travel fast
enough to make the oscillation length longer than the spatial resolution of the experiment. This requires
high energies, even beyond LEP energies.

Together, all these results yield the present unitary triangle shown in Fig. 11. There are clearly no
problems, but the allowed ranges are small.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
ρ

0.0

0.2

0.4

0.6

0.8

η

(1.2,15ps
1
)

(1.2,25ps
1
)

(ξ,(∆M)s)=(1.2,12.4ps
1
)

|

Fig. 11: Unitarity triangle. From Ref. [21].

In this section we have described the standard measurements of the unitary triangle. Any further
measurement can test the consistency of the triangle.

One idea is to look for alternative ways to determine Vtd. Again we must look at loops. The graphs
in Fig. 8 suggest looking for transitions of the type b → d or s → d. The first ones can be seen in the
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inclusive decays b→ dγ or in exclusive decays such as B → ργ. However, there also, there seem to be
hadronic uncertainties, but they may be overcome [28].

Another option is to look for Vub through so-called annihilation decays, as shown in Fig. 12. The

W
B+

b̄

u

s̄

c

Fig. 12: Annihilation graph for the decay of a charged B meson into a s̄c state such as DK or D∗sγ. The photon comes from

radiation off any of the lines.

idea is clear from the graph; however, we must be certain that other decay mechanisms with other CKM
factors are small. This has been proposed in Ref. [29] but so far the hadronic uncertainties are not clear.

Problem

Show that B → Kγ is forbidden. Use gauge invariance (electromagnetic current conservation).

5. CP VIOLATION AND MIXING, RARE K-DECAYS

5.1 General formalism

We return to the meson mixing as begun above. We write here all formalism in terms of kaons, but the
same applies with obvious changes also to the B system. From the states |K0〉 and |K̄0〉 we construct
the physical eigenstates by diagonalizing the free Hamiltonian for these particles. Instead of Eq. (61) we
write in a slightly different notation

|KS〉 =
p|K0〉+ q|K̄0〉√
|p|2 + |q|2

|KL〉 =
p|K0〉 − q|K̄0〉√
|p|2 + |q|2

. (77)

Comparison with Eq. (61) tells us that

ε̄ =
p− q
p+ q

. (78)

We note that the relative phase of p and q are unimportant since the CP phases of the mesons are
arbitrary. Thus only the magnitude |q/p| is essential; if it is equal to one, there is no CP violation in the
mass eigenstates.

Problem

Show this, by replacing the transformation in K0 → K̄0 used in Eq. (60) by the more general
expression K0 → eiφK̄0.

The Hamiltonian we consider here describes the time evolution of a state made up of K0 and K̄0

mesons. In a quantum mechanical notation, we write

i
dψ(t)
dt

= Ĥψ(t) ψ(t) =

(
|K0(t)〉
|K̄0(t)〉

)
, (79)

where

Ĥ = M̂ − i Γ̂
2

=

(
M11 − iΓ11

2 M12 − iΓ12
2

M21 − iΓ21
2 M22 − iΓ22

2

)
(80)
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with M̂ and Γ̂ being Hermitian matrices having positive (real) eigenvalues in analogy with the mass M
and the width Γ of a single particle state. M̂ is called the mass matrix and Γ̂ the decay matrix. We note
that because of the decays, Ĥ is not Hermitian and thus the diagonalization not necessarily unitary! Since
Γ̂ refers to decays, its elements Γ̂ij are obtained from physical intermediate states, whereas the M̂ij ones
are obtained from virtual ones.

Problem

Think about these statements.

By standard algebra we diagonalize the system to find the physical quantites (M = M11)

ML,S = M ± ReQ ΓL,S = Γ∓ 2ImQ (81)

Q =
√

(M12 − i
1
2

Γ12)(M∗12 − i
1
2

Γ∗12) . (82)

∆M = ML −MS = 2ReQ ∆Γ = ΓL − ΓS = −4ImQ . (83)

The quantities ε̄ and p, q are given by

1− ε̄
1 + ε̄

=

√√√√M∗12 − i1
2Γ∗12

M12 − i1
2Γ12

=
∆M − i1

2∆Γ
2M12 − iΓ12

≡ r exp(iκ) (84)

and
q

p
=

2M12 − iΓ12

∆M − i1
2∆Γ

. (85)

Depending on the actual values of the parameters, further simplifications are possible. In the kaon system,
ε̄ is of order 10−3 and thus we can write

∆MK = 2ReM12, ∆ΓK = 2ReΓ12 , (86)

where the subscript K indicates that these formulae apply only to the K0 − K̄0 system.

The KL −KS mass difference is experimentally measured to be [2]

∆MK = M(KL)−M(KS) = (3.489± 0.009) · 10−15 GeV . (87)

In the SM roughly 70% of the measured ∆MK is described by the real parts of the box diagrams with
charm-quark and top-quark exchanges, whereby the contribution of the charm exchanges is by far dom-
inant. This is related to the smallness of the real parts of the CKM top-quark couplings compared with
the corresponding charm-quark couplings. A non-negligible contribution comes from the box diagrams
with simultaneous charm and top exchanges. The remaining 20% of the measured ∆MK is attributed
to long-distance contributions which are difficult to estimate [26]. Further information with the relevant
references can be found in Ref. [21]. The situation with ∆ΓK is different. It is fully dominated by long-
distance effects, due to the pion intermediate states. Experimentally one has the approximate relation
∆ΓK ≈ −2∆MK .

In the B system, the width difference is small, and Eq. (85) becomes

q

p
∼ − M∗12

|M12|
. (88)

We see from this that in the B system (recall the last problem) there is essentially no CP violation in the
eigenstates. If |q/p| = 1, the quantity ε̄ must be imaginary [as seen from Eq. (78)]. We also remember
that the relative phase of |q/p| is irrelevant, and thus we may choose ε̄ = 0. In this case, there is no CP
violation in mixing. Thus, CP violation in mixing requires |q/p| 6= 1. Since the physical situations in K
and B are so different, it is easier to split the discussion at this point. Details about this can be found in
Refs. [10], CP.
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5.2 CP violation in the kaon system

In the kaon system, CP violation is seen in the decays

K → ππ . (89)

This can be understood easily. Recall that without ε̄ the eigenstates areK1 andK2 (no CP violation). The
two-pion state always has CP parity +1, since Bose statistics forces them into a symmetric state and the
angular momentum is zero. Since K1 and K2 have opposite CP parity, only one state can decay into two
pions if CP is conserved. But experimentally, both states decay into two pions. While the decay of the
state KS with positive CP parity is expected, the state KL also decays into two pions, in violation of the
CP symmetry.

This can come about because of the admixture of K1 (as indicated above) or from a CP violation
in the decay amplitude of K1. The situation is sketched below:

KL ∝ K2 + ε̄K1 . (90)

ππ

Direct (ε′) ππ

Indirect (εK)

The violation of CP invariance in the mixing is a ∆S = 2 effect (strangeness change by two units)
while the direct one is ∆S = 1. Until recently, there was no evidence for direct CP violation.

To continue, we repeat some well-known algebra. Since CP violation means that both, theKL and
the KS decay into two pions, one defines the CP violating ratios

η00 =
A(KL → π0π0)
A(KS → π0π0)

, η+− =
A(KL → π+π−)
A(KS → π+π−)

. (91)

To relate them to the calculable quantities, one decomposes the kaon decay amplitudes into isospin com-
ponents as follows:

A(K+ → π+π0) =
√

3
2
A2e

iδ2 (92)

A(K0 → π+π−) =
√

2
3
A0e

iδ0 +
√

1
3
A2e

iδ2 . (93)

A(K0 → π0π0) =
√

2
3
A0e

iδ0 − 2
√

1
3
A2e

iδ2 . (94)

Here the subscript I = 0, 2 denotes states with isospin 0, 2 equivalent to ∆I = 1/2 and ∆I = 3/2 tran-
sitions, respectively, and δ0,2 are the corresponding strong phases. The weak CKM phases are contained
in A0 and A2. The isospin amplitudes AI are complex quantities which depend on phase conventions.

The corresponding decay amplitudes of the antiparticles take the same form, but with the A0, A2

replaced by their complex conjugate.

Now, we can insert Eqs. (92)–(94) into the definition of the η′s. While forK1 we get the real parts
of theA0, A2, it will be the imaginary part forK2. When we neglect small terms like ε̄ (A2/A0) or ε̄2 we
are lead to

η+− ∼
ε̄+ iImA0/ReA0 + iImA2/ReA0e

i(δ2−δ0)/
√

2
1 + Re(A2/A0)ei(δ2−δ0)/

√
2

(95)

and

η00 ∼
ε̄+ iImA0/ReA0 − 2iImA2/ReA0e

i(δ2−δ0)/
√

2
1− 2Re(A2/A0)ei(δ2−δ0)/

√
2

. (96)

364



These hold in any phase convention, where |ε̄ImA0/ReA0| is small.

Now, defining

ε = ε̄+
iImA0

ReA0
(97)

ε2 =
iImA2√
2ReA0

ei(δ2−δ0) (98)

ζ =
√

2
Re(A2/A0)

ei(δ2−δ0) (99)

ε′ = ε2 −
iImA0

ReA0
ζ, (100)

we can write

η+− =
ε+ ε2
1− 2ζ

∼ ε+ ε′ (101)

η00 =
ε− 2ε2
1− 2ζ

∼ ε− 2ε′. (102)

The isospin decomposition also yields

ε =
A(KL → (ππ)I=0)
A(KS → (ππ)I=0)

(103)

√
2ε2 =

A(KL → (ππ)I=2)
A(KS → (ππ)I=0)

(104)

√
2ζ =

A(KS → (ππ)I=2)
A(KS → (ππ)I=0)

. (105)

From this, one also gets

ε′ =
1√
2

Im
(
A2

A0

)
exp(iΦε′) , Φε′ =

π

2
+ δ2 − δ0 . (106)

Using the theoretical expressions in Eq. (79) we arrive at

ε =
exp(iπ/4)√

2∆MK

(ImM12 + 2ξReM12) , ξ =
ImA0

ReA0
, (107)

where the term involving ImM12 represents ε̄ defined in Eq. (84). The phase-convention dependence of
the term involving ξ cancels the convention dependence of ε̄ so that ε is free from this dependence. On
the other hand, ε′ measures the difference between the phases of A2 and A0 and is a physical quantity.
The strong phases δ0,2 can be extracted from ππ scattering. Then Φε′ ≈ 40◦. (The situation is more
complicated than this. Because of isospin violations, one cannot just add strong phase shifts δ; the elec-
tromagnetic part will make this a two-channel problem, see Ref. [30].)

Comment

When we choose a convention where ImA0, then ε = ε̄.

Since the discovery of CP violation in 1964 [13], manifested in the non-zero value of ε, the question
remained whether also ε′ was different from zero. Since ε is due to mixing, that is to a ∆S = 2 transition,
one could imagine a new interaction, the superweak force [31] that only violated CP invariance and had
only a ∆S = 2 part. Then ε′ would vanish. Indeed, for over thirty years, only upper limits were measured
and the superweak model could not be excluded. But it was understood that the SM would give a very
small value of ε′ if the top quark were heavy. This is indeed the case, and much effort (unfortunately not
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enough) was spent calculating ε′ in the SM. Various estimates gave ε/ε′ ∼ 10−4−10−3, however, with a
large error. It came then as a surprise that in 1999 the two experiments at CERN and at Fermilab obtained
a definite non-zero value of [32] [33]

ε/ε′ = (21.4± 4.0)× 10−4 (108)

finally establishing direct CP violation. At the moment it is too early to draw also quantitative conclusions
from this result, since the theoretical calculation is so involved. The problem is the calculation of the
matrix elements as in Eq. (50). There are many operators contributing to ε/ε′. It is common belief that
two of them, the penguin penguin operator

O6 = (s̄αdβ)V−A
∑

q = u,d,s

(q̄βqα)V+A (109)

and the electroweak penguin operator

O8 =
3
2

(s̄αdβ)V−A
∑

q = u,d,s

eq(q̄βqα)V+A (110)

contribute most. Here, the subscript V± simply means that both quarks are left handed or both right
handed. In other words

(q̄q)V±A(q̄q)V±A = (q̄γµ(1± γ5)q)(q̄γµ(1± γ5)q) . (111)

A complete list of operators and numerical methods can be found in Refs. [21, 34]. Since the isospin
state of the two pions is important, one considers the isospin properties of the operators. Each operator
contributes both to the isospin 1/2 and 3/2 changing amplitudes. O6 has isospin 1/2, however, isospin
breaking (difference of up and down quark masses, electromagnetic corrections) induces also a 3/2 con-
tribution, thereby ‘thinning’ out the 1/2 component. This is not so important for the 3/2 part, dominated
by O8, which obtains a major contribution from the top quark.

The matrix elements of definite pion isospin I , 〈(ππ)I |Qi|K〉, are usually given in units of their
so-called vacuum insertion value or factorization value, 〈(ππ)I |Qi|K〉0. This is similar to the discussion
after Eq. (64) and will be elaborated on further below. As before, a B will describe the proportionality.
The vacuum insertion value can be expressed in terms of measured quantities, like decay constants, meson
masses, and less well known parameters, such as the quark masses. In the present case, we have

(112)

〈(ππ)0|Q6|K〉 = − 4
√

3
2

[
m2

K

ms(µ) +md(µ)

]2
Fπ
κ
B

(1/2)
6 , (113)

〈(ππ)2|Q8|K〉 = −
[
κ

2
√

2
〈Q6〉0 +

√
2

6
X

]
B

(3/2)
8 , (114)

where

κ =
Λ2
χ

m2
K −m2

π

=
Fπ

FK − Fπ
, (115)

X =
√

3
2
Fπ
(
m2

K −m2
π

)
. (116)

Using these quantities, we finally arrive at [21, 34]

ε′

ε
≈ 13 Im λt

[
110 MeV
ms(2 GeV)

]2
[
B

(1/2)
6 (1− Ωη+η′)− 0.4 ·B(3/2)

8

(
mt

165 GeV

)2.5
] Λ(4)

MS

340 MeV

 .

(117)

366



The presence of the strange-quark mass is due to the parametrization of the matrix element in terms
of the vacuum insertion value; the B’s should be proportional to it. The quantity Ωη+η′ represents the
‘dilution’ due to isospin breaking as discussed above. While most authors take it to be ≈ 0.25, a recent
paper [35] advocates a lower value of ≈ 0.16.

We see that for positive B’s there is a substantial cancellation between the two matrix elements;
this, together with the large uncertainty in the values of the B’s themselves and of ms, results in a very
large uncertainty of the prediction. I do not want to enter into the technical discussions surrounding these
values. At the moment, a strange-quark mass of 90–120 MeV seems reasonable [27]. For the matrix ele-
ments, various methods have been used. There are results from lattice QCD simulations, largeN methods
or the chiral quark model. For a review see Ref. [34]; see also Refs. [36, 37] and recent work which in-
cludes final state interactions [38]. The present typical ranges are 1.1–1.6 forB(1/2)

6 and 0.5–1 forB(3/2)
8 .

These result in a value of around 10−3 for ε′/ε, somewhat below the experimental value. Recently, it was
also pointed out [38] that final-state rescatterings (among the two pions) which are not taken into account
properly by all the above methods would increase the value of ε′ε, because B(1/2)

6 would be enlarged.
This last issue is also under debate in the lattice community.

The situation is very interesting, and much effort will be made to pin down the theoretical number.
At the moment it is too early to claim a disagreement with the SM.

5.3 The decays K → πνν̄

Also the decays K → πνν̄ may give important information on the unitarity triangle and new physics.
As stressed especially by Buras, the QCD-related uncertainties largely cancel, and so clean predictions
are possible. Therefore, I discuss these decays in some detail, although experiments seem far away. The
decaysK+ → π+νν̄ andK0 → π0νν̄ occur in the SM through penguin diagrams with the Z (see Fig. 8)
where the Z couples to νν̄ and boxes of two W (see Fig. 9). This makes them particularly sensitive to
the top quark and thus to the not-so-well known CKM matrix elements. Because in this case the QCD
corrections are well under control, these decays are an important future input for scrutinizing the SM.
The importance of this decay has been particularly emphasized by Buras and collaborators [21] and we
follow his treatment. The drawbacks are the relatively low branching fractions of around 10−11 and the
difficulties in detecting the neutral decay. One decay K → πνν̄ has been seen at Brookhaven, resulting
in a branching ratio of (4.6 + 9.7− 3.5)10−10 [39].

The Z penguin and the two-W box give rise to an effective Hamiltonian of the form (see Fig. 8
where the Z couples to a a neutrino pair or the box diagram of the left graph of Fig. 9 where one quark
line is replaced by external neutrinos and internal leptons)

Heff =
GF√

2
α

2π sin2 ΘW

∑
l=e,µ,τ

(
V ∗csVcdX

l
NL + V ∗tsVtdX(xt)

)
(s̄d)V−A(ν̄lνl)V−A . (118)

TheX are loop functions,X l
NL is due to charm andX(xt) to top. The matrix element of the operator can

be related by the isospin argument

〈π+|(s̄d)V−A|K+〉 =
√

2〈π0|(s̄u)V−A|K+〉 (119)

to that of the operator
(s̄u)V−A(ν̄ee)V−A (120)

which governs the charged-current decay K → πeν̄. Thus this uncertainty disappears and one gets

Br(K+ → π+νν̄) = κ+

[(
Imλt
λ5

X(xt)
)2

+
(

Reλc
λ

P0(X) +
Reλt
λ5

X(xt)
)2
]
, (121)
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where

κ+ = rK+
3α2Br(K+ → π0e+ν)

2π2 sin4 ΘW
λ8 = 4.11× 10−11 . (122)

Here, P0(X) = 0.42±0.06 is a particular combination of theX l
NL. Putting in all the numbers, one arrives

at

Br(K+ → π+νν̄) = 4.11× 10−11A4X2(xt)
1
σ

[
(ση̄)2 + (%0 − %̄)2

]
, (123)

where

σ =

(
1

1− λ2

2

)2

(124)

%0 = 1 +
P0(X)
A2X(xt)

. (125)

This cuts out an ellipse in the (%̄, η̄) plane.

The neutral decay K0 → π0νν̄ is even more interesting. In the one-Z exchange approximation it
violates CP invariance. Therefore it is sensitive to Imλt and thus only the top quark loop contributes.

Problem

Show this. Use the CP properties of the currents involved and of the Z.

The effective Hamiltonian is in analogy to above

Heff =
GF√

2
α

2π sin2 ΘW
V ∗tsVtdX(xt)(s̄d)V−A(ν̄ν)V−A + h.c. , (126)

where the function X(xt), present already in K+ → π+νν̄, includes NLO corrections and is given in
Ref. [21].

Strong-interaction corrections can be taken into account in the same way as before, by using

〈π0|(d̄s)V−A|K̄0〉 = 〈π0|(s̄u)V−A|K+〉 (127)

and expressing the square of this matrix element through the decay rate ofK+ → π0e+ν. This then leads
to

Br(KL → π0νν̄)
Br(K+ → π0e+ν)

= 3
τ(KL)
τ(K+)

α2

|Vus|22π2 sin4 ΘW
[Imλt ·X(xt)]

2 (128)

where λt = V ∗tsVtd. Note that the neutrino flavours were summed over here. Using all the numerical
values and expressing the CKM matrix elements through the parameters ρ̄ and η̄, one ends up with

Br(KL → π0νν̄) = 3.0× 10−11
[
η

0.39

]2 [ mt(mt)
170 GeV

]2.3 [ | Vcb |
0.040

]4

. (129)

We see that this decay yields a very precise determination of the height of the unitary triangle. There
are essentially no theoretical uncertainties, but the experiments for which there are plans at Fermilab and
Brookhaven are very difficult. It should be noted that, because of the theoretical accuracy, these decays
are ideal to search for new interactions. For instance, as shown in Ref. [40], supersymmetry may increase
the rates of the decays K → πνν̄. Thus, a branching ratio well above the SM prediction is a clear sign
of new physics.

Also rare decays ofB mesons are of great interest. The most discussed decay is b→ sγ which was
briefly discussed above. A discussion of rare B decays and their possible implications for new physics
can be found in Ref. [10]. I will not discuss this interesting field further, mainly because I have worked
on it myself for a long time.
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6. CP VIOLATION IN THE B SYSTEM

6.1 General formalism and mixing

CP violation in B meson physics is in the centre of interest in flavour physics. Indeed, two new B facto-
ries, BaBar at SLAC and Belle at KEK with the goal of finding CP violation have come into operation.

In these experiments, a B0B̄0 pair is produced at time zero; then each state develops in time (and
corresponding distance) and we want to know its composition at time t. Quantum mechanics determines
their development in time; see also Ref. [9] (in particular the article by Bigi et. al.) and [10].

As in the kaon system [compare Eq. (77)], mixing between the two different B mesons B0 = b̄d
and B̄0 = d̄b yields two eigenstates B1 and B2

|B1 =
p|B0〉+ q|B̄0〉√
|p|2 + |q|2

|B2 =
pB0〉 − qB̄0〉√
|p|2 + |q|2

. (130)

Diagonalizing the ∆B = 2 Hamiltonian and using the Schrödinger equation (79), one obtains for the
time development of an initial B0 = state

|B0
phys(t)〉 = g+(t) |B0〉+

(
q

p

)
g−(t)|B̄0〉 , (131)

where the functions g+(t) and g−(t) give the amplitude (square root of the probability) that the state
|B0

phys(t)〉 is a B0 or a B̄0, respectively. They follow from solving the Schrödinger equation (79) and
are given by

g+(t) = exp
[
−Γt

2

]
exp[−iMt] cos

(
∆M t

2

)
, (132)

g−(t) = exp
[
−Γt

2

]
exp[−iMt] i sin

(
∆M t

2

)
. (133)

We have neglected the tiny width difference between the eigenstates; M is the average mass of B1 and
B2 (recall, in the kaon system the widths are very different). For an initial B̄0 p and q (and B̄0 and B0)
must be exchanged. We also need the amplitudes for the decay of a B0 into a final state f :

Af ≡ 〈f |H|B0〉 and Āf ≡ 〈f |H|B̄0〉 . (134)

Similarly, we define the amplitudes Af̄ and Āf̄ for the decays into the CP conjugated state f̄ .

Finally, we write

λf ≡
q

p

Āf
Af

and λf̄ ≡
p

q

Af̄
Āf̄

(135)

which are independent of the phase convention chosen for the CP transformation. Note that these quan-
tities are useful only if both B0 and B̄0 can decay into the same final state f . Of course, there are final
states (so-called flavour-specific states) where this is impossible.

For the amplitude of the decay of the initial B0 and B̄0 state into f or f̄ at time t one gets

〈f |B0
phys(t)〉 = Af [g+(t) + λf g−(t)] and 〈f̄ |B̄0

phys(t)〉 = Āf̄ [g+(t) + λf̄ g−(t)] . (136)

Squaring this, we get the probabilities that the initial B0 and B̄0 states end up as f and f̄ at time t:

Γ(B0
phys(t)→ f) = |Af |2 e−Γt

[
1 + |λf |2

2
+

1− |λf |2
2

cos(∆M t)− Imλf sin(∆M t)

]
(137)

Γ(B̄0
phys(t)→ f̄) = |Āf̄ |2 e−Γt

[
1 + |λf̄ |2

2
+

1− |λf̄ |2
2

cos(∆M t) + Imλf̄ sin(∆M t)

]
.
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We note again that these expressions should only be used if the amplitudesAf and Āf̄ are non-zero. Then
they also apply for flavour-specific states where Āf and Af̄ vanish; in this case the λ’s vanish. The for-
mulas also hold for charged B decays if we set sin(∆M t = 0). The square brackets are then simply
1.

If, however, Af and Āf̄ vanish, but not the Āf and Af̄ , instead of going through a mathematical
limiting procedure, we go back to Eq. (131) and use simply

〈f |B0
phys(t)〉 = Āf

q

p
g−(t) and 〈f̄ |B̄0

phys(t)〉 = Af̄
p

q
g−(t) . (138)

For CP studies, we are interested in the difference of decay probabilities at time t of particles and
antiparticles. We define therefore the CP-violating asymmetries

Af (t) ≡
Γ(B0

phys(t)→ f)− Γ(B̄0
phys(t)→ f̄)

Γ(B0
phys(t)→ f) + Γ(B̄0

phys(t)→ f̄)
. (139)

A non-zero value of this asymmetry is a signal for CP violation.

We see that there are many effects that can induce CP violation, because the rates and therefore the
asymmetry is a complicated expression. The first we consider are the amplitudesAf and Āf̄ . CP violation
occurs when their absolute values are different. Since this violation resides in the decay amplitudes and
not in the mixing (which resides in the square brackets in Eq. (138) one calls it direct. In particular for
charged decays, it is the only source of CP violation since there the square bracket is 1. This asymmetry
is time-independent and takes the form

Af =
|Af |2 − |Āf |2
|Af |2 + |Āf |2

. (140)

There are usually several decay mechanisms contributing to the total decay amplitude Af . For
instance, a particular decay can go via a tree-level vertex or by a loop where new particles are formed as
an intermediate state which then decays into f . Such diagrams pick up a so-called rescattering phase, δ.
This phase has nothing to do with CP violation and is the same for particles and antiparticles. Thus the
amplitude takes the general form

Af =
∑
i

Ai e
iδi eiφi and Āf̄ =

∑
i

Ai e
iδi e−iφi , (141)

where the φi are the weak phases and the δi the rescattering (or strong) phases described above. This
form holds if the CP phases of f and B are equal, otherwise a correcting phase must be included in Āf̄
(as noted above, under the CP transformation a particle goes into its antiparticle times the so-called CP
phase).

When we calculate the squares of the amplitudes in Eq. (141), we see that they are different (re-
quired for a non-zeroAf ) only if there are at least two-decay mechanisms, with different weak and strong
phases. In fact, for two-decay chains we get

Af ∼ sin(φ2 − φ1) sin(δ2 − δ1) . (142)

Problem

Show Eq. (142).

Measuring then the asymmetries gives information on the weak phases φ which come from CKM
matrix elements or new interactions. But this requires a theoretical calculation of the strong phases δi
which is very difficult, and no accurate predictions can be made. We shall come back to this later [see
Eq. (215)].
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We return to the asymmetry Eq. (139) for neutral B mesons. We consider first the flavour-specific
decays where the final state is semileptonic, f = l−νX . Since only the B̄0 can decay into this, we have
the situation described in Eq. (138). The decay is mediated by the standard tree-level weak decay; there
is only one weak phase and thus Āf = A∗

f̄
. The rates [see Eq. (138)] are proportional to | qp |2 and |pq |2 and

the asymmetry becomes

Af (t) =
1− | qp |4

1 + | qp |4
. (143)

This asymmetry completely depends on the mixing mechanism; it is called indirect or mixing-
induced CP violation. As discussed above [Eq. (88)], |q/p| ∼ 1; an estimate gives around 10−2. We
may safely take |q/p| = 1 in the following. It is difficult to measure such a small number; the hope is that
exotic new physics could enhance the asymmetry.

6.2 Mixing-decay asymmetries

The most popular situation is when f is not flavour-specific and also a CP eigenstate, e.g. f = f̄ (Ref. [9]
and in particular the article by Bigi et. al.). Then we find that λf̄ = 1/λf and we obtain from Eq. (138)

Γ(B0
phys(t)→ f) = |Af |2 e−Γt

[
1 + |λf |2

2
− 1− |λf |2

2
cos(∆M t)− Imλf sin(∆M t)

]
|p
q
|2.

(144)
The CP-violating asymmetry takes the form

Af (t) =
(1− |λ|2) cos(∆M t)− 2Imλ sin(∆M t)

1 + |λ|2 . (145)

We need to estimate the λ’s. From Eq. (88) we have

q

p
= − M∗12

|M12|
= −(VtdV ∗tb)

2

|V ∗tdVtb|2
=
VtdV

∗
tb

V ∗tdVtb
= e−2iβ (146)

where β is the corresponding angle in the unitary triangle. Of course, in a more general model than the
standard one, we would replace β by some angle φdmix. (For the Bs meson, Vtd must be replaced by Vts
in the above formulas. We see from the values of the CKM matrix elements that then q

p ∼ 1; however, in

a general model, we could write eiφ
s
mix .)

The choice of the final state f is important. From Eq. (141) we see that the ratio Āf
Af

occurring
in λ is difficult to express in terms of weak phases because there are many contributions with different
strong phases. An exception is when there is only one term; then the strong phase cancels and we are left

with Āf
Af

= e−2iφdec where φdec is a weak angle, basically that of the CKM matrix elements. In this case,

|λ| = 1 and the asymmetry simplifies further to

Af (t) = −Imλ sin(∆M t) (147)

where
Imλ = sin(2φdmix + 2φdec) . (148)

In this ideal case, the asymmetry is just given by CKM matrix elements and the measurement
yields them without theoretical noise. The CP violation that follows from this type of asymmetry is called
mixing-decay CP violation. It is the most discussed one, and one particular final state, J/ΨKS , where
Imλ = sin(2β), has become the favourite and will be discussed further below.

The experimental aspects are discussed by P. Harrison. There are many amusing points here, such
as the need for an asymmetric B factory to measure the asymmetry Eq. (147).
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We return to the typical final states that are presently under discussion. As mentioned above, the
first is J/ΨKS . The major decay mechanism is the tree-level decay b→ scc̄,

b c

s

c̄

W for which
Ā

A
=
VcbV

∗
cs

V ∗cbVcs
. (149)

One chooses the KS (instead of any kaon) because one wants a CP eigenstate and KS is better
experimentally. The above decay mechanism yields aK0 from aB0 and a K̄0 from a B̄0. Since the final
state is a KS (and not a K0 or a K̄0) the amplitudes Af and Āf obtain a factor p and q, respectively:

according to Eq. (77)Ks = pK0+qK̄0√
|p|2+|q|2

. (Note that these are the p and q for the kaon system.) Thus in the

ratio Ā
A , a correction factor (q/p)K must be included. Since (q/p)K = VcsV ∗cd

V ∗csVcd
, we arrive at

λ(B → J/ΨKS) =
VtdV

∗
tb

V ∗tdVtb

VcsV
∗
cd

V ∗csVcd

VcbV
∗
cs

V ∗cbVcs
= − sin(2β) . (150)

The first factor in Eq. (150) is (q/p)Bd in Eq. (146), the second the analogous one for the final-state kaon,
and the third one is the ‘naive’ Āf/Af , as in Eq. (149). As expected, λ is independent of the choice of
phases in the CKM matrix; this is insured by the (q/p)K factor.

Problem

Show that the phase ambiguity remains if the factor (q/p)K is not included.

Since

β = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, (151)

the decay B → J/ΨKS measures the angle β in the unitary triangle.

In principle, this decay also receives contributions from penguin diagrams as pictured below

b s
t

W

g
c

c̄

which are proportional to VibV ∗is. Using unitarity of the CKM matrix, we have

VubV
∗
us + VcbV

∗
cs + VtbV

∗
ts = 0 . (152)

Since the first term is small, VcbV ∗cs ∼ −VtbV ∗ts and both the c and the t penguins are proportional to
VcbV

∗
cs, like the tree-level amplitude. Thus, even when we include these penguins, the factor Ā

A remains
the same. The error is only around 1%.

Next we want to find the angle

α = arg

(
−VudV

∗
ub

VtdV
∗
tb

)
(153)

of the unitary triangle. For this we need a decay of the form b̄ → uūd̄ whose tree-level amplitude is
proportional to VudV ∗ub. The simplest such decays are Bd → ππ. From the tree-level decay one would
obtain

Āf/Af =
VubV

∗
ud

VubV
∗
ud

(154)

372



and thus Imλ = sin(2α). However, penguin diagrams contribute substantially since the factor VubV ∗ud
which governs the decay is relatively small. Using unitarity (152), one can always re-express the top
contribution in terms of the other two; thus we write the amplitude in the form

Āf = VubV
∗
udAT + VcbVcdAP , (155)

where the amplitudes AT include the tree and the penguin, and AP the penguin diagrams. One estimates
that AP /AT is around 20–30%, giving a large error on α. Theoretically, one can disentangleAT andAP
by an isospin analysis of all three decayBd → π+π− andB+ → π+π0 [41] becauseAP changes isospin
by 1/2, andAT by 3/2 and 1/2. This requires all three decaysBd → π0π0. However, the first of these is
considered practically unmeasurable. More realistic ways have been discussed in the literature, especially
via the decay B → ρπ, see Ref. [10].

Similarly, the angle γ can be determined from Bs → ρ0KS . The above arguments now yield

λ(Bs → ρKS) =
VtsV

∗
tb

V ∗tsVtb

VubV
∗
ud

V ∗ubVud

VcdV
∗
cs

V ∗cdVcs
= − sin(2γ) , (156)

since

γ = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (157)

Again, it is thought that penguin contributions spoil this clean picture and at the moment this method
is not considered useful for determining γ.

Obviously there are many decays that yield, in principle, the three angles via the formula for λ;
the angle β, for instance, can also be obtained from the decay B → Dπ, (look at the quark diagram).
However, many decays have unwanted extra contributions, are harder to detect, etc. Therefore one usually
limits oneself to a few.

The consistency of the SM requires that the sum of the measured three angles be 180◦. But this is
also true for models where all CP violation is in the CKM matrix. Then the triangle still closes, but its
corners are moved. An example can be found in Ref. [42], where supersymmetry adds new forces, but
only the CKM couplings include CP violation.

Also, when there are new CP violating forces, the triangle might still close. For instance if there
were a new interaction that only contributed to the p and q in the Bd system. Then the angles β and α
would be shifted, but the sum α+ β would remain the same, and the triangle would just be rotated.

A possible way of finding new CP violating interactions would be to measure the ‘same’ angle in
several decays, i.e. to measure λ in decays which should have the same value in the SM, but not in general.
See for example, Ref. [43].

6.3 Determining the angle γ from amplitude measurements

A very different approach to the angle γ comes from measuring a well chosen set of amplitude measure-
ments. The basic observation is the following. The various contributions to one decay amplitude are
proportional to products of the form VijV

∗
lb . If there are relations among at most three of these contribu-

tions, the relations can be written as triangles in the complex plane (these are not unitary, but amplitude
triangles). The angles between two sides (amplitudes) of these triangles are given by the difference of
the weak and strong angles of the two amplitude contributions [see Eq. (141)]. If there are enough such
triangles, and the magnitudes of the amplitudes can be measured, one may reconstruct both the weak and
the strong angles. In other words, knowing the sides of a triangle also gives its angles!

To make this more concrete, we consider the decays B → DK [44, 10], but the ideas are, in some
sense, at the base of more recent ideas, such as proposed by Mannel and Fleischer [45, 46], and later by
Neubert and Rosner [47]. We shall discuss them later.
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29 A(B+ → D̄0K+) = A(B− → D0K−)

√
2A(B+ → D0

+K
+)

A(B− → D̄0K−)

√
2A(B− → D0

+K
−)

A(B+ → D̄0K+)

2γ

Fig. 13: Six amplitudes from which the angle γ can (in principle at least) be determined.

The decay B+ → D̄0K+ receives only a tree-level contribution proportional to VusV ∗cb. This is
real, and the amplitude has only a strong phase δ. The charge conjugated decay B− → D0K− has the
same strong phase, and because VusV ∗cb ∼ V ∗usVcb in the usual convention, the two amplitudes are the
same. On the other hand, the decay B+ → D0K+ is proportional to VcsV ∗ub (check it!). The amplitude
now has a weak phase γ (from V ∗ub) and a strong phase δ′. Its conjugated amplitude has the phase−γ+δ′

[always compare with Eq. (141)]. On the other hand, we have D0
+ = 1√

2
(D0 + D̄0) which implies the

amplitude relation

A(B+ → D̄0K+) +A(B+ → D0
+K

+) =
√

2A(B+ → D0
+K

+) (158)

and its complex conjugate. The situation is shown in Fig. 13. The angle δ can be chosen equal to zero,
only the difference δ′ − δ matters. We see that the angle γ appears through this geometric construction!

The measurement of all six amplitudes is difficult. More suitable decays have been proposed [10];
and maybe there are even better ones. Find them!

7. LEPTONIC AND RARE DECAYS

Before going onto hadronic decays, I shall briefly mention the purely leptonic and so-called rare decays.
The simplest leptonic decays are the ‘tree-level’ decays B+ → l+νl where l = e, µ, τ and where the B
meson annihilates with a factor VubfB . The matrix element factorizes as in Eq. (201) and the hadronic
factor is

〈 0 | (b̄γµ(1− γ5)u)A |B+ 〉 = ifBpµ . (159)

Because of the famous helicity suppression factor (ml/mB)2 in the formula for the rate, the largest
branching ratio of around 10−5 is for the τ , whilst for the µ the branching ratio is around 10−7. These are
difficult decays to measure.

These leptonic decays give important information; they are the only direct measurements on the
decay constant fB , presently known to only 20% or so, can be fixed more accurately, this decay could
give Vub with substantial precision. Also of interest are the radiative decays, such asB+ → l+νlγ. It was
shown that it is not supressed for the µ and the electron as compared to the leading decayB+ → l+νl [48].
Using heavy quark arguments (next section) also these decays may yield fB or other important quantities.

A second class of leptonic decays are the rare decays induced by loops, such as B → µ+µ−. Like
all rare decays, they test the SM at the loop level and are sensitive to new physics. I cannot cover this
interesting topic more, but see, for instance the BaBar book [10] for results and references.
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Also semihadronic rare decays are much discussed. We already mentioned the decay b→ sγ, but
many others are being investigated with great care; an example is b → se−e+. Much on them can be
found in the BaBar book [10].

8. HQET: A SHORT EXPOSITION

8.1 The ideas

Since the Heavy Quark Effective Theory is so intuitive and is modelled after well-known concepts of
atomic physics, it is worthwhile and instructive to briefly expose it here. There are several extensive re-
views [49], and shorter descriptions can be found in Refs. [50] or [10].

The theory of strong interactions, QCD, enjoys the property of asymptotic freedom according to
which the interactions become weaker at higher momentum exchange. Roughly, a scale ΛQCD ∼
0.5–1 GeV separates regions of strong and weak couplings. Hadron radii are typically of the order
1/ΛQCD. Heavy quarks are those whose mass is way above ΛQCD and which include c, b, t. Accord-
ingly, their Compton wavelength λq ∼ 1/mq is much smaller than the hadronic radius. This leads to
several simplifications, also known from atomic physics where the tiny nucleon is much smaller than the
atom. The mass of the nucleon is essentially irrelevant, only its charge (and the electron mass) determine
all levels, transition rates, etc). Furthermore, the interaction of the electronic hull with the spin of the nu-
cleus (hyperfine interactions) is supressed by 1/Mnucleus. This is of course well known and follows from
simple physical arguments: If the nucleus has a very large mass, it does not move in the atom’s centre of
mass. Therefore its charge does not generate the B field necessary to interact with the spin of the elec-
tron. Only when it moves, and the motion is clearly of the order 1/Mnucleus, does the spin of the nucleus
generate a B field as a relativistic effect.

Translated into hadrons, this means that the flavour and spin of the heavy quark become irrelevant
as the mass of the heavy quark is large (this concerns c and b quarks). There are relations between hadrons
containing a c and those containing a b quark, i.e. betweenD andB and also between hadrons of different
spin, for example between B and B∗ or between D and D∗. This heavy quark symmetry yields certain
approximate relations, such as the one between the decay constants fB and fD of B and D mesons, etc.

In HQET, one follows the notion of big and small components introduced in the study of the Dirac
equation. A Dirac spinor Ψ which describes a relativistic fermion decomposes into large and small com-
ponents as follows:

Ψ =


Ψu ∼ 1
Ψd ∼ 1

Ψ′u ∼ E/m
Ψ′d ∼ E/m

 . (160)

Here, E is the energy and m the mass of the particle; E/m is small (binding energy over mass).
The two first (large) parts describe the spin-up and spin-down components of the particle, the other two
(small) components, the two spin states of the antiparticle.

In treating atoms with the Dirac equation, one systematically expands in powers of 1/me, using
the so-called Foldy Wouthuysen Transformation (see for example, Ref. [51]). Basically the idea is the
following. The Dirac equation connects large and small components. One can express the large ones in
terms of the small ones and obtain in this way a more complicated equation for the small components. In
the first step, this gives for instance the so-called Pauli equation, which gives rise to a magnetic dipole
coupling between the spin and the B field felt by the moving electron.

In our case of quark field theory, one expresses in a similar way the small ‘fields’ through the large
ones. This leads to an ‘effective’ field theory in terms of the large components, HQET. I would like to
carry out a few steps in some detail; maybe this will also help to understand some of the beautiful physics
in the Dirac equation.
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As already mentioned, the heavy quark carries most of the hadron’s momentum. Thus we express
its momentum in the form

pµ = mQvµ + kµ , (161)

where |kµ| ¿ mQ and vµ is the so-called four velocity of the hadron containing the heavy quark (v2 = 1).
For instance, in the rest frame of the hadron, v = (1, 0, 0, 0), and kµ describes the internal motion of the
heavy quark. We now consider the Lagrangian density and the corresponding Dirac equation for the field
Q(x) of the heavy quark. Recall that if the Lagrangian density has the form

L = Q̄(6D −mq)Q (162)

then the Euler–Lagrange procedure yields the Dirac equation

(i 6D −m)Q = 0 . (163)

Here, 6D = Dµγ
µ and the covariant derivative Dµ is given by Dµ = ∂µ − igAµ. The γ are the usual

Dirac matrices, A is the gauge field, and g the gauge coupling.

To obtain some insight, consider the simple case where the quark is free and at rest. Then the Dirac
equation reduces to

(γ0∂t −mq)Q = 0 (164)

whose simple solution is
Q ∼ e−imqt . (165)

We see that e−imqt is a ‘trivial’ phase and does not contain physics of interest to us here. It is therefore
useful to redefine the fields as much as possible by ‘taking out’ this phase. We define Q = e−imqtQv.
Recall that the Dirac matrix γ0 has the form

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (166)

When we apply the Dirac equation to Q, a factor of mq which comes from differentiating the ex-
ponential cancels the explicit mass term for the large component of Qv. For this field there is therefore
no mass term. This expresses the physical fact, discussed above, that the mass is irrelevant.

We can formalize this discussion [52, 49]. For general v, we must replace the time t by the scalar
product v · x, where x is the four coordinate. Large and small components are formed via the projection
operators

P+ =
1+ 6v

2
, P− =

1− 6v
2

(167)

Note that for v = (1, 0, 0, 0) the P± reduce to the well known form P± = 1±γ0

2 , given by

P+ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , P− =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (168)

We can now write
hv = eimqvxP+Q(x), Hv = eimqvxP−Q(x) (169)

or
Q = e−imqvx(hv +Hv) , (170)
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where 6 vhv = hv and 6 vHv = −Hv. hv correspond to the large, and Hv to the small component. The
price to pay for the disappearance of the mass is that the fields become velocity dependent.

The next step is to eliminate the small component Hv sytematically. To illustrate the procedure,
we take v = (1, 0, 0, 0). The complete Dirac equation for Q reads

0 = (p0γ0 − ~p~γ + gA0γ0 − g ~A~γ −mq)e−imt
(

hv
Hv

)
. (171)

Here, the pµ are the partial derivatives i∂µ. The gauge fields describe the ‘colour’ background in the
hadron; they are of the order of the binding energy and thus small compared to the mass mq. With

~γ =

(
0 ~σ
−~σ 0

)
(172)

Eq. (171) splits into two equations

0 = (p0 −m−A0)e−imqthv + (~p~σ − g ~A~σ)e−imqtHv . (173)

0 = (p0 +m−A0)e−imqtHv − (~p~σ − g ~A~σ)e−imqthv . (174)

Because of the exponential, p0 ∼ mq and is large. Therefore, we can use the second equation to
eliminate Hv in terms of hv

Hv ∼
~p~σ − g ~A~σ

2mq
hv . (175)

This is inserted into the first one which becomes now

0 = (p0 −m−A0)e−imqthv + (~p~σ − g ~A~σ)e−imqt
~p~σ − g ~A~σ

2mq
hv . (176)

Using (see problem below)

(~p− g ~A)~σ)((~p− g ~A)~σ) = (~p− g ~A)2 − g ~B~σ (177)

we arrive at the ‘Pauli’ equation

0 = (p0 −m−A0)e−imqthv +
1

2mq
((~p− g ~A)2 − g ~B~σ)e−imqthv . (178)

Comparing this equation with Eqs. (162,163), we can view this as an equation of motion for the field hv
and translate it ‘back’ into an effective Lagrangian density for hv. This will give a leading ‘kinematical’
term, valid if mq →∞, and two corrections proportional to 1/mq, namely

δL ∼ 1
2mq

(~p− g ~A)2 − g ~B~σ . (179)

A systematic treatment will give a series of such correction terms, with all powers of 1/mq. It can be
formalized and adapted to the present notation. The effective Lagrangian for the field hv up to order 1/mq

then reads

L = h̄viD · vhv +
1

2mq
h̄v(iD⊥)2hv +

g

4mq
h̄vσµνG

µνhv . (180)

We recognize the terms in Eq. (179), the square of the momentum, and the magnetic interaction.
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Problem

Derive Eq. (177) using the matrix identity

~a~σ~b~σ = ~a~b+ (~a×~b)~σ . (181)

Make use of the well-known expression ~B = rot ~A.

In order to see a little ‘how it works’ we calculate the mass of the pseudoscalar and vector mesons
whose difference is the relative spin state of the constituents. We need to calculate the matrix element of
the Hamiltonian between two heavy mesons. The additional interaction in Eqs. (179) and (180) gives the
corrections

λ1(B) =
1

2mHb

〈Hb|h̄v(iD⊥)2hv|Hb〉 (182)

and
λ2 =

g

4mq
〈Hb|h̄vσµνGµνhv|Hb〉 . (183)

The first of these is independent of the spins. However, the second is not. From the more physical form
in Eq. (179), g ~B~σ, we find that the correction is of the form s1 ·s2 where the si are the spins of the heavy
quark and the light quark, respectively. The first factor is already present in the interaction, whilst the
second comes in because the B field must be proportional to s2 (the relative angular momentum is zero
for these states). Now, the total spin is S = s1 + s2. Squaring this, we find s1 · s2 = S(S+ 1)− 2(3/4).
This gives a factor 1/2 for a vector and −3/2 for the pseudoscalar. We can then write for the masses:

mvector = M0 + (λ2)/(2mq) ;mscalar = M0 − 3(λ2)/(2mq) . (184)

The difference between the masses of B and B∗ is then 2(λ2)/(mb). From the experimental values and
the approximate relation mB ∼ mb one obtains λ2 ∼ 0.12 GeV2.

In this way one can fix the parameters of the effective Lagrangian from a few experimental numbers
and then use it for the calculation of the various quantities of interest. The two major areas are inclusive
decay from which one determines the quark mass, and semileptonic decay, which are important (as seen
before) for determining the CKM matrix elements. We consider here only the latter.

8.2 Applications

The first application which comes to mind is the semileptonic decay B → Deν. The matrix element of
the four-fermion Hamiltonian (c̄γµb)(eγµν) is proportional to

〈D(p′)|c̄γµb|B(p)〉 = f+(q2)(p+ p′)µ − f−(q2)(p− p′)µ , (185)

where q = p − p′ and f+ and f− are the form factors. This form is dictated by Lorentz covariance. As
before, we define the four-velocities v and v′ by p = mB v and p′ = mD v

′ and take the fields b, c to be
the large components, bv, etc. Then Eq. (185) can be rewritten as

〈D(v′)| c̄γµb |B(v)〉 =
1
2

[
(mB +mD)f+(q2)− (mB −mD)f−(q2)

]
(v + v′)µ

+
1
2

[
(mB −mD)f+(q2)− (mB +mD)f−(q2)

]
(v − v′)µ . (186)

If v = v′, the heavy quark symmetry tells us that in the transition from b to c nothing else happens, the
surrounding quarks ‘do not notice’ the change since their states are independent of the heavy quark. An-
other way of saying this is that the Dirac equation for hv is mass independent, and thus the current c̄γµ

is conserved. This implies that (v− v′)µc̄γµ = 0. When multiplying the right-hand side of Eq. (186) by
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W

Fig. 14: An impression of the complicated QCD interactions in an hadronic decay.

v − v′, the first term vanishes, since (v − v′)(v + v′) = 0. Thus the second term must be zero, and we
arrive at

f− =
mB −mD

mB +mD
f+ . (187)

We see that both functions are proportional to one single function; one usually sets

f± =
mB ±mD

2
√
mBmD

ξ(ω) , (188)

where ξ(ω) is the so-called Isgur–Wise function and the argument is ω = v·v′. For vv′ = 1 (corre-
sponding to v = v′) this function is the one reflecting the fact that ‘nothing’ happens. Using the relations
p = mv between the real momenta and the four velocities for the b and c quarks, the value vv′ = 1
corresponds to the maximum momentum transfer q2 = (mB −mD)2.

Following the above exposition [such as Eq. (180)] one can calculate corrections to this. One finds
that typically the Isgur–Wise function becomes, at w = 1,

ξ(ω) = 0.91± 0.03 (HQET), ξ(ω) = 0.935± 0.03 (lattice) . (189)

The semileptonic branching fraction calculated from this appears, at the moment, to be slightly
higher than the experimental values measured at LEP and at the low-energy machines [18, 19].

9. HADRONIC DECAYS OF B-MESONS AND RELATED ISSUES

9.1 General comments

The decay of a hadron containing a b quark is illustrated in Fig. 14. The b quark decays by emitting the
W and an up-type quark. The W may just decay into a pair of quarks, or combine with the other quarks
in the hadron. Many gluons are exchanged between initial and final quarks.

The non-leptonic decays are difficult to treat. After the decay there are a number of light quarks
and gluons around, with various momenta and energies. Because of the strong confining forces they must
form hadrons. This can happen in many ways and there is now a reliable way to calculate it theoretically.
Therefore one asks either limited questions or makes assumptions based on physical pictures. Some of
these will be described in the following Section.
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9.2 Inclusive decays

The mass of the b quark is rather large compared to the QCD binding energy (‘bag’) which holds together
the hadrons. Thus, to a first approximation, we may say that in a B hadron at rest the b quark just ‘sits’
there, and the light quarks orbit around it. In this picture, the b quark decays without being influenced
by the other constituents, they are just ‘spectators’. After the decay, there are several light quarks. Since
they are bound to form hadrons, we may consider the quark process (before hadronization) as a model
for inclusive decays. Therefore inclusive decays are easier to treat than exclusive ones. Because of the
obvious connections, inclusive decays can be treated within the Heavy Quark Effective Theory [53].

This rough picture implies that the lifetimes of all B-hadrons be the same. A little inspection of the
present data for the lifetimes τ of the B hadrons gives the following picture:

τ(B−/B0) = 1.07± 0.02 (190)

τ(Bs/B0) = 0.94± 0.04 (191)

τ(Λb/B0) = 0.79± 0.05 . (192)

While the first two ratios are near one, as expected from the above discussion, the last value cannot
be understood from the simple picture. (Note that for the charmed hadrons, the ratios are indeed near one.)
Unless the experimental value is unreliable (a possibility the present author does not exclude) corrections
to the above picture must be evaluated.

The first correction is to include the internal motion of the b quark in a hadron. This leads to cor-
rections in powers of λ/mb. Clearly this internal motion depends on the hadron in which it takes place
and therefore differences arise between heavy mesons and baryons. The Heavy Quark Effective Theory’,
HQET, introduced above is ideally suited to tackle this question and many results exist [10].

The other effects come from direct spectator interactions. Clearly, such effects also depend on the
hadron in which the b quark decays, and thus give rise to different lifetimes. Recent investigations [54]
and [55] find small corrections unable to account for the experimental numbers, but again, such results
are to be taken as an indication rather than as complete results.

9.3 Exclusive hadronic decays of B-mesons

As often mentioned, these decays are very difficult to calculate. Present theoretical work is essentially
limited to decays of a B meson into two mesons. These decays are important for understanding QCD,
but mostly for extensive studies of CP violation (as mentioned, semileptonic decays are not too promising
in this respect). The best investigated ones are decays into charmed hadrons, such as B → Dπ, but as
we shall see later, the most interesting decays are the charmless ones, especially those into two π’s or a π
and aK. The experimental situation has greatly improved in 1999. Table 1 contains only the ππ and πK
modes. There is an excellent review by M. Artuso ([17] which contains extensive results from which we
note here only the relatively large branching ratios of B+ → η′K+ and B0 → η′K0.

These results already teach us some simple lessons. Consider the tree-level decays b̄ → ūus̄ and
the penguin graph process b̄→ s̄qq̄ in Fig. 15.

The tree-level process always leads to a pair of uū, whilst the q in the penguin can be u or d. Con-
sider then the decay B0+ → π0K0. The final state contains a dd̄ pair and thus it must come from a
penguin graph. Similarly, the π−π+ final state is expected to originate from the tree-level process. The
CKM factor of the penguin |V ∗cbVcs| ∼ λ2 and that of the tree level graph is |V ∗ubVud| ∼ λ3. The table
then tells us that

|λ
2P

λ3
|2 ∼ 15× 10−6

5× 10−6
, (193)

from which we conclude that the ratio of the penguin amplitude P to the tree level amplitude T is around
0.4. This implies rather large penguin effects and is also supported by the big branching ratios into η′. As
a consequence, the measurement of α in pion decays is not as easy as once hoped.
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Table 1: Experimental results. Branching fractions (B) and 90% C.L. upper limits are given in units of 10−6, from Ref. [17].

Mode B (10−6) Signif. (σ)
π+π− 4.7+1.8

−1.5 ± 0.6 4.2
π+π0 < 12 3.2
K+π− 18.8+2.8

−2.6 ± 1.3 11.7
K+π0 12.1+3.0+2.1

−2.8−1.4 6.1
K0π+ 18.2+4.6

−4.0 ± 1.6 7.6
K0π0 14.8+5.9+2.4

−5.1−3.3 4.7
K+K− < 2.0 –

K+K
0

< 5.1 1.1

W
b̄

ū

u

s̄

q
q

B

D

b̄

s̄

g

d d̄

d

W

Fig. 15: Schematic tree and penguin amplitudes for a hadronic B decay.

9.4 General description of hadronic decays

We take as an example the effective Hamiltonian such as in Eq. (50) for a b → cūd transition. Other
flavour transitions just require appropriate changes of the flavours and CKM matrix elements.

Heff =
GF√

2
VcbV

∗
ud [c1(µ)O1 + c2(µ)O2]

+ penguin operators . (194)

The local four-quark operators, renormalized at a scale µ, are written as products of colour-singlet cur-
rents,

O1 = (d̄u)V−A (c̄b)V−A ,

O2 = (c̄u)V−A (d̄b)V−A (195)

where

(d̄u)V−A = (d̄γµ
1− γ5

2
u) (196)

is the left-handed current typical for the weak interactions. Naively, we may picture these operators as
two currents, connected by a colourless exchange ‘particle’ of large mass. The corresponding Wilson
coefficients ci(µ) are at the scale relevant to B decays [21]

c1 = 1.13 and c2 = −0.3 . (197)

To gain some intuitive ideas about the process, one expresses the effective Hamiltonian in a differ-
ent way, using the Fierz identity, a mathematical formula. Instead of (194) we can write

Heff =
GF√

2
VcbV

∗
ud

[
(c1(µ)O1 +

c2(µ)
3

O1 + 2c2(µ)O8

]
+ penguin operators . (198)
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ū

d

q̄
q̄

B

D

(a)

1
b

c

ū
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Fig. 16: (a) Schematic picture of the contribution of the operator O1 to the decay B̄ → Dπ in the factorization approximation.

The ‘1’ at the dashed line indicates that the exchanged ‘quantum’ is a colour singlet. (b) A suppressed gluon correction.

or

Heff =
GF√

2
VcbV

∗
ud

[
(c2(µ)O2 +

c1(µ)
3

O2 + 2c1(µ)O8

]
+ penguin operators . (199)

where the new operator O8 is given by

O8 = (d̄
λa
2

1− γ5

2
u) (c̄

λa
2

1− γ5

2
b) . (200)

The λa are the Gell-Mann matrices. In contrast to the above operators, O8 is the product of two colour
octets. These two forms are referred to as I or II , respectively. We will understand their usefulness
shortly.

We need the matrix elements ofHeff . From Fig. 16 the following simplified picture emerges. Since
theB is quite heavy, the momentum of the emitted quark pair ūd is large. Thus one expects the corrections
from gluons ‘across’ the vertex to be small and takes them to be absent. For the operator O1, this implies
that the matrix element ‘factorizes’ and can be written as the product

FI = 〈π−| (d̄u)A | 0 〉 〈D+| (c̄b)V |B̄0〉 , (201)

since no quarks or gluons are exchanged between the two currents. The two factors account for all QCD
effects on either side of the exchange, i.e. gluons between the ūd pair and between all constituents of the
B and D mesons are included. Recall the factorization idea in Eq. (65). Gluon corrections across the
exchange can be parametrized by a contribution F1ε1(µ). The letter ε indicates that it is supposed to be
a small quantity. The form (201) is called factorization. It is the basic approximation of most treatments
of quark processes. Its validity is a theme of long theoretical debates; recent work has even heated up the
discussion [56].

For the operator O8 the exchange ‘quantum’ [in analogy to Fig. (16)] is a colour octet and cannot
generate a physical (colourless) ūd state. Therefore, at least one extra gluon is required, as in Fig. 16(b).
We thus assume that this contribution is small and parametrize it by F1ε8(µ).

Note the scale-dependence of the εi(µ). And, of course, they are process dependent.

Collecting all the intermediate results, we can write for the matrix element

A =
GF√

2
VcbV

∗
ud FI

(
(c1 +

c2

3
)(1 + ε1) + 2c2ε8

)
+ penguin contributions . (202)

Factorization means that the εi are zero. A perturbative calculation of them would require graphs
as shown in Fig. (16). In recent work [56] it has been shown that the sum of all possible one-gluon ex-
changes is infrared finite in the leading order in q/mb. This is taken as evidence that factorization holds

382



at very large energy and can have only corrections proportional to 1/mB . But, of course, these can still
be numerically large.

The point of factorization is that FI is the product of known quantites or those that can be measured
in semileptonic decays. In the above case,

〈π−| (d̄u)A | 0 〉 = ifπp , (203)

where fπ is the decay constant of the pion. The matrix element 〈D+| (c̄b)V |B̄0〉 occurs in the semilep-
tonic decay B̄0 → D+`−ν (see Eq. (185). One can either determine it from the semileptonic decay
and/or theoretically using HQET arguments [10] or other methods. Then, FI is fixed. This scheme can
be used for all type I processes, i.e. for all decays dominated by the operator O1.

Next consider the transition B̄0 → D0. We see from Fig. 16 that it cannot go byO1 (without other
exchanges) since the c quark must combine with a ū rather than with the d̄. Therefore we need the second
form of the effective Hamiltonian in Eq. (199). Following the same steps as above, the matrix element
for the decay is now

AII =
GF√

2
VcbV

∗
ud FII

(
(c2 +

c1

3
)(1 + ε̃1) + 2c1ε̃8

)
+ penguin contributions , (204)

where the ε̃ are supposed to be small again.

For this case factorization is not a good starting point because the first coefficient,(c2 + c1
3 ), is nu-

merically much smaller than the second, 2c1, and therefore the second term cannot be neglected. Instead,
following Bauer, Stech and Wirbel [57, 58] one introduces two effective phenomenological coefficients,
a1 and a2, in the following way: one writes for each matrix element

AI =
GF√

2
VcbV

∗
ud FIa1

AII =
GF√

2
VcbV

∗
ud FIIa2 , (205)

where the FI,II are products of form factors and decay constants for the decay under consideration. How-
ever, the a1,2 are taken to be process independent. We may call this model ‘universality’.

In practice, one determines the a1,2 from decays where the FI,II are well known; one finds

a1 = 1 and a2 = 0.3 . (206)

One can then predict many other decay rates. Extensive tables show that this simplified picture is rather
good [58].

From a more fundamental viewpoint, the success of this picture is not so easy to understand. Whilst
for class I decays it may not be so unexpected, the agreement with experiments in class II is quite surpris-
ing. Several attempts have been made to calculate a1,2 from basic QCD. It turns out that perturbative
calculations give values which are too small. A sum rule calculation gives larger values, but it seems im-
possible to reproduce the sign of a2 [59, 10]. As mentioned, it was argued recently that factorization is
an exact result in the limit mb →∞ [56].

Factorization can be used and tested in different ways. One obvious test is to compare the hadronic
decay B → Dh (h is any hadron, such as a π, etc.) to the semileptonic one B → Dlν for a leptonic
invariant momentum q2 = m2

h. In the ratio of the widths, the form factor B → D drops out and one gets

Rl =
Γ(B → Dh)

Γ(B → Dlν)q2=m2
h

= 6π2f2
h |a1|2 , (207)
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where some corrections have been dropped. fh is the decay constant of the hadron h, defined in a similar
way to that of the pion in Eq. (203).

Similarly, one can compare two hadronic rates and obtain essentially

Rh =
Γ(B → Dh1)
Γ(B → Dh2)

= (
fh1

fh2

)2 . (208)

These equations can be exploited in several ways: As tests of factorization, or as the means to obtain
unknown branching ratios or unknown parameters, such as decay constants. An example is D mesons,
whose decay constant is still only poorly known.

Another test of factorization [60] follows from the fact that certain decays are absent in this limit,
since the current matrix element

〈π−| (d̄u)A | 0 〉 (209)

vanishes for hadrons with a certain spin-parity assignment. An example is the state a2, thus a measure-
ment of the rate of

B̄0 → D+a−2 (210)

would be clear and quantitative evidence for a departure from factorization.

9.5 Final-state interactions

Final-state interactions are very important and many discussions evolve around them. They occur be-
cause of the continuing strong and weak interactions among the decay products and quantum mechanical
evolution. They generate phases for the amplitudes such as e−iEt, but they also induce rescatterings into
other channels, such as the rescattering of a state π0π0 into π+π−, etc. These phases and rescatterings
are important because the phases influence the rates substantially through interference.

We can formulate final-state interactions through the scattering matrix (S matrix) of strong interac-
tions. The necessity of final-state interactions can be understood from the unitarity of the full (weak and
strong) S-matrix, S†S = 1. As a consequence, the T -matrix, defined by S = 1 + iT , obeys the equation
(optical theorem)

〈F̄ |T |B̄〉∗ =
∑
I

〈F |S†|I〉〈I|T |B〉 . (211)

Here, the states |I〉 represent all possible final states (including |F 〉 itself) which can be reached from the
state |B〉 by the weak transition matrix T . The right-hand side of Eq. (211) can then be viewed as a (weak)
decay of |B〉 into |I〉 followed by a strong rescattering of |I〉 into |F 〉. Thus, 〈F |S†|I〉 may be identified
as a CP-conserving FSI rescattering of particles.

If |I〉 is an eigenstate of S with a phase e2iδI , then

〈Ī|T |B̄〉∗ = e−2iδI 〈I|T |B〉 , (212)

which implies equal rates for the charge conjugated decays and hence no CP asymmetry. Therefore, at
least two different states with equal quantum numbers must exist which can be connected by strong rescat-
tering (for example, states with different numbers of particles or states with different particle charges but
the same total charge and isospin).

For the one-channel case, Eq. (211) is known as the Omnes problem and its solution can be found if
the final states phases are known experimentally. Methods for more channels exist; a satisfactory solution
for decays of the form K → 3π or η → 3π exists [61]. There is not even a partial treatment along these
lines available for B decays.
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The level of theoretical understanding of final-state scatterings of B meson decays is similar to
that of factorization. On the phenomenological side one may argue as follows [62]: all known hadronic
cross-sections can be parametrized by the form [63]

σ(s) = X

(
s

s0

)0.08

+ Y

(
s

s0

)−0.56

, (213)

where s0 ∼ 1 GeV2 is a typical hadronic scale. This implies (optical theorem) that the imaginary part of
the forward elastic scattering amplitude increases asymptotically as s1.08. This result can be extended to
larger momentum transfer, assuming an exponential fall-off [64]. When applied to B meson decays, we
set s = mb.

One can refine the argument further, since the phenomenology of high-energy scattering is well
accounted for by Regge theory [64]. Scattering amplitudes are described by the exchanges of Regge tra-
jectories (families of particles of different spins). The leading trajectory for high-energy scattering is the
pomeron. Non-leading trajectories presumably vanish as 1/mB in the infinite heavy-quark mass limit.

In Ref. [62] it was estimated that the pomeron contribution in B → ππ is

ImMB→ππ|pomeron ' εiMB→ππ (214)

with ε ∼ −0.21. From this numerical result and from the nature of its derivation, one can conclude that
additional individual soft final-state interactions are not vanishingly small. However, of chief significance
is the naive expected weak dependence of ε on mB — the (m2

B)0.08 factor in the numerator is attenuated
by a ln(m2

B/s0) dependence. Support for large phases also comes from a recent phenomenological anal-
ysis [65] where large phases were found in decays of heavy mesons.

In the recent theoretical analysis of Ref. [56] it was argued that at the one-loop level (one gluon
correction) the final-state phases vanish as mb goes to zero, the only effects being the perturbative one-
loop diagrams. This implies, in particular, that the older, perturbative calculations [66, 67] which yielded
relatively small values for CP asymmetry in two-body decays are valid.

This result is in obvious contradiction to the phenomenological procedure outlined above. Given
the incompleteness of both treatments, there several possible explanations:

• mb is finite, and thus a large numerical value of the coefficient of the 1/mb term can be large (this
actually happens for fB).

• Two loops or higher loops may spoil the clean result of Ref. [56].

• In the phenomenological description only the pomeron is included. Important cancellations might
occur when more complete intermediate states are considered. This can be observed in other situ-
ations.

Obviously, the situation is rather interesting. The methods outlined in Ref. [65] might be useful to deter-
mine experimentally the size of the final-state phases in many instances.

The calculation of the final-state interaction is rather difficult, because of the intricacies of QCD.
They share the same (or even worse) difficulties as factorization, discussed above. For instance, it is not
clear whether they should be done using quark and gluons or physical hadrons. One often invokes the
notion of duality where quarks and gluons are equivalent to hadrons if appropriate sums are employed.

We start with the perturbative approach, where we use quarks and gluons [66]. To show how it
works, we consider the simple diagram in Fig. 17 where we take the photon momentum square q2 to be
arbitrary. The rescattering phase comes about when we consider the imaginary part of this diagram (apart
from the complex values of the CKM matrix element). Using the straightforward Feynman rules of the so-
called Cutkosky rules, one finds that the imaginary part is caused by the internal quarks qi being on their
mass shell. We can view this as follows: the b decays first into the state sqq̄, and then the electromagnetic
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c

c̄

b γ

s

Fig. 17: The transition b→ sγ drawn to adapt to Eq. (211). The dashed lines correspond to the states in that equation; the cc̄s

state is the intermediate state I .

rescattering changes this state into the desired final state sγ. We can see from Eq. (211) that the existence
of two states that can rescatter into each other leads to phases.

In the above case, the imaginary part depends on q2 and the mass of the intermediate quark. It is
zero for q2 ≤ 4m2

q because then the quarks cannot be on the mass shell and do not form a physical state
required by Eq. (211). Thus, if 4m2

u ≤ q2 ≤ 4m2
c , there is an imaginary part for the u quark, but none

for c, let alone t. But even if the photon is on the mass shell, e.g. q2 = 0, radiative corrections such as in
Fig. 18 allow the phase, since the effective q2 of the gluon (whose momentum can also be taken as the
relevant one) assumes any value [68].

u, c, tb

s

γ

(a)

g

Fig. 18: One-gluon correction to the transition b→ sγ. Because the gluon has arbitrary momentum squared, there is an imagi-

nary part, as discussed in the text.

We can now close the discussion started at Eq. (142). The total amplitude is the sum of the graphs
with all possible intermediate quark antiquark intermediate states and restates. Each antiquark state can
be viewed as a separate contribution to the decay as in Eq. (141). They all have different CKM factors,
VtbV

∗
ts, VcbV

∗
csVubV

∗
us, and different strong phases: the masses are different and the phases depend on the

variable q2/m2, as discussed above. The strong phase is near 1, since the imaginary and the real part of
the diagrams are not that different. The weak phase can be estimated as follows: While VtbV ∗ts, VcbV

∗
cs are

real, VubV ∗us is not, and we have
VubV

∗
us

VcbV ∗cs
∼ 10−2 . (215)

Since the asymmetry is proportional to the weak phase (see Eqs. (141, 142), we expect it to be of the order
10−2, and thus small. This leaves room for new physics to enhance the asymmetry. See, for example,
Ref. [69].
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This method can also be used to estimate asymmetries in exclusive hadronic decays [67]. For in-
stance, the penguin graph in Fig. 15 gives an asymmetry of a few per cent for the πK decays. Because
such asymmetries are very interesting, it is important to investigate closer the reliability of the calculation.

The perturbative method outlined above is often criticized. In particular, taking only the quark
intermediate state might be false, since there are always strong confinement effects for physical states
(recall, that state I must be physical to yield an imaginary part). Instead one may argue that one should
use physical intermediate states. For instance, in the case ofB → Kπ, one could envisage the chainB →
DD̄s → Kπ with the DD̄s intermediate state. However, a complete treatment must also include other
states, such asD∗D̄∗s . It might be that their sum can indeed be represented by the quark state. There is no
agreement to date. As in the case of factorization, it was shown recently [56] that the infrared divergences
also cancel in this process, again implying the validity of the perturbative approach.

9.6 Determination of γ from B → Kπ

A particularly interesting illustration of the effects of final-state interactions is the new methods begun by
Fleischer and Mannel [45] to limit and find the angle γ of the unitarity triangle from the decaysB → πK.
The method is also a consequence of the idea described previously, namely that this angle comes as a weak
relative phase between amplitudes that are constrained by an equation.

The idea is to consider all possible B → πK decays. The tree-level amplitude T originates in the
transition b → suū. This only contributes to the decays B− → π0K− and Bd → π+K− because no
d quarks are produced. On the other hand, penguin graphs contribute an amplitude P to all four decays
B− → π0K−, Bd → π+K−, B− → π−K̄0, and B− → π0K̄0. In addition, we consider the so-called
annihilation amplitude A which only affects B− → π−K̄0 and B− → π0K−. The amplitudes T and A
contain a factor Vub and thus a factor eiγ . With these comments, we can write

A(B+ → π+K0) = P , A(B0
d → π−K+) = −

[
P + Teiγ

]
, (216)

where the amplitudes T and P contain strong phases.

The A amplitude is usually considered to be small, since the annihilation of the two quarks is rather
unlikely. Neglecting it, the decay B− → π−K̄0 does not have an amplitude proportional to eiγ . We
define, following Fleischer and Mannel, the ratio

R ≡ BR(B0
d → π−K+) + BR(B0

d → π+K−)
BR(B+ → π+K0) + BR(B− → π−K0)

=
|Te−iγ + P |2 + |Teiγ + P |2

|P |2 + |P |2 = 1 + 2r cos(γ) + r2 (217)

where r = |TP |. Using cos2 + sin2 = 1 we can rewrite this as

R = sin2(γ) +
(
r + cos(γ)

)2

≥ sin2(γ) . (218)

Of course, this inequality only helps if R is below 1. When this idea was proposed, this was the
case. However, more recent results indicate R ≥ 1.

So far we have neglected final-state interactions. When we include these, we must also consider
tree-level diagrams where the uū quark pair rescatters into a dd̄ pair. Let the amplitude for this be T ′eiγ .
It contains the same quark flavours as the annihilation graph. Then, the ratio R becomes

R =
|Te−iγ + P |2 + |Teiγ + P |2
|T ′e−iγ + P |2 + |T ′eiγ + P |2 . (219)

In this case, no easy result is obtained, because there are two unknown ratios, r = |TP | and r′ = |T ′P |.
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A clever way out was proposed by Neubert and Rosner [47]. Instead of R, they propose the ratio

R∗ =
Br(B+ → π+K0) + Br(B− → π−K̄0)

2[Br(B+ → π0K+) + Br(B− → π0K−)]
≡ (1−∆∗)2 . (220)

The point here is that the amplitudes are of the form A+B and A−B, respectively, and therefore there
is again only one unknown ratio. The treatment is quite well advanced and, as a result, rather reliable
predictions on γ are possible. An up-to-date review can be found in Ref. [46].

Concluding remarks

In these lectures I have tried to show why flavour physics is important for a further insight into the
fundamental structure of matter, and how various theoretical and experimental methods must combine
in order to find fundamental parameters and forces. I have discussed, in some detail, flavour loops and
their role in mixing and CP violation, both in kaon and B-meson physics. On a more technical level,
some tools used to master QCD have been presented: operator expansion and renormalization, Heavy
Quark Symmetry and Effective Theory, factorization approximations, and final-state effects. From lattice
techniques only the results were borrowed. A summary of these methods can be found in a previous school
in Ch. Sachrajda’s lectures [70].
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