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We present lattice results for the gluon propagator for SU(2) and SU(3) in the

Laplacian gauge which avoids lattice Gribov copies. In SU(3) we compare with

the most recent lattice calculation in Landau gauge and with various approximate

solutions of the Dyson Schwinger equations (DSE).

Introduction
We first summarize the results obtained within the Landau gauge1: By

solving approximately the DSE, Mandelstam found an infrared enhanced gluon
propagator of the form D(q2)

q→0∼ 1
q4 . Avoiding gauge copies, Gribov obtained

D(q2) ∼ q2

q4+m4 . Using the “pinch technique”, Cornwall 2 obtained a solution
which fulfills the Ward identities, allows a dynamical mass generation, and also
predicts a finite value for D(0) ≡ D(q2 = 0) consistent with our data.

Early results for the gluon propagator obtained directly from Lattice QCD
on small lattices 4 were interpreted in terms of a massive scalar propagator.
Results on larger lattices were accounted for by assuming a positive anoma-
lous dimension 5: D(q2) ∼ 1

q2(1+α)+m2 . A recent, detailed study of the gluon
propagator uses very large lattices 6. Since we want to compare our results
with these, we follow closely their analysis and refer to Refs. 6,7 for details.
In the Laplacian gauge, the longitudinal part of the gluon propagator does
not vanish; the transverse scalar function D(q2) can be extracted from Dab

µν(q)

as D(q2) = 1
3

{∑
µ

1
8

∑
aDaa

µµ(q)
}
− 1

3
F (q2)

q2 , where F (q2) is determined by

projecting the longitudinal part of Daa
µν(q) using the symmetric tensor qµqν .

Gauge Fixing Procedure
Previous lattice studies all fixed to Landau gauge by using a local iterative

maximization algorithm, which converges to any one of many local maxima
(lattice Gribov copy), but fails to determine the global one. To overcome this
problem, we use a different gauge condition, the Laplacian gauge 3, which
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is Lorentz-symmetric and gives a smooth gauge field like the Landau gauge,
but which specifies the gauge unambiguously. We consider the maximization
of Q = Re

∑
x,µ Tr

[
g(x)Uµ(x)g†(x + µ̂)− g(x)g(x)†

]
. If one relaxes the re-

quirement that g ∈ SU(N), maximizing Q is equivalent to minimizing the
quadratic form

∑
xy f∗x∆xyfy, with ∆(U) the covariant Laplacian. Using the

(N −1) lowest-lying eigenvectors of ∆(U), one can construct Ω(x) ∈ SU(N) 7.
Results

In Fig.1 we show the transverse gluon propagator for SU(2) Yang-Mills
theory in two different volumes; m0 ≡

√
D(0)−1 for the 164 lattice. Changing

the volume has little effect, in particular on D(0). We observe similarly small
volume effects in SU(3). This is strikingly different from Landau gauge, where
Zwanziger has argued that D(0) should vanish in the infinite lattice volume
limit 8. This prediction is indeed consistent with recent lattice results in SU(2)
at finite temperature 9. In contrast, in the Laplacian gauge, we find that D(0)
is finite and independent of the volume V for V larger than about 1/2fm4 ∼
D(0)2. We find D(0) = 58(2) in lattice units at β = 6.0, i.e. D(0)−1/2 = 248(5)
MeV (using a−1 = 1.885 GeV), corresponding to a length scale of about 0.8 fm.

In Fig.2 we compare results for the gluon propagator in SU(3) quenched
QCD in Laplacian and Landau gauges. (m0 ≡

√
D(0)−1 in the Laplacian

gauge). Scaling is checked on the 163× 32 lattice for β = 5.8 and 6.0. Making
a cylindrical cut in the momenta 6 to minimize lattice artifacts, we find that
scaling is very well satisfied for the Laplacian gauge, with both sets of data
falling on a universal curve 7.

We fit to our data the same models as considered by Leinweber et al. 6

in Landau gauge. Since we have observed scaling, we use our results at the

Figure 1: The SU(2) gluon propagator in

two different volumes.

Figure 2: The SU(3) gluon propagator in

Laplacian and Landau gauges.
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Model Z m λ or α A D(0) χ2/d.o.f

Gribov 2.63(2) 0.203(7) 0 5.7

Stingl 2.63(2) 0.203(13) 0.002 (1.1) 0 5.7

Marenzoni 2.47(3) 0.199(6) 0.237(5) 62 4

Cornwall 7.08(9) 0.281(4) 0.265(8) 59 2.5

Model A 1.96(1) 0.654(17) 2.181(67) 8.91(41) 43 1.2

Table 1: best fit of parameter values to our β = 6.0 data on the 163 × 32 lattice.

finer lattice spacing (β = 6.0) for the fits. Table 1 and Fig. 3 summarize the
results of the fits to the various models. We find that Gribov–type models are
excluded, whereas Cornwall’s model is clearly favored among all analytically
motivated models. Model “A” 6, which gives a better fit, is phenomenological,
contains one more parameter, and misses D(0) by 25%. One can then use the
fit to Cornwall’s model to analytically continue to negative q2 and determine
the gluon pole mass. This is carried out in Ref. 7.

In conclusion, we see significant
modifications from Landau gauge in
the infrared. In particular, we find
that D(0) obeys scaling, is finite,
and volume independent for large
enough volumes. We find support
for Cornwall’s model which fits the
momentum dependence of the prop-
agator rather well, whereas models
with infrared enhancement of the
type 1/(q2)2 or Gribov–type sup-
pression are excluded. Figure 3: Fits to various models
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