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Abstract

Numerical experiments on the structure of the chaotic component

of motion under multiple crossing of the separatrix of a nonlinear res-

onance with time{varying amplitude are described with the main at-

tention to the problem of ergodicity. The results clearly demonstrate

nonergodicity of that motion due to the presence of a regular compo-

nent of relatively small measure with a very complicated structure. A

simple 2D{map per crossing has been constructed which qualitatively

describes the main properties of both chaotic and regular components

of the motion. An empirical relation for the correlation{a�ected di�u-

sion rate has been found including a close vicinity of the chaos border

where an evidence of the critical structure has been observed. Some

unsolved problems and open questions are also discussed.
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1 Introduction

The present work continues the studies of chaotic motion under a slow sep-
aratrix crossing. This is a particular case of adiabatic processes which are
very important in physics because of the adiabatic invariance, approximate
though, that is of the conservation of action variables (J) under a slow para-
metric perturbation. The main problem here is the degree of accuracy or of
violation of that invariance. Separatrix crossing produces the largest chaotic
component in phase space whose size does not depend on the adiabatic pa-
rameter �! 0 which, however, does a�ect the detailed structure of the motion
as well as its time scale.

In our previous paper [1] the single separatrix crossing for a particular
model was described in detail. Remarkably, a fairly simple relation for such
a model in Ref.[2] we used turned out to be surprisingly accurate within the
most part of the chaotic component.

In this paper we discribe the results of numerical experiments on mul-
tiple separatrix crossing. We focus on statistical properties of the motion,
including the structure and measure of regular component disseminated into
the chaotic 'sea' in a rather tricky way. The existence of regular component
means nonergodicity of the motion, the question which has remained unclear
for a long time until recently. To our knowledge, the nonergodicity of motion
in a similar model was �rst predicted theoretically and estimated numeri-
cally in Ref.[3]. We have con�rmed this result by di�erent methods, and
found many other characteristics of the motion structure. The present work,
as well as the previous one [1], was stimulated by a very interesting study of
the corresponding quantum adiabaticity [4]. We use the same classical model
which is briey described, for reader's convenience, in the next Section (for
details see Ref.[1]).
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The model is speci�ed by the Hamiltonian:

H(x; p; t) =
p2

2
+ A0 sin (
t) � cosx ; (2:1)

which describes a single nonlinear resonance in the pendulum approximation
(see, e.g., Ref.[5, 6]) with a time{varying amplitude

A(t) = A0 sin (
t) : (2:2)

The dimensionless adiabaticity parameter is de�ned in the usual way as
the ratio of perturbation/oscillation frequencies:

� =

p
A0

; (2:3)

where
p
A0 is constant frequency of the small pendulum oscillation for the

maximal amplitude.
Two branches of the instant, or 'frozen', separatrix at some t = const are

given by the relation

ps(x
0; t) = �2

p
jA(t)j � sin

�
x0

2

�
; x0 =

�
x; A(t) > 0
x� �; A(t) < 0

: (2:4)

Following previous studies of separatrix crossing we restrict ourselves below
to this frozen approximation. As was shown in Ref.[1] the latter provides
quite good accuracy of fairly simple theoretical relations.

In this approximation the action variable is de�ned in the standard way
as

J =
1

2�

I
p(x) dx ; (2:5)

where integral is taken over the whole period for x rotation (o� the resonance)
and over a half of that for x oscillation (inside the resonance). This di�erence
is necessary to avoid the discontinuity of J at separatrix where the action is
given by a simple expression

J = Js(t) =
4

�

p
jA(t)j � Jmax =

4

�

p
A0 : (2:6)

At 
t = 0 (mod�) the action J = jpj, and the conjugated phase � = x.
Notice that unlike p the action J � 0 is never negative.
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transformation: J=Jmax ! J . Then, the crossing region swept by separatrix
is the unit interval, and J is simply related to the crossing time t = tcr by
the expression

jA(tcr)j = J2 ; 0 � J � 1 (2:7)

while the adiabaticity parameter becomes � = 
.
Numerical integration of the motion equations for Hamiltonian (2.1) was

performed in (x; p) variables using two algorithms. In most cases it was
the so-called bilateral symplectic fourth-order Runge-Kutta algorithm as in
Ref.[1]. However, in a few most long runs we applied a very simple and
also symplectic �rst{order algorithm like in Ref.[2] which is actually the well
known standard map [5] with the time{varying parameter:

~p = ~p + ~A0 � sin
�
~
~t
�
� sinx ; x = x + ~p ; (2:8)

where tilde marks the new set of quantities rescaled by the transformation

~A0 =
1

s2
; ~t = st ; ~
 =




s
; ~p =

p

s
: (2:9)

Here s is the scaling parameter, and we remind thatA0 = 1. The primary goal
of the rescaling was decreasing parameter ~A0 which controls the computation
accuracy. Usually, it was around ~A0 � 0:1.

As is well known, the variation of J under adiabatic perturbation consists
of the two qualitatively di�erent parts: (i) the average action which is nearly
constant between the crossings, up to an exponentially small correction, and
which is of primary interest in our problem, and (ii) the rapid oscillation with
the motion frequency. The ratio of the two time scales is � �=

pjA(t)j � 1
which allows for e�cient suppression of the second unimportant part of J
variation by a simple averaging of J(t) over a long time interval � 1=� (see
Ref.[1]).

3 Ergodicity

The ergodicity is the weakest statistical property in dynamical systems (see,
e.g., Ref.[7]). Nevertheless, it is an important characteristic of the motion,
necessary in the statistical theory (see, e.g., Ref.[8]).

The question of ergodicity of the motion under separatrix crossing re-
mained open for a long time until recently. The upper bound for the mea-
sure (phase{space area) of a separate domain with regular motion ('stability
islet') was estimated in Ref.[9] as �1 <� �.
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�rst predicted theoretically and estimated numerically in Ref.[3]. The au-
thors directly calculated the number and positions of stable trajectories for
two di�erent periods. Moreover, they were able to locate some of them in
computation, and thus to measure their area in phase space which turned
out to be surprisingly small.

Here, we make use of a di�erent, statistical, approach. To this end, we
�rst obtain from numerical experiments the steady{state distribution fs(J)
in the action. In case of ergodic motion it should be constant. Examples of
the distribution are shown in Fig.1 with the parameters listed in the Table
below.

Table. Regular component under separatrix crossing

n � �r � 102 T �Ntr Nb

1 0:1 0:68� 0:2 2 � 103 � 1000 200
2 0:05 0:75� 0:06 4 � 105 � 200 500
3 0:033 0:70� 0:2 4 � 105 � 200 200
4 0:033 0:81� 0:08 4 � 105 � 150 500
5 0:02 0:60� 0:05 2 � 106 � 100 200
6 0:01 0:75� 0:04 4 � 106 � 100 200

� { parameter of adiabaticity
�r { total relative measure of regular component
T { number of separatrix crossings for each of Ntr trajectories
Nb { number of histogram bins in Fig.1
n { reference number for Fig.1

The striking feature of all the distributions is clear and rather speci�c
inhomogeneity, reminiscent of a burst of 'icicles' hanging down from a nearly
'ergodic roof'. This directly demonstrates the generic nonergodic character
of motion under separatrix crossing.

The histograms normalized in such a way that for ergodic motion the
distribution fs(J) = 1 while the sum over all the bins is also unity for any
distribution. As a result the dips in the distribution ('icicles'), indicating
the regular component, are compensated by an increase in the ergodic back-
ground. The latter is clearly seen in all distributions, especially for small J ,
and is a measure of the regular component. Namely, the relative measure
(share) is given by the approximate relation

�r �< fs(J) � 1 > ; J < J1 ; (3:1)
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