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it is a dry white season

dark leaves don’t last, their brief lives dry out

and with a broken heart they dive down gently headed for the earth,

not even bleeding.

it is a dry white season brother,

only the trees know the pain as they still stand erect

dry like steel, their branches dry like wire,

indeed, it is a dry white season

but seasons come to pass.

Mongane Wally Serote (1974)



Abstract

A study of the ATLAS second level trigger using Data-Strobe Link technology is

described together with software tools developed for this network technology.

ATLAS is one of the two general purpose detectors proposed for the Large Hadron

Collider at CERN. The second level trigger will receive events at rates up to 100 kHz and

must reduce this by around two orders of magnitude. The second level trigger architecture

chosen for this study is called the local-global model. This architecture has four local

processor farms, one per sub-detector, each connected by its own network to data buffers.

The local processors are connected via another network to a global processor farm where

results from the local processing farms are collected and evaluated.

The architecture has been emulated on two large hardware platforms, Macramé and

GPMIMD. Both platforms use DS-Link technology. Improvements to the running of these

platforms by designing, implementing and testing a diagnostic software utility called Net-

probe are described. This utility facilitates hardware, board and system-setup debugging.

Macramé is a test-bed for studying network traffic patterns. It consists of C104 routers

and specially-designed traffic-generating nodes and timing nodes. These components can

be configured into a variety of topologies.

Each of the five networks were mapped to Macramé one at a time and the traffic

patterns expected in each case were run through the network. The results obtained are

presented and interpreted.

A process model of the second level trigger was developed and implemented on GP-

MIMD, a general purpose parallel computer, and is described together with benchmark

results of the components. Results from running this model with both test and detector

specific data are presented.
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6.1 Constraints and Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Configurations Emulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Description of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Emulation on the GPMIMD Machine 104

7.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Test Measurements and Results . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 SCT Measurement and Results . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Conclusion 134

A The Netprobe Commands 137

A.1 General Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 Local Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 Global Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Example NDL description 149



CONTENTS 7

C Trigger Menu 151

D Associated Publications 154



List of Tables

3.1 Number of packet descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Example tabular output from spy. . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Example of a “View All Status” table from spy. . . . . . . . . . . . . . . . 56

4.3 Successfully verified network. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 A missing connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 No devices are verified correctly. . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Performance measurements on the GPMIMD machine. . . . . . . . . . . . 61

4.7 Performance measurements on two C104s switches. . . . . . . . . . . . . . 61

5.1 Feature algorithm times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 The number of ROBs for the different sub-detectors. . . . . . . . . . . . . 67

5.3 Size in bytes of data in a ROB for a given RoI type. . . . . . . . . . . . . 68

5.4 Farm sizes for high-luminosity/extended trigger menu. . . . . . . . . . . . 70

5.5 Component rates obtained from the drive file. . . . . . . . . . . . . . . . . 73

6.1 Configuration of emulated networks. . . . . . . . . . . . . . . . . . . . . . 78

6.2 Achieved event rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1 The level-2 trigger protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Initial benchmark results to within a micro second. . . . . . . . . . . . . . 117

7.3 The effective link speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Benchmark results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Results from the test setups. . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.6 Calculated message transfer times. . . . . . . . . . . . . . . . . . . . . . . 123

7.7 Calculated processing times. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8



LIST OF TABLES 9

7.8 The definition of the stages and their times. . . . . . . . . . . . . . . . . . 125

7.9 The definition of the stages and their times. . . . . . . . . . . . . . . . . . 126

7.10 Characteristics of the chosen events. . . . . . . . . . . . . . . . . . . . . . 130

7.11 Results from the SCT emulation. . . . . . . . . . . . . . . . . . . . . . . . 130

A.1 Correspondence between device id and device type. . . . . . . . . . . . . . 140

A.2 Reset levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 The state of a device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



List of Figures

1.1 Cut-away view of the ATLAS detector. . . . . . . . . . . . . . . . . . . . . 15

1.2 A simulated event in the inner detector. . . . . . . . . . . . . . . . . . . . 16

2.1 A sketch of the flow between the trigger and DAQ. . . . . . . . . . . . . . 21

2.2 The three main architecture options for the second level trigger. . . . . . . 26

2.3 A sketch of the push protocol. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The signal and token layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 An example of a grid network using switches with 12 links. . . . . . . . . 32

3.3 An example of a Clos network with 24 terminal nodes and three stages.

As in the example above, any terminal node can communicate with any

other terminal node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Diagram of the C104 switch. . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Worm-hole routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Traffic node synchronisation. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Diagram of a 512 node Clos network. . . . . . . . . . . . . . . . . . . . . . 37

3.8 A terminal stage switch with and without a timing node. . . . . . . . . . 38

3.9 Sketch of the interconnectivity of the components in the GPMIMD machine. 39

3.10 Diagram of the T9000 transputer. . . . . . . . . . . . . . . . . . . . . . . . 40

3.11 The control-chain fanout and the corresponding tree structure. . . . . . . 43

3.12 An overview of the host systems including software. . . . . . . . . . . . . 44

4.1 Accessing DS-Link networks from Netprobe. . . . . . . . . . . . . . . . . . 47

4.2 A general DS-Link device. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Identifying a data link leading to a subnetwork. . . . . . . . . . . . . . . . 50

4.4 Back-checking for a connection. . . . . . . . . . . . . . . . . . . . . . . . . 51

10



LIST OF FIGURES 11

4.5 Depth first ordered device numbering. . . . . . . . . . . . . . . . . . . . . 52

4.6 Small DS-Link network, consisting of a single C104 switch. . . . . . . . . 52

4.7 Standard spy algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 Alternative spy algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Correspondence between RoI types and sub-detectors. . . . . . . . . . . . 65

5.2 Diagram of architecture B. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 The event fragment distribution from the five networks. . . . . . . . . . . 74

6.1 The grouped and distributed mapping. . . . . . . . . . . . . . . . . . . . . 79

6.2 Network throughput for 80 % of the TRT network; distributed mapping

vs. grouped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Single packet latency distribution for 80 % of the TRT network; distributed

mapping vs. grouped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Throughput for the distributed runs. . . . . . . . . . . . . . . . . . . . . . 83

6.5 Transmit and hit-rates for the calorimeter ROBs. . . . . . . . . . . . . . . 84

6.6 Throughput measurement on the calorimeter network. . . . . . . . . . . . 86

6.7 Latency distribution for the SCT network. . . . . . . . . . . . . . . . . . . 88

6.8 Latency distribution for the TRT network. . . . . . . . . . . . . . . . . . . 89

6.9 Latency distribution for the calorimeter network. . . . . . . . . . . . . . . 90

6.10 Latency distribution for the muon network. . . . . . . . . . . . . . . . . . 91

6.11 Latency distribution for the global network. . . . . . . . . . . . . . . . . . 92

6.12 Sketch of the latency model. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.13 Model superimposed on latency distribution for the SCT network. . . . . 96

6.14 Model superimposed on latency distribution for the TRT network. . . . . 97

6.15 Model superimposed on latency distribution for the global network. . . . . 98

6.16 “Random” model for the latency distributions for the SCT network. . . . 100

6.17 “Random” model for the latency distributions for the TRT network. . . . 101

6.18 “Random” model for the latency distributions for the global network. . . 102

7.1 Flow diagram of the overall second level trigger system. . . . . . . . . . . 105

7.2 Flow diagram of the read-out buffer component. . . . . . . . . . . . . . . 107

7.3 Flow diagram of a FeX and a GTP component. . . . . . . . . . . . . . . . 108

7.4 Flow diagram of the supervisor component. . . . . . . . . . . . . . . . . . 109



LIST OF FIGURES 12

7.5 State diagram of the first level trigger object. . . . . . . . . . . . . . . . . 109

7.6 State diagram of a process sending data. . . . . . . . . . . . . . . . . . . . 109

7.7 State diagram of the Job Issuer object. . . . . . . . . . . . . . . . . . . . . 110

7.8 State diagram of the Job Controller object. . . . . . . . . . . . . . . . . . 110

7.9 State diagram of the Process Manager object. . . . . . . . . . . . . . . . . 111

7.10 State diagram of the read-out buffer object. . . . . . . . . . . . . . . . . . 111

7.11 State diagram of the FeX buffer object. . . . . . . . . . . . . . . . . . . . 112

7.12 State diagram of the FeX controller object. . . . . . . . . . . . . . . . . . 112

7.13 State diagram of the GTP buffer object. . . . . . . . . . . . . . . . . . . . 112

7.14 State diagram of the GTP controller object. . . . . . . . . . . . . . . . . . 113

7.15 State diagram of the event filter object. . . . . . . . . . . . . . . . . . . . 113

7.16 Occam code for the read-out buffer object. . . . . . . . . . . . . . . . . . . 114

7.17 Occam declaration of the user defined protocol “RoI.request.” . . . . . . . 119

7.18 Diagrams of the two test setups. . . . . . . . . . . . . . . . . . . . . . . . 122

7.19 Example of latency calculation for a pipeline. . . . . . . . . . . . . . . . . 124

7.20 Stage definition of the pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 124

7.21 Placement of the processes for the SCT configuration. . . . . . . . . . . . 129

7.22 The latency distribution for the SCT emulation. . . . . . . . . . . . . . . 130

B.1 Diagram of the network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



Chapter 1

Introduction

This chapter contains a short description and the motivation behind ATLAS. Afterward,

the problem statement and objective of this work are presented. Finally, the structure of

the thesis is described, including details on which parts are the author’s contributions.

1.1 Motivation for the ATLAS Experiment

ATLAS [1, 2], A Toroidal LHC ApparatuS, is a proposed general purpose proton-proton

experiment at the Large Hadron Collider (LHC) at CERN, Geneva, Switzerland. The

experiment expects to start data-taking in 2005. The LHC offers a wide range of physics

possibilities, from supersymmetry and Higgs searches to investigations of CP violation

in B-decays and top quark studies.

Many of the above mentioned searches/analyses require a high luminosity. The LHC

is designed with a nominal luminosity of 1034 cm−2s−1, three orders of magnitude more

than the Tevatron run at Fermilab, USA in 2000 [3], and four orders of magnitude larger

than the last run at the SPS, CERN [4]. The LHC will provide a high-rate environment,

the detector will, in order to deal with this, provide many signatures: e, γ, µ, jet, missing

energy and b-quark tagging. The design of the ATLAS detector tries to make the most

of the LHC physics potential while using cost-effective technologies.

The most intriguing issue of the LHC is the origin of spontaneous symmetry-breaking

mechanism in the electroweak theory, as this will provide information to the question:

“What is the origin of mass?” A possible measurable effect of the spontaneous symmetry-

breaking is the existence of a Standard Model Higgs boson (H) or e.g. a family of Higgs

13



CHAPTER 1. INTRODUCTION 14

bosons (H±, h, H and A) in the Minimal Supersymmetric extension of the Standard

Model. The search for the Higgs boson(s) has first priority when optimising the detector

design.

The Higgs boson decay products include b-quarks, photons, Z, W, τ , jets and indi-

rectly leptons and neutrinos. Over the majority of the Higgs mass range explorable by

the LHC the cross-section of the Higgs processes are small, hence the need to operate at

high luminosity and to detect and measure precisely the above mentioned particles.

Supersymmetry (SUSY) searches are also an interesting aspect of the LHC. To exclude

the observation of the lightest stable SUSY particle, it is necessary for the detector to

meet strict hermeticity and Emiss
T requirements.

Detection of new, heavy (up to 5-6 TeV) gauge bosons Z′, W′ necessitates charge

identification and high-resolution lepton measurements up to a pT of a few TeV. While

the above mentioned new physics has been the main guideline for the detector design,

the additional goal of making extensive beauty and top studies, has also imposed many

constraints. This includes precise secondary vertex determination, reconstruction of final

states with low-pT particles, low-pT lepton first-level trigger thresholds and second-level

trigger track triggering. The basic design considerations can be summarised as follows:

• electro-magnetic calorimeter electron and photon identification and measurements,

• hermetic jet and missing ET calorimetry,

• efficient tracking at high luminosity,

• stand alone, precision, µ momentum measurements up to the highest luminosity,

• very low-pT trigger capability at lower luminosity,

• large acceptance in η coverage, and

• triggering and measurements of particles at low-pT thresholds.

1.2 Introduction to the Sub-Detectors

The overall layout of the ATLAS detector consists of a inner detector, a calorimeter, a

muon spectrometer, and two super-conducting magnets. Figure 1.1 contains a drawing
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Forward
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Figure 1.1: Cut-away view of the ATLAS detector.

of ATLAS in a cut-away view. To give a feel for the size of the detector, people have

been included in the lower left corner.

The Inner Detector [5, 6] dimensions are a cylinder of 1.15 metre radius and 6.8 me-

tre in length centred around the interaction point. The inner detector lies in a two Tesla

axial magnetic field. The inner detector consists of three sub-detectors, pixel detectors at

the smallest radii provide high-resolution 3-D points, the semiconductors tracking (SCT)

detectors placed outside the pixel detectors provides fine granularity and high-precision

momentum and vertex measurements. To achieve reliable pattern recognition for the

track finding, a detector of straw tube trackers is placed outside the SCT. This Transi-

tion Radiation Tracker (TRT) provides continuous track measurements. The combination

of these three detectors results in an inner detector with high-precision coordinates and

very good pattern recognition capability. Figure 1.2 shows a simulated event in the barrel

section of the inner detector.

The Calorimeter [7, 8, 9] consists of an inner electro-magnetic calorimeter (ECAL)

and an outer hadron calorimeter (HCAL). The first will absorb electrons and photons,
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ATLAS Barrel Inner Detector
H→bb

–

b

b
–

Figure 1.2: A simulated Higgs event decaying to a b-quark and a anti b-quark in the

barrel of the inner detector.

while the latter will absorb hadrons, decay products of taus and most other particles

except neutrinos and muons. With the calorimeter, the amount of energy deposited

per unit length is measured. Particles not immediately stopped can be tracked by the

calorimeter, and the shower shape can be used for particle identification. The calorimeter

contributes to very good jet and missing ET performance. The calorimeter is two metre

deep in the barrel section, corresponding to an active calorimeter depth at η = 0 of

9.5λabs. The HCAL contains the solenoid flux return iron yoke integrated into its

support structure.

The Muon Spectrometer [10] is the outer layer of ATLAS, defining its overall di-

mensions (radius 11 metres, length 42 metres). The toroidal magnet system generates

a large field volume and strong bending power with a light and open structure. A very

good muon momentum resolution is achieved with three layers of high-precision tracking
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chambers. Fast trigger chambers complement the tracking chambers. The layout of the

chambers in the barrel has been divided into large and small, with the small chambers

placed over the coils. The chambers overlap so they can be aligned with respect to each

other using tracks from traversing muons.

The Magnet System consists of a super-conducting solenoid around the inner detec-

tor and eight super-conducting barrel and sixteen end-cap air core toroids placed inside

the muon spectrometer. The solenoid magnet produces a two Tesla field inside the inner

detector. The return field goes through the calorimeter. The air core toroid system

creates a toroidal field around the beam inside the muon spectrometer. These mag-

netic fields cause charged particles to be bent, thereby enabling charge identification and

particle momentum measurements.

1.3 The LHC Beam Characteristics

The energy at injection of protons into the LHC [11] is 450 GeV. The protons are,

thereafter, accelerated to 7 TeV, which is the energy at collision. The luminosity, which

is determined by the density of particles and the collision rate, will be 1033 cm−2s−1

initially. The primary goal is to run at 1034 cm−2s−1, but the LHC is designed to go

beyond even this. Each beam consists of a set of bunches. The bunch separation is 25

ns in time. At chosen interaction points, one of which is inside the ATLAS detector, the

bunches collide creating events in the detector at the collision rate of 40 MHz. At high

luminosity, the interaction rate is approximately twenty-five per bunch crossing.

1.4 The Trigger/DAQ

The main task of the trigger [12, 13, 14] is to filter the events, such that only the most

interesting events are read out to permanent storage for later off-line analysis. The filter

in the trigger must reduce the event rate by 5-6 orders of magnitude, from 40 MHz to

10-100 Hz. A fuller description of the trigger and DAQ system is given in chapter 2.
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1.5 Problem Statement and Objective

The work presented in this thesis, is an emulation study of the processor and network

usage in the second level of the ATLAS trigger. The emulation has been carried out

using DS-Link technology.

One purpose of the emulation studies is to determine at which rate message patterns,

corresponding to ATLAS second level trigger traffic, can be sent through currently avail-

able technology. The second purpose is to study the effect of implementing the protocol

on transputers. Software optimisation issues are also investigated.

Network aspects are studied on the Macramé test-bed and the processor aspects on

GPMIMD. The Macramé test-bed is a switching network of up to 1024 nodes, which

can evaluate the network performance of traffic patterns. GPMIMD is a sixty-four node

parallel computer. The nodes are T9000 transputers.

1.6 Thesis Outline

This chapter has given a overview of the Large Hadron Collider and the ATLAS experi-

ment. The problem and objective for the thesis have also been presented.

The following chapter contains a description of the proposed ATLAS trigger/DAQ

system. This chapter also reviews the requirements of the second level (level-2) trigger,

outlines which aspects of the level-2 trigger are studied in this thesis and describes the

different architecture solutions under investigation.

The third chapter describes the technology used in the emulation. First, the IEEE

1355 DS-Link standard is introduced and general network topologies are explained. Fol-

lowing this, we focus on the DS-Link systems, the GPMIMD machine and the Macramé

test-bed used for the emulation studies. Finally, the control and host options for DS-Link

systems are explained.

Chapter four, details the author’s work on the test and diagnostic software tool,

Netprobe. The introduction to this chapter contains the motivation behind developing

Netprobe. The sections in this chapter describe the command line interface, spying,

verifying and configuring a DS-Link network, and the support which was added for HS

devices. Finally, the outcome of the work with Netprobe is discussed.

Chapter five describes the input which has gone into the emulation. The main topics
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here are the configuration of the sub-detectors, benchmarks of the trigger algorithms and

finally the simulated data used for driving the emulation.

The next two chapters, present the author’s emulation study first on the Macramé

test-bed and, thereafter, on the GPMIMD machine. The conclusions are summarised

and presented in the last chapter.



Chapter 2

ATLAS Trigger/DAQ System

This chapter provides a basic description of the trigger and data acquisition system

needed by an LHC experiment, like ATLAS, as well as information on some of the design

options for the level-2 trigger. Finally, a more detailed description is given on the part

of the trigger which was emulated.

The trigger and the data acquisition system have different tasks and priorities. The

task of the trigger is to select the most interesting events. The trigger must choose only

as many events as the data acquisition system can transfer to permanent storage; usually

tapes. One task of the DAQ system is to organise the data flow though the system and

to provide data to the trigger system. Another task is to move the data from events

that were chosen by the trigger to permanent storage. Finally, a monitoring task is also

performed.

2.1 Overview of the Trigger/DAQ System

This section will provide an overview of the trigger and data acquisition system archi-

tecture. A general description of the main components is also given.

The ATLAS trigger/DAQ system is organised into three layers refered to as the

first and the second level trigger, followed by the event filter. The data acquisition is

responsible for the data-flow through the system. Figure 2.1 shows a diagram of the

trigger/DAQ architecture.

20
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Figure 2.1: A sketch of the flow between the trigger and DAQ.
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The Trigger The first level trigger uses special-purpose processors to act on a subset

of the data at the full bunch-crossing rate of 40 MHz and must reduce the event rate to

75 kHz (upgradable to 100 kHz). The second level trigger must reduce the event rate

down to about 1 kHz; this is done by processing data from regions pointed to by the first

level trigger. The third level of the trigger, the event filter, uses all the event data, as

well as available calibration data to make the final selection of events to be stored.

The First Level Trigger The first level trigger (LVL1) uses specially designed

hardware and looks only at reduced granularity data from some of the sub-detectors.

The latency of the first level trigger which is the elapsed time from time of interaction

to time of distribution of decision, is about 2µs. During this time, all the detector data

is stored in on-detector memory. Upon accept from the first level trigger for an event,

the event data are transferred to the read-out buffers, where they can be accessed by the

higher level triggers. For each event accepted, the first level trigger provides information

to the next level as to why this event was accepted. This information contains the

numbers of signatures found, their position and type. This information is known as the

Region of Interest (RoI) information.

The Second Level Trigger The second level of the trigger uses the RoI infor-

mation from the first level trigger to guide its effort. The level two trigger uses full-

granularity, full-precision data for its processing, but only from regions and sub-detectors

which, according to the RoI information, are expected to contain useful information. If

the RoI information mentions a jet-like feature in a certain cone of the detector, only

data from the calorimeter detectors in that region are used by the second level trigger.

See chapter 5 for more details. This guiding is essential to keeping down the processing

and data-transfer requirements of this part of the trigger.

The Event Filter The event filter acts as the third level of the trigger. Its task is

to take the final decision about which events are to be put on permanent storage. After

level-2 has accepted an event all its data are collected, from the read-out buffers, in one

of the event filter’s processors. Here, a full event reconstruction is possible; the decision

time is expected to be around one second. The event filter must achieve a data-storage

rate of about 100 MBytes/s
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The Data Acquisition (DAQ) System The DAQ system is responsible for the data

flow from the front-end memory until the event data are stored on permanent storage.

2.2 The Level-2 Trigger

This section will give an overview of the second level trigger which has been emulated.

Choices had to be taken as to which architecture and protocol were to be emulated, since

these are still not decided.

Requirements This paragraph will present some of the most important requirements

which the second level trigger must fulfil, seen from the outside systems.

The level-2 trigger acts on events at the rate retained by the first level trigger. This

rate is estimated to be 75 kHz, including a safety factor. The second level trigger must

be scalable up to 100 kHz input rate. The role of the second level trigger is to reduce the

trigger rate to a level which can be sustained by the event building system; of the order

of a few kHz. In the design of the second level trigger, full granularity, full precision

data from regions in the event, selected by the first level trigger, will be available to the

second level trigger. From a cost and maintenance point of view the level-2 trigger must,

where possible, consist of commercial, off-the-shelf-components.

The event processing can be split into a number of steps: feature extraction, object

building, and trigger type selection. In feature extraction, data from one region of interest

in one sub-detector are collected and processed to give a compact description of the data,

e.g. convert hits into a track. Object building takes the features from a region of interest,

from the relevant sub-detectors, combines them and produces an object signature and

possibly a particle id. The combination of objects in an event is compared to a menu of

physics selections; also known as the trigger menu. The event selection decision is based

on the outcome of this comparison.

The trigger selection criteria will be considerably looser than those used for the final

data analysis. To allow for efficient use of new knowledge the trigger menus must be

flexible, i.e. changeable on a per run basis. The level-2 trigger will allow pre-scaling and

forced acceptance for some events. The latter is for calibration purposes, while the former

can be used to reduce the number of well-known high-cross-section events.
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The level-2 Components The second level trigger consists of four main building

blocks; the read-out buffer (ROB) complex, the supervisor system, the networks, and

processing farm.

The read-out buffer complex receives data from the front-end electronics upon accept

of the event from the first level trigger. The read-out buffers are used as source of data

for both the event building and the second level trigger. The second level trigger can

request data from the ROBs and clear data in the ROBs from events which it rejects.

The supervisor complex receives the RoI information from the first level trigger and

combines it into a RoI record. The second task of the supervisor is to assign processing

resources to the event and forward the RoI record to the part of the level-2 trigger which

needs it for obtaining the RoI data. The third task is to receive level-2 decisions and

broadcast them to the ROB complex and the event builder. In addition, the supervisor

monitors the processor usage.

There are two logically distinct networks in the second level trigger; the network which

carries the level-1 accept, RoI information, event data requests to the ROB complex, and

the level-2 trigger decisions; and the network which carries the event data from the ROB

complex to the processors.

The processing farm consists of processors connected to the network carrying the

event data. The processing farm can be partitioned both logically and physically in

various ways.

Possible Architectures For comparison purposes three architectures were proposed.

These three architectures were selected to be orthogonal enough that other possibilities

were mainly “combinations” of the first three. The three architectures were known as

the data-driven, the local-global, and the single farm.

The data-driven architecture is partitioned in a local and a global part. Processing up

to feature extraction is done in fast pipelined “data-driven” processors. Global processing

is done in a farm of general purpose processors. Dedicated hardware is used for extracting

data from the ROBs and pushing it to the data-driven processors. A general purpose

switching network is used for data transfers between the data-driven processors and the

global farm of processors.

The local-global architecture consist of local processing farms, one per sub-detector;
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and a global processing farm. The processors in the farms are all general purpose pro-

cessors. General purpose switching networks are used to connect the local farms to their

respective ROBs, and to the global processing farm.

The single farm architecture consist of one large farm of processors connected via

a general purpose switching network to the supervisor and the ROBs. A processor is

assigned an event from the supervisor, and will then collect data from the ROBs for

processing. The data collection and processing will happen interleaved, such that the

processor asks for some data, then does some processing, then decides if the event can

be rejected, and if not, which data it should now request.

Figure 2.2 shows the three main architecture options for the second level trigger. For

more information about these architectures see [13].

Time Scale Along with the technology choice in June 2001, the Technical Design

Report for the higher level triggers in ATLAS must be submitted with a detailed specifi-

cation of the final system. The construction of the higher level triggers are then expected

to be finished by the end of 2003. In 2004, integration of the trigger, sub-detectors, DAQ

and Detector Control System (DCS) must be completed to ensure operation in 2005 when

ATLAS is supposed to start data-taking.
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Figure 2.2: The three main architecture options for the second level trigger.
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2.3 Architecture Choice

As the architectural and protocol choices for the second level trigger were not (and are still

not) taken, we had for the emulation studies to decide which architecture(s)/protocol(s)

to study. The choice fell on a architecture known as the local-global architecture with a

“push” protocol. I shall try to quickly sketch the reasons for this choice.

The motivation for choosing the local-global architecture for the emulation lay in:

• the Macramé test-bed cannot deal with cause/effect i.e. the single farm architecture,

where upon receiving data the processor must request more data,

• the data-driven architecture is designed for different technology,

• DS-Link technology was used in one of the implementations of the vertical slice for

the local-global architecture test-bed [15], and in

• the Macramé test-bed size was a good match for the subnetworks in the local-global

design.

The Push Protocol for the Local-Global Architecture The general idea behind

this protocol is that the supervisor allocates feature extractor (FeX) processors and a

global trigger processor (GTP) per event, and informs the ROBs where to send their

data. The local and global processors wait to receive information from the ROBs and

local processors respectively. They then collect together the fragments received, process

these and pass on the results. The supervisor uses a Round Robin processor allocation

scheme with feedback from the processors.

In this protocol, see figure 2.3, the data is pushed forward as soon as possible. Any

receiving unit must, along with the data, receive information about how many fragments

to wait for.
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Figure 2.3: A sketch of the push protocol.

2.4 Concluding Remarks

The last section has sketched the different design options being investigated over the last

three years, explained why the local/global architecture was chosen for the emulation.

Having introduced the system to be emulated, the next two chapters will concentrate

on the DS-Link technology used for the emulation. After these chapters, the input

assumptions etc. will be described before the results of the emulation are presented.



Chapter 3

Data-Strobe Link Technology

This chapter describes the hardware used for the emulation studies. Both the Macramé

test-bed and the GPMIMD machine are implemented using DS-Link technology.

First, the IEEE 1355 standard is introduced, as this gives a basic level of understand-

ing of the DS-Link technology. Next, the “Clos” network topology is described. Then,

the Macramé test-bed and the GPMIMD machine are described in detail. Finally, the

host and control systems are described.

3.1 The IEEE 1355 Standard

This section describes the basic concepts of the technology used for the emulation studies.

The IEEE 1355 [16] standard has been developed to exploit recent technical devel-

opments of highly-integrated, low-power interconnect technology implemented in high-

volume commodity VLSI1 processors, and uses the simplifications in encodings and pro-

tocols resulting from the use of relatively reliable media over relatively short distances.

The standard defines point-to-point links, both physical and logically. The links

operate in speed ranges from 10 to 100 MBits/sec in the case of DS-Links and up to one

GBit/s for the High Speed (HS) Links. The HS-Links have not been used in the studies

presented here, thus the description here will not contain further information on these

links.
1Very Large Scale Integration

29
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The standard describes a four-layer protocol which the hardware must implement in

order to comply with the standard. They are the signal, token, exchange, and packet

layers.

The Signal Layer The signal layer defines the interpretation of bits. The DS-Link has

two signals in each direction. One containing the data signal, and the other containing

the strobe signal. This encoding ensures that, within each bit, there is an edge in either

the data signal or the strobe signal, as shown in figure 3.1. The edge within each bit

enables the receiver to decode the signal without knowing the transmit rate.

Parity

bit
Parity

bit

Scope of parity bit in the next token

Signal 
layer

Strobe - signal

Data - signal

Bit pattern 0 1 1 1 1 1 1 0  0  0  0  0  0

Token
layer

8 Data bits

Data token

bit bit

Data flag Data flag

Figure 3.1: The signal and token layer.

The Token Layer The token provides the smallest usable unit of information. There

are both control and data tokens. The control tokens are used for control purposes in the

upper layers. A token starts with a parity bit, followed by data/control bit. Thereafter,

come the data bits of the token, see figure 3.1. Data tokens have eight data bits, while

control tokens have only two. Odd parity checking is used for bit error detection. The

parity bit covers the previous token’s data bits and the current token’s data/control bit.
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The Exchange Layer This layer describes the procedure for exchanging tokens be-

tween nodes. After a link has been started, it starts sending data alignment tokens

(idles); a control token. This token is always sent in the absence of other tokens. This

allows parity and disconnect errors to be detected at all times.

A flow control scheme is defined in the exchange layer to guard against data loss due

to an overflow of the receiving buffer. The flow control is implemented such that when

the receiver has room for eight more tokens in its internal buffer, it sends a flow control

token to the sender. The sender can thus keep track of whether or not it can send the

next token. Consequently data can be queued, but not lost.

The exchange layer also defines the behaviour of the link in case of a reset, a disconnect

error, and a parity error. In the first two cases, the link is stopped, and brought to a

ready state. From this state, the link can safely be started again. In the case of a parity

error, the link output will be stopped and a disconnect error will be detected at the other

end. Both links should then be reset. In case of either error, the error flag on the link is

raised.

The Packet Layer This upper layer of the IEEE 1355 protocol defines the exchange

of packets between nodes. A packet consists of a header, a payload, and an end-of-

packet token. The header contains the address of the hardware destination processor,

and if applicable also software process identifier. There are two end-of-packet tokens, one

indicating a normal end of the packet, the other indicating an unexpected end of packet.

There are no limits to the number of tokens per packet in the IEEE 1355 protocol.

3.2 The Clos Topology

This section provides a description of the network topology used in both the Macramé

test-bed and the GPMIMD machine.

A switch takes n inputs and provides m outputs; n and m are in most implementations

the same. The main feature of a non-blocking switch is that an incoming signal can be

switched to any of the output ports without interfering with other signals crossing the

switch at the same time. Using one or more switches, a network can be formed upon

which terminal nodes can be placed. Depending on how the switches are interconnected,

different topologies can be built. One way of connecting switches is by placing them in
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a grid and connecting the links to their nearest neighbours. An example of a grid is

shown in figure 3.2. A more complicated scheme is used in the Clos topology. The Clos2

topology was developed by Charles Clos in 1952 [17]. An example of a Clos network is

shown in figure 3.3.

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

Figure 3.2: An example of a grid network using switches with 12 links. Four of the links

on each switch, are used for terminal nodes (shown as circles connected to the switch).

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

SWITCH
A 12x12

A 12x12

SWITCH

A 12x12

SWITCH

Figure 3.3: An example of a Clos network with 24 terminal nodes and three stages. As in

the example above, any terminal node can communicate with any other terminal node.

The Clos topology is non-blocking. That is, any two non-busy nodes, can communi-

cate regardless of the state of the rest of the nodes and network. Another advantage of

the Clos topology is that, in order to pass from any one node to another, a packet needs,

at maximum, to go through S switches, where S is the number of stages in the network.

This can be compared to, for example, a two dimensional M × M grid network where

there can be up to 2M − 1 switches to go through. The distance, in term of switches, is

therefore more uniform for the Clos topology than for the grid topology. In the case of

the networks used for the emulation studies, S equals three.
2Also known as multi-stage and folded Clos.
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3.3 The Macramé Test-bed

Macramé is defined by Webster’s New World Dictionary [18] as:

mac·ra·mé (maḱre-ma´), n. [Turkish maqramah, serviette, towel < Arabic

migramah, a veil], a coarse fringe or lace of thread or cord knotted in designs,

etc.

Having seen the test-bed fully wired up, the name, Macramé, is quite fitting. The

Macramé test-bed is part of the Macramé ESPRIT project 8603 [19]. The test-bed was

designed, built, tested, and used at CERN.

The test-bed was designed [20] to investigate and demonstrate a number of aspects of

network handling and usage, e.g. to construct very large networks with different topolo-

gies, and for each topology, to measure the performance of the network, i.e. latencies

and throughput, as a function of packet length and traffic patterns. Furthermore, it

was designed to investigate traffic patterns corresponding to those found in a variety of

application areas, both commercial and in the field of high-energy physics.

The work on this test-bed described in this thesis has been to investigate network

traffic, for the ATLAS level-2 trigger. In the following section, the test-bed will be

described, starting with the C104 switch, followed by the traffic generating and intelligent

nodes, and finally the configuration and the software of the test-bed.

The C104 Crossbar Switch The C104, see figure 3.4, is a asynchronous 32-way

dynamic packet switch with DS-Links. In addition to its thirty-two data links, the C104

Command
Processor

System
Services32 x 32 Crossbar Switch

Link31 Link0

Control Link 0
Control Link 1

Figure 3.4: Diagram of the C104 switch.

has two control links. All links are DS-Links. Thirty-two packets can be transmitted

through the switch at any one time.
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Interval labelling is used to route packets through the switch. In this technique, each

output link is assigned a range, or interval, of device labels corresponding to physical

devices that are accessible via that link. Each device has an unique label associated to

it. When a packet enters a C104, the device label contained in the header is compared

to the device intervals. The output link, with a interval containing the device label, is

chosen to route the packet out of the switch.

For some network configurations, there might be several routes a packet can take to

reach its destination. The C104 switch implements grouped adaptive routing to allow a

choice to be taken, as to which way to route the packet. Output links can be grouped,

so that packets will be routed to the first free link in the group. Grouped links have the

same interval labels.

The C104 switch uses worm-hole routing. With this routing technique, the switch

takes a routing decision as soon as a packet header has entered the C104. This routing

decision leads to the creation of a circuit in the switch which is closed as soon as the

end-of-packet token leaves the switch. As a consequence of this routing technique, a

packet may be in transit through several switches at the same time, see figure 3.5, thus

minimising the transmit latency of the packet through the network. The header of a

packet is deleted by the C104 switch before it leaves the switching network.

t0
header

µµt0 + 1   s

µµ t0 + 2   s

µµt0 + 3   s

Sender ReceiverC104C104

Figure 3.5: Worm-hole routing.

The performance of the C104 has been previously bench-marked [21]. The elapsed

time for a packet to be routed through the C104 has been measured to be approximately

one microsecond.
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The Traffic Generating Node The traffic generating node is a DS-Link data source.

It can be programmed to generate network traffic. The node consist of a controller, traffic

pattern memory, and a DS-Link. A global clock exists on the test-bed such that all the

nodes are synchronised.

The traffic pattern is stored in memory as a list of packet descriptors. Each descriptor

consists of three entries:

• Delay

• Packet Length

• Header; one to four bytes

The traffic is pre-programmed into the on-board memory. The controller reads the

traffic descriptors from the memory, and then feeds the packet to the DS-Link. When

the node receives a packet the size of the packet is added to register storing the total

volume of data received. The packet is then discarded. The information of the amount

of data sent and received is kept, such that after a run the average receive and transmit

rate can be obtained.

The number of packet descriptors that can be stored in memory depends on the

number of bytes in the header, see table 3.1. When the controller has gone through all

Header length [Bytes] No. of packet descriptors

1 8190

2 6552

3 5460

4 4680

Table 3.1: Number of packet descriptors.

the descriptors in memory it will start over from the top. This “wrap around” means

that in order for the nodes to stay synchronised, they must all wrap around at the same

time.

The delay values in the descriptors are relative to the time when the previous packet

was scheduled to be sent. If a packet cannot be dispatched at its proper time, a timer

is used to measure the delay from when the packet should have been sent, to when it is
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sent. The delay of the next packet is reduced by the amount accumulated; if the result is

negative the packet is dispatched immediately; if the result is positive the timer is reset to

zero, and the packet is dispatched after the corrected time (delay - amount accumulated)

has passed. See figure 3.6 for an example of the mechanism. This procedure enables

Traffic descriptor id a b c d

∆t [µs] 1 1 10 1

Length [bytes] 5 5 5 5

µ

dispatch times

µ

dispatch times

Delay Timer
[   sec]

Actual 

Time
[   sec]

1-4=-3

Programmed

10-9=1

a
       b
                                                         c
                                                             d

1-4=-3

a
b

c
d

0   0   1   2   3   4   5   6   7   8   9   0   0   1   2   3   4 

0                       5                      10                      15                    20

Figure 3.6: An example of how a traffic generating node tries to keep in synchronisation

with the other traffic nodes. The link speed has for the figure been assumed to be 1 bytes

a micro second.

the nodes to stay synchronous, as long as this timer does not reach its maximum value

corresponding to 32.8 ms. The large capacity of this timer ensures that the nodes can

deal with transient hot-spots in the network.

There is no maximum packet length and the effective link speed for messages above

400 bytes is 10.0 MBytes/s in the case of unidirectional use and 9.5 MBytes/s [22] for

bidirectional use.

The Timing Node The purpose of the timing node is to measure the latency distri-

bution across the network when the network is subjected to the traffic from the traffic
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generating nodes.

The timing nodes work in pairs with one node sending trace packets to the other

node. When the second timing node receives a trace packet, it calculates the latency

from the time of the global clock and the time-stamp in the trace packet. The latency is

stored in a latency histogram. Therefore the time evolution of the latency distribution

is not available for later analysis.

Trace packets are sent at a regular but infrequent interval (to avoid disturbing the

traffic pattern defined by the traffic nodes). The length of the trace packets, is constant

and defined at start-up.

Configuration The configuration of the test-bed, as used for the emulation studies, is

a 512 node Clos. See figure 3.7. Sixteen traffic generating nodes are connected to each

C104

Switch

16 Traffic Nodes
Links to

Centre Stage

C104 DS Links

Packet

Terminal  Stage Centre Stage Terminal Stage

Figure 3.7: Diagram of a 512 node Clos network.

terminal stage switch. Each terminal stage switch is connected to each of the centre stage
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switches by one link.

Two timing nodes has been placed on two different terminal stage switches. Macramé

modules are constructed with sixteen traffic nodes connected to a C104 switch. To attach

a timing node, one of the centre stage links has to be used. See figure 3.8. To remedy this

C104 C104

SwitchSwitch

16 Traffic Nodes 16 Traffic Nodes
16 Links to15 Links to
Centre StageCentre Stage

PacketPacket

Timing Node

Figure 3.8: A terminal stage switch with and without a timing node.

situation, only fourteen of the traffic generating nodes are used during the emulation.

This leaves full bandwidth through the Clos for all active nodes, traffic nodes and timing

nodes alike.

3.4 The GPMIMD Machine

Computers can be divided into four categories [23] based on how many instructions and

data streams they have. The traditional von Neumann machine, as we see it in personal

computers etc., is single-instruction single-data (SISD); i.e. a CPU works on one set of

data. The vector machine, is single-instruction multiple-data (SIMD). Here, the CPU

takes a set of data and performs the same instructions on all of them at the same time,

e.g. the Pentium MMX. The third category, multiple-instruction single-data (MISD)

is mentioned here for completeness. This would involve multiple processors applying

different instructions to a single input stream; this hypothetical possibility is generally

deemed impractical. Finally, we have the multiple-instructions multiple-data (MIMD)

machine where multiple instructions are performed in parallel on multiple data streams.

These machines are usually referred to as parallel computers. The General Purpose

Multiple-Instructions Multiple-Data machine, GPMIMD, is a member of this family.

This section will describe the GPMIMD machine used for the last part of the emula-
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tion studies. First, a overview of the machine is given, then the processor units, T9000

transputers, will be described. Finally, the application software production environment

will be illustrated.

The GPMIMD machine consists of sixty-four T9000 transputers which are fully inter

connected via four independent Clos networks. Each Clos network consists of twelve

C104s, four in the centre stage and eight in the final stage. There are thirty-two external

DS-Links, which can be used to feed data into the machine. As a consequence of these

external links, eight of the transputers are not placed directly on the three-stage Clos

network. Rather, they have been placed behind one more C104, see figure 3.9. This

Six more boards

T9000 transputer

C104 packet switch

4th Clos network

3rd Clos network

1st Clos network

2nd Clos network

Figure 3.9: Sketch of the interconnectivity of the components in the GPMIMD machine.
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means that, whereas fifty-six of the transputers have to send their packets through three

C104 switches, eight (one on each board) must go through one more switch.

The T9000 Transputer The T9000 transputer is a complete microcomputer on a

single VLSI chip. Figure 3.10 shows a diagram of the T9000 transputer.
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Figure 3.10: Diagram of the T9000 transputer.

The transputers main components are a processing unit, memory, the link unit, and a

scheduler. The processor is 32-bit pipelined, and is supported by a 64-bit Floating Point

Unit (FPU). The clock speed of the transputer is 20 MHz. The transputer has sixteen

kilo-bytes of on-chip memory.

The T9000 transputers have four DS-Links allowing them to be connected together,

either directly or through the C104 packet-routing switch. Two additional DS-Links are

used for control. Each link has its own link engine, freeing the processor unit from dealing

with the I/O. The link engine performs the link initialisation, link speed setting and error

reporting as specified by the contents of the link registers in the configuration space. It

is also responsible for implementing the four layered DS-Link protocol, i.e. converting

bytes of data into packets, packets into tokens incl. parity bits etc., and finally tokens

into data-strobe signals. The link engine also connects its link to the virtual channel

processor.

For small transputer networks with header length equal to one byte, i.e. up to 256

nodes, the unidirectional link speed is 9.5 Mbytes/s and 8.7 Mbytes/s for bidirectional

use [24]. The degradation of link speed from the raw DS-Link speed of 10 Mbytes/s is due
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to an extra protocol layer handled by the transputer. This protocol layer ensures that

each message is acknowledged, and that each message is split into packets of thirty-two

bytes.

Virtual Channel Processor Communication between T9000 processes is done

via virtual channels. Just as several processes can be running on a processor, with

the appropriate scheduling, more communication channels can use the same physical

link. The Virtual Channel Processor (VCP) of the T9000 transputer is a hardware

communications processor which multiplexes the virtual channels onto the physical link.

The VCP is also responsible for splitting a message into thirty-two bytes packets before

they are given over to the link engine of the physical link.

The Hardware Scheduler The scheduler is in charge of handling the concurrent

processes on the transputer. Only a few registers are used to store the state of the current

process. This, as well as the scheduler being implemented in dedicated hardware, makes

the process switching fast. The context switch time for the transputer has been measured

to be 1.9 µs [21].

Application Software The manufacturer of the T9000 transputer, SGS-Thomson,

provides a tool set which includes all the normal components needed to prepare software

like compilers, both for Occam and a modified C language, a linker, and a special “make”

program. They also provide more network specific tools that check and compile network

descriptions. The tool set user guide [25] provides more information.

The Occam language [26] is a procedural language which is well suited for program-

ming transputers. It supports inherently both parallelism and I/O in a very straightfor-

ward way. It does not, however, support dynamic data structures and, except for simple

multidimensional arrays, no user-defined data structures exist. With regard to the I/O,

there is extensive support for user-defined protocols.

When designing programs in Occam with multiple interacting processes, the subject

of object-oriented programming immediately arises. The similarities between object-

oriented design and Occam design is very simple to follow once the connection between

an object and a process has been established. A process in Occam can be described by

a finite state machine, as can an object in a object-oriented design. The flow diagrams



CHAPTER 3. DATA-STROBE LINK TECHNOLOGY 42

known from object-oriented design, can be used to document the communication between

the processes in Occam. This paradigm has been used to document the emulation on the

GPMIMD machine in section 7.1.

3.5 Controlling DS-Link Devices

The DS-Link devices, the T9000 transputers and the C104 packet switch, are controlled

and programmed via two control links: a control-up and a control-down link. For exam-

ple, the control links on the C104 switch allow access to the status of the network even

though the normal data network may be in error. Commands can be sent as packets

along the control network from the host controller to access status registers within the

devices.

The control network can also be used by DS-Link devices to report errors back to

the host controller. An error message is transmitted as a single packet which includes an

error code to identify the error.

Control links can be connected in a daisy chain to each other or C104 switches can be

used to form tree structured control networks. The thirty-two data links of the C104 are

identical to the control links, hence control packets can be routed through the data links

to form a control fan-out. Figure 3.11 shows a control fan-out structure which contains

two separate daisy chains, each of the daisy chains is called a “subnetwork.” The first

C104 on the control chain is partitioned into a control partition and a data partition. The

control partition is responsible for routing control packets into the correct subnetwork,

the data partition can route packets from the main data network. The control down of

the device is connected into the control partition, to allow control packets to flow into

the data links of the switch. It is possible to use all the links of a C104 to perform control

link routing.

A control fan-out provides more tolerance to faults within the control network and

packets from the host controller have to pass through fewer devices than for a control

network consisting of a single daisy chain.
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C104 C104 C104 C104

C104 C104 C104 C104

Cu Cd

Host
controller

control
partition

C104Cu Cd

data
partition

Cu = control up
Cd = control down

Control SubNetwork 1

Control SubNetwork 2

control fan-out
into tree structure Cu CdCu CdCu Cd

Cu Cd Cu CdCu CdCu Cd

= control links

Figure 3.11: The control-chain fanout and the corresponding tree structure.

3.6 The Host Systems

To control the network, access is needed to the control network. This access is provided

through the host system. The host system provides the interface between the user’s

computer and the reset, data and control link to the network. The control link gives

access to the control network. The reset link enables the user to reset the whole system

in one action. The data link provides access to the data network for down loading code

into transputers.

Two host systems exist: An SGS-Thomson B103 Ethernet to DS-Link interface using

a Sun workstation (SunOS or Solaris), and an FPGA based PCI-DS-Link interface using

a PC running Linux [27]. The B103 system has been used for the emulation, and most

of the Netprobe development, see chapter 4. The Linux/FPGA host is being used for

developing the ARCHES HS-Link test-bed [28].

To download code, configure and test the network etc., two programs are available;

Irun3 and Netprobe. The basic part of Irun is a server, through which the user or another

program can interact with the DS-Link network. On top of this server level, Irun has
3On the Linux/FPGA system this software package is known as the Control Software.
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facilities for configuring the network and down loading transputer code. Netprobe is a

test and diagnostic software package for DS-Link networks. Netprobe interacts with the

network through Irun (or the Control Software in case of the Linux/FPGA host system).

Netprobe is the work of the author and is detailed in the following chapter.

The two host systems are shown in figure 3.12.

FPGA setupB103 setup

B103

Linux PCSun Workstation

Irun

Netprobe Netprobe

Control Software

DS link

FPGA PCIEthernet

DS link

DS Link Network DS Link Network

Figure 3.12: An overview of the host systems including software.



Chapter 4

Netprobe - A Data-Strobe Link

Debugging Tool

Given the familiar scenario in high energy physics of thousands or more cables connected

here and there in a way not logical to the eye, try asking the question: “How long would

it be until someone noticed and repaired the damage if two cable ends were swapped

around?” There are several possibilities: either the system would keep running, but data

would be corrupted; or the system would halt immediately or some time later. In all

case, it can be difficult to find the two cable ends which were swapped around without

help from some debugging tool.

With DS-Link networks, and especially Macramé, the problem is similar. When

wiring up Macramé to a 512 Clos network, there are about 500 cables, each with two

ends which has to be plugged in by hand. Therefore, at the construction of the network,

a tool for checking the configuration is invaluable.

Netprobe was designed to be able to help in situations like the one mentioned above,

as well as debugging modules in the initial construction phase. The work presented in

this chapter is the author’s.

4.1 Overview

Netprobe provides the following functionality:

• access to the registers in all network devices.

45
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• spy on the network i.e. report to the user the devices in a given physical network

and their interconnection. The results may be reported in tabular form or in a

network definition language (NDL) file. A NDL file describes a network in terms of

its devices, the devices’ link connections and how the user wants the configuration

space of each individual device set. An example of an NDL file for a small network

is given in appendix B.

• verify the network i.e. verify that a physical network matches a given configuration

specified by the user. The configuration specified by the user may be in tabular

form or in the NDL language.

• configure the network, i.e. start the network, and set the configuration space of

each individual device according to the input file. The input file is either a NDL

file or its binary version, the network initialisation file.

The DS-Link debug environment prior to the development of Netprobe consisted of

two separate software programs; Clink and T9spy. The interface of Clink has been reused

in Netprobe after changing the underlying variable structure. Most commands in Clink

have been enhanced during the production of Netprobe, e.g. online help. A debugged

version of the depth-first algorithm in T9spy has been reused in the standard spying

routine in Netprobe. The procedures for spotting and verifying link connections are new,

as well as the network verifying and configurations routines.

The following sections describe the spying, verifying and configuring commands within

Netprobe. Following this, the performance is evaluated. Finally, a section describes the

work done for supporting HS-Link devices. For a user manual on Netprobe, see the

bibliography [29].

Debugging is very much an interactive process and Netprobe has been designed with

this in mind. The available Netprobe commands can be split into three different classes:

1) general commands; to control access to network’s host, get help, etc., 2) commands to

access single devices and 3) commands for probing the whole DS-Link network. These

areas are outlined in the following three sections and the individual commands are de-

scribed briefly in appendix A.
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Figure 4.1: Accessing DS-Link networks from Netprobe.

General Commands A DS-Link network host is represented by a single named re-

source. To access a DS-Link network, the user must specify which host is to be accessed.

This is performed using the connect command within Netprobe. It is possible to dis-

connect from one host and connect to another within the same Netprobe session. If

requested, all the interactions Netprobe has with a DS-Link network can be logged to

a file. This logging of information can be started, stopped and restarted throughout

the Netprobe session. The level of information returned by the commands accessing the

DS-Link network can be specified. By default, only error messages are reported; if re-

quested, more information is given — for example, the content of all the packets sent

into the network along the control chain can be obtained.

Local Commands The majority of Netprobe commands only access one DS-Link

device. These include the ability to start, reset and identify a device. Specifically for the

T9000 Transputer, there are commands to boot, reboot, stop and start the processor. It

is also possible to read and write to the memory of the T9000. There are also commands

to access the configuration registers of any DS-Link device in the control chain. This

includes the ability to dump a specified set of these registers using a single command.

Global Commands Assuming Netprobe is connected to a network, the user can obtain

a list of the devices known to Netprobe. Commands also exist to perform a hard reset of

the network and to halt all the T9000 processors. The user can run a T9000 application
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on the processors in the network or just configure the network. Another set of global

commands has been created to spy on and verify the configuration of the network.

4.2 General Principles behind Spying and Verifying

To understand how the spying on networks, and later, how verifying of networks is

performed, a few principles of a general DS-Link device must be explained.

In terms of spying or verifying the generalised DS-Link device consists of:

• Two control DS-Links, see section 3.5.

• A number of data DS-Links. Four for the T9000 transputer and thirty-two for the

C104 packet switch.

• A configuration space containing the following registers:

– DeviceId (read only), specifies the device identification code, i.e. which type

of device this is e.g. a C104 switch.

– DeviceRevision (read only), specifies the revision of the device

– ErrorCode (read only), specifies the error state of the device. There are four

general error codes, including “no errors” and additionally four error codes

per data link, e.g. “Parity or disconnect error on link 2.”

– The DSLinkPLL which is used to set the master clock link speed.

– The ConfigComplete, which is used to signal to the device that it can start

operation since the configuration is complete.

A generalised DS-Link consists of:

• A command register. The following commands can be issued: reset and start link,

send parity error, and reset output. A reset output command sets the link output

low.

• A mode register. Three bits of this register are used to specify the speed of this

link. This is done by specifying by how much the master clock link speed should

be divided. Three more bits are used to:

– Localize errors, i.e. when set do not report errors to the control unit.
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– Disable data alignment token, i.e. idles. This can be used to provoke disconnect

errors.

– Ignore disconnects, when set the link will ignore disconnect errors on the link.

This is useful when resetting both ends of a link.

• A status register. The following status bits exist:

– Error, flags that a parity or disconnect error has occurred on the link.

– Started, flags that the link is started, i.e. sending idles.

– Reset output completed, flags that the reset of the output on the link has

completed.

– Parity error, flags that a parity error has occurred.

– Disconnect error, flags that a disconnect error has occurred.

– Token received, flags that a token has been received.

Furthermore, a C104 data link consist of interval registers used for routing packets. See

also figure 4.2, showing a sketch of a general DS-Link device.

Mode

Status

Commands

Registers:

DS device

DeviceId
RevisionId
ErrorCode
DSLinkPLL
ConfigComplete

Registers:

.....

Ctrl-Up                                   Ctrl-Down

Figure 4.2: A general DS-Link device.

Knowing how the link status register interact with the commands issued to the link

is critical to understanding the spying.

• Starting a link causes the data alignment tokens, i.e. idles, to be sent over the link.

This, in turn, causes the receiving end of the link to set the status bit “Token

Received” in the status register.
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• Forcing a parity error on a link, causes tokens with the wrong parity to be sent.

The receiving link will raise the error flag and the parity error flag of the status

registers, it will then disconnect. This causes the disconnect error flag on both sides

to be raised.

The control-up links starts automatically upon receiving a token. Without this be-

haviour, the host would not be able to get in contact with the next device. No other

DS-Link starts itself in this way. It is therefore possible to identify data links used as

part of the control chain. The identification process of links which leads to a control

subnetwork is detailed in the flow diagram in figure 4.3.

started
not

Link

subnetwork

token received Link does not
lead to a
subnetwork

token not received

token not received

token received

start link

Link does lead to a 

Figure 4.3: Identifying a data link leading to a subnetwork.

Back-Checking for Connections When looking for connections between two data

links, we use the following strategy to give us confidence that there is a physical connec-

tion between the links in question. After starting a link (let us call it link A), we find a

link which now (and not before) has received tokens (let us call it link B). If link B has not

already been paired with a link, we do the following “back check”: reset both links, start

link B and check that link A receives tokens, start link A and check that link B receives

tokens. After this test, the link is running normally; an error is then forced at each end

of the link and the spy verifies that the corresponding disconnect errors are discovered

at the appropriate end of the connection. The back checking scheme is sketched in figure

4.4.

Having given the principles behind the spying on and verifying of DS-Link networks,

the next sections describe the algorithms used to perform the spying and verifying.
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Figure 4.4: Back-checking for a connection.
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4.3 Spying on a DS-Link Network

The spy command reports to the user the devices in a given physical network and their

interconnection.

The default algorithm used to spy on the network is a two step algorithm. First, all

the devices in the DS control chain are started in depth-first order, see figure 4.5; this is

Host

nr 4

nr 1

nr 2

nr 3

nr 5

Figure 4.5: Depth first ordered device numbering.

performed by the WORM procedure shown in figure 4.7. The WORM procedure also uses the

ADD NEW DEVICE procedure which essentially starts the next device in the control chain

and all its links. After all devices in the network are discovered and started, the data

link connections in the network are investigated using the FIND CONNECTIONS procedure,

also shown in figure 4.7.

This default algorithm execution time scales as N × L, where L is the number of

links within a system and N is the number of devices in a system; i.e. every link must

be started and then each device is checked for a status change.

Host C104

lnk 16 lnk17

...

ctrl-up  ctrl-down
lnk 31lnk 0

...

Figure 4.6: Small DS-Link network, consisting of a single C104 switch.

Applying the algorithm to the network in figure 4.6 will result in the following actions.

The control link to the first device will be started so that the device and revision registers

can be read. Knowing that this device is a C104, all its thirty-two data links are started
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and checked for connections to a control subnetwork, see figure 4.3 — none of the data

links will be identified as being part of a control fanout. The control-down link of the

C104 will be started and by reading and comparing link status registers Netprobe will

conclude that no more devices exist in the network. One by one, the data links are then

asked to send idles with wrong parity. After link number 16 has done this the device

error register will contain an error saying that link number 17 has received a parity error.

As a consequence of this, the “back-check” algorithm, see figure 4.4, is started on those

two links. The “back-check” will succeed, and link no. 16 will be known to be connected

to link no. 17.

The Alternative Algorithm An alternative algorithm can be used to spy on the

network. In this algorithm, the network devices and their interconnections are explored

simultaneously. A WORM procedure starts each device in the network, for each device it

starts all links and checks for a status change on any link in the network. The algorithm

execution time scales as L2, i.e. every link must be started and then every link in the

network must be checked for a status change. In general, this alternative algorithm is

slower since N << L, however, on small (less than approximately 100 links total) systems

it can be faster than the default algorithm; see also the performance discussion section

4.6. This alternative algorithm is shown in figure 4.8.

Applying this algorithm to the network from figure 4.6 gives the following result.

First, the device is started and identified like in the standard algorithm. Then, all data

links are started one by one, and all known link status registers are read to check for

a possible control fanout or data link connection. Netprobe will, in this way, find the

connection between links no. 16 and no. 17. Going on to explore the rest of the control

network, the control-down link of the C104 is started. Since this causes no change in any

link status registers, Netprobe concludes that the network consists of only one device.

Spy Result Format Having successfully discovered the topology and interconnection

of the network, the spy outputs the information in tabular form. If the spying had to

be aborted due to an irrecoverable error, e.g. a control link not able to start, the output

will only contain the part of the network which could be spied on. In this case, the spy

function will also report the problems it found.

By default, the spy command produces a table of the format shown in table 4.1. In
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SPY

WORM

FIND CONNECTIONS

---------------------------

WORM

ADD NEW DEVICE

Start the control-down link

If this caused a status change to a link known to the spy

(i.e. if control fan-out is present)

For all links leading to subnetworks (connected to control-up links)

If current device is an C104

Configure routing values (for control packets) in current C104

Run WORM on subnetwork

If current device is a C104, reconfigure routing values

End for

Else if the control-down link has received a token

(i.e. it is connected to a control-up link)

Run WORM on device connected to the control-down link

End if

---------------------------

ADD NEW DEVICE

Start next device on control chain

Identify device by reading the DeviceId and DeviceRevision registers

For all data links

Start link

Test if link leads to a subnetwork

End for

---------------------------

FIND CONNECTIONS

For all devices

For all links

Put link into error

Read error register on all devices to find corresponding

error on other end of link

Verify possible connections in both directions (back-check)

End for

End for

Figure 4.7: Standard spy algorithm.
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WORM

ADD NEW DEVICE

Start the control-down link

If this caused a status change to a link known to the spy

(i.e. control fan-out is present)

For all links connected to subnetworks (connected to control-up links)

If current device is a C104

Configure routing values inside current C104

Run WORM on subnetwork

If device is a C104, reconfigure it

End for

Else if the control-down link has received a token

(i.e. it is connected to a control-up link)

Run WORM on device connected to control-down link

End if

---------------------------

ADD NEW DEVICE

Start next device on control chain

Identify device by reading the DeviceId and DeviceRevision registers

For all data links

Start link

If this caused a status change to a link known

to the spy there is a possible connection

Check that there is a connection in both directions (back-check),

if yes, record the connection

End for

Figure 4.8: Alternative spy algorithm.
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cases where information is needed, the “View All Status” table can be requested, see

table 4.2. The spy table contains information on all devices discovered in the network

control chain. The device type and revision are displayed and the link’s connection is

displayed, i.e. whether they are empty “....”, connected to the host “HOST” or connected

to another link “0:17” (meaning this link is connected to link 17 on device 0). Ctrl0 and

Ctrl1 refer to the control-up link and control-down link, respectively.

----------------------------------- SPY ------------------------------

Device | Revision | Ctrl0 | Ctrl1 | Link0 | Link1 | Link2 | Link3 |

----------------------------------------------------------------------

0: C104 | BetaB02 | HOST | .... | .... | .... | .... | .... |

+ 4 | | | | .... | .... | .... | .... |

+ 8 | | | | .... | .... | .... | .... |

+ 12 | | | | .... | .... | .... | .... |

+ 16 | | | | 0:17 | 0:16 | .... | .... |

+ 20 | | | | .... | .... | .... | .... |

+ 24 | | | | .... | .... | .... | .... |

+ 28 | | | | .... | .... | .... | .... |

----------------------------------------------------------------------

Table 4.1: Example tabular output from spy.

------------------------------- View All Status ------------------------------

Device | Revision | Error | Ctrl0 | Ctrl1 | Link0 | Link1 | Link2 | Link3 |

------------------------------------------------------------------------------

0: C104 | BetaB02 | None |-S---T |-S---- |-S---- |-S---- |-S---- |-S---- |

+ 4 | | | | |-S---- |-S---- |-S---- |-S---- |

+ 8 | | | | |-S---- |-S---- |-S---- |-S---- |

+ 12 | | | | |-S---- |-S---- |-S---- |-S---- |

+ 16 | | | | |-S---T |-S---T |-S---- |-S---- |

+ 20 | | | | |-S---- |-S---- |-S---- |-S---- |

+ 24 | | | | |-S---- |-S---- |-S---- |-S---- |

+ 28 | | | | |-S---- |-S---- |-S---- |-S---- |

------------------------------------------------------------------------------

Table 4.2: Example of a “View All Status” table from spy.

The “View All Status,” table 4.2, shows the status of the devices and the links.

The Device and Revision columns are the same as for the spy table. The Error column

displays the last read value of the device error register. Due to the way the connections

are checked, it is quite likely that some, or all, of these have an error listed.
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It is possible to have the spy produce a network description language (NDL) file

representing the network. Labelling information for the data network cannot be obtained

from spying on the network. This information must be added by the user before the NDL

file can be used e.g. to configure the network.

The speed of the data and control link while they are being spied on can be specified.

The default link speed is 10 Mbit/s.

4.4 Verifying a DS-Link Network

The difference between spying on and verifying a network can be characterised as the

difference between entering a maze with the aim of making a map versus venturing inside

with a pre-existing map with the intention of verifying it. This conceptual difference

results in a substantial improvement in performance, see section 4.6.

The verify command takes a network description (NDL) file or a previous spy output

table and verifies that a physical network matches the description contained within the

NDL file or the previous spy output table.

In order for the verify command to be able to parse the network description, it must

conform to either the NDL format or to the format for the spy tables.

Parsing a spy table is rather trivial compared to parsing an NDL file. Here, a more

complex parsing/interpreting algorithm needed to be implemented in order to handle

the Network Description Language. This language supports variables, procedures and

multidimensional arrays like most high-level programming languages. Such a parser

existed already at Sintef, one of our partners in ARCHES. We were given access to their

source code for this. It was written in C++ while Netprobe has been kept in C. To ease

future maintenance, the parser was rewritten in C.

Before a physical network can be verified, the network description is checked for

consistency (both NDL input and spy table input). This includes:

• a check that all devices have a consistent type, revision and number of links, e.g.

that a device defined to be a C104 has thirty-two links.

• a single control-up link must be connected to the host control link.

• if there are T9000s in the network, then the host data link must be connected.
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• all control-up links must be connected.

• a link must be connected in both directions (this is automatically ensured in the

NDL file).

The verify command also explores the control network in depth-first ordering of de-

vices in the same way as the spy command. If the verify command confirms that the

input is consistent it starts to explore the network, one device at a time. The device

is started, identified, configured with routing information if required and all connected

links are started. Once the entire network has been started the suspected connections

are back checked in the same manner as used for the spy algorithms.

----------------------------------------- VERIFIER -----------------------------

Device | Revision | Ctrl0 | Ctrl1 | Link0 | Link1 | Link2 | Link3 | OK

--------------------------------------------------------------------------------

0:T9000 | BetaB02 | HOST | .... | .... | 0: 2 | 0: 1 | HOST |

--------------------------------------------------------------------------------

Table 4.3: Successfully verified network.

The verify table is basically the spy table with some additional information. This

extra information informs the user whether or not the information in the input file was

successfully verified. Table 4.3 shows the scenario where everything in the input config-

uration was found to be present in the physical network. In table 4.4, we see an example

----------------------------------------- VERIFIER -----------------------------

Device | Revision | Ctrl0 | Ctrl1 | Link0 | Link1 | Link2 | Link3 | OK

--------------------------------------------------------------------------------

0:T9000 | BetaB02 | HOST | .... | .... |- 0: 2 |- 0: 1 | HOST | *

--------------------------------------------------------------------------------

Table 4.4: A missing connection.

of a network which contains the correct device, but the connection has not been found.

This has been marked with a minus sign in front of the connections. The OK column

has been marked with an asterisk “*” indicating that this device was not identical to

the input configuration. The values in the verify table are those provided by the user

as an input configuration, apart from the device and revision column, which contain the
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actual device and revision obtained from the network. Asterisk signs are used where the

physical network does not match the input configuration. If the input format provided

is an NDL file the output from the verify will still be the format shown within table 4.3.

----------------------------------------- VERIFIER -----------------------------

Device | Revision | Ctrl0 | Ctrl1 | Link0 | Link1 | Link2 | Link3 | OK

--------------------------------------------------------------------------------

* 0: C104*|* BetaB02 |* HOST |* 1:C0 |- HOST |- 1: 0 |- 2: 0 |- 1: 1 | *

* 1: ??? *|* ??? |* 0:C1 |* 1:31 |- 0: 1 |- 0: 3 |* .... |* .... | *

+ 4 | | | |* .... |* .... |* .... |* .... |

+ 8 | | | |* .... |* .... |* .... |* .... |

+ 12 | | | |* .... |* .... |* .... |* .... |

+ 16 | | | |- 2: 1 |- 2: 3 |* .... |* .... |

+ 20 | | | |* .... |* .... |* .... |* .... |

+ 24 | | | |* .... |* .... |* .... |* .... |

+ 28 | | | |- EDGE |* .... |- 2:C0 |- 1:C1 |

* 2: ??? *|* ??? |* 1:30 |* .... |- 0: 2 |- 1:16 |* .... |- 1:17 | *

--------------------------------------------------------------------------------

Table 4.5: No devices are verified correctly.

Table 4.5 gives an example where nothing matched the input configuration exactly.

Looking at the first two columns one sees that only the first device was identified, even

though the asterisk shows that it was not found to be a T9000 (only four links are listed

in the table) but a C104 revision BetaB02. The verify could not identify any of the other

devices. The device which has been started was not what we expected, and no other

devices could be started; no verification could be done of any link connections.

4.5 Configuring a DS-Link Network

The configure command allows the user to configure a pure C104 network described by

an NDL description or a DS-Link network (including T9000s) described by a Network

Initialisation File (NIF). A NIF file is a binary representation of an NDL file which

contains the same information. With the Irun software, configuration can be performed

via a NIF file, Netprobe uses the same algorithm to configure from this format. The

configure command using NDL is new and gives useful information on the state of devices

in the case of an error configuring the network; no errors are reported when configuring

from a NIF file. This is not a limitation since NIF is produced from NDL, so any user who

produces a NIF file will already have an NDL description of the network. The motivation



CHAPTER 4. NETPROBE 60

for not enhancing the configuration from NDL to be able to configure T9000 networks,

was that the T9000 transputer had by then been phased out of production.

A tabular spy output representation of the network cannot be used to configure the

network. This is because it does not contain the labelling information required by the

switches in the network. In general a user produces a description of the network in NDL.

This can be written by the user or generated automatically by the Netprobe tool, see

section 4.3.

If the configuration file is an NDL file, the configure command starts devices in the

network in a similar fashion to the verify command, i.e. depth-first through the tree

control structure. For the configure, all configuration registers must be initialised, which

is not the case for the verify procedure. The following list provides further details on the

information and commands C104 switches receive during configuration:

• the C104 is started and identified,

• the link speed is set,

• all registers containing labelling information are cleared,

• all labelling information is entered into the appropriate registers,

• all information required for adaptive routing and universal routing is entered into

the appropriate registers,

• a configuration complete command is sent to the C104 which signifies that the

configuration registers are configured,

• all connected links are started.

Having configured and started the network, all the data links which are connected are

checked for the following: that they have started correctly, have received tokens, and are

not in error.

4.6 Performance and Testing

All Netprobe functions have been tested on multiple large networks, including the 122

device (58 C104s and 64 T9000s) GPMIMD machine and the 1024 node Macramé C104
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network (65 C104s). Its functionality has also been adapted to meet the requirements of

the users of these large systems.

Performance measurements have been made which allow a comparison of different

algorithms (spy versions, verify and network configuration) and host interfaces. Results

are shown in table 4.6 and 4.7 for the GPMIMD machine and a test system of two C104s

Std. Spy Alt. Spy Verify Configure from NDL

Orig. B103 11341 sec 15927 sec 384 sec NA

New B103 1494 sec 2140 sec 334 sec NA

Linux/FPGA NA NA NA NA

Table 4.6: Performance measurements on the GPMIMD machine.

Std. Spy Alt. Spy Verify Configure from NDL

Orig. B103 70 sec 52 sec 7 sec 8 sec

New B103 20 sec 15 sec 6 sec 7 sec

Linux/FPGA 4 sec 4 sec 3 sec 4 sec

Table 4.7: Performance measurements on two C104s switches.

respectively. Configure from NDL and the FPGA host do not support T9000s and hence

the GPMIMD machine, these are shown as NA (not applicable) in the table.

Results for the B103 system are for two versions of the software running on the Sun

workstation and the B103. The new version, also the work of the author, optimises

performance by buffering and grouping commands before they are sent over Ethernet.

The difference in results indicate the severe bottleneck introduced by sending individual

commands to the network over Ethernet.

The results from the two C104 network shows that for small systems the performance

of the alternative spy algorithm is competitive.

4.7 High Speed Link Support

After finishing the work on Netprobe, other people at CERN were designing and building

a test-bed similar to the Macramé test-bed. This test-bed [28] for ARCHES is a thirty-two
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node machine being built using High-Speed (HS) link technology. The HS-Link technol-

ogy is also part of the IEEE 1355 standard and uses a link speed of one Gbit/sec. This

technology is of particular interest for building scalable Ethernet switches and routers.

The main aim of this test-bed is to run different traffic patterns, in much the same way

as on Macramé, but with eight to ten times higher link speeds.

A new router, the RCube [30], has been developed for switching these links. The issue

of how to deal with configuring and testing this test-bed arose. The RCubes used for the

test-bed have been equipped with a controller using DS control links. These boards can

be connected via their control links to any DS-Link control network just like the C104

and the T9000. It was therefore feasible, as well as interesting, to enhance Netprobe to

handle this router. The basic enhancement was to allow the Netprobe to recognise the

content of the DeviceId and DeviceRevision registers of the RCube as being an RCube.

The primary aim, though, was to enable an automatic configuration from an NDL file

since the Irun software, written prior to the existence of the RCube, does not support

RCube configuration. This has been done and includes support for reading from and

writing to the registers of this device.

4.8 Conclusion

It can be concluded that the work on Netprobe dramatically improved the debugging

facilities for DS-Link networks, both in the sense of increased functionality, improved

performance and user-friendliness — the last having been particularly improved by col-

lecting the debugging facilities inside one program and providing online help-pages.

Netprobe has been crucial in the development and use of the Macramé 1024 node

DS-Link network. With the extension to the HS-Link RCube device, Netprobe is playing

a similar role in the ARCHES test-bed work.

The general usability of Netprobe has also been positively demonstrated by its use in

the Demonstrator B’s DS-Link vertical slice [15] in ATLAS and in a system consisting of

some twenty T9000 transputers and two C104 switches, used as the Level 2 trigger in L3

[31, 32, 33], a large general purpose high energy physics experiment at the CERN LEP

accelerator. For the maintenance of the L3 trigger, which runs continuously, Netprobe

eased significantly problem-spotting in comparison to earlier debug facilities.
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Inputs to the Emulation

In the two previous chapters, the emphasis has been on the DS-Link technology which

is used for the emulation. Before describing the emulation procedures and results, the

input to the emulation is discussed.

The main purpose of this chapter is to describe the construction of data files used as

input to the Macramé Test-bed and the GPMIMD machine which match the expected

data distribution both spatial and temporal in ATLAS.

The main topics of this chapter are the trigger menus, the benchmarks of the trigger

algorithms, the configuration of the sub-detectors and, finally, the simulated event sce-

narios which were used for driving the emulations. The author’s work was defining the

content of these event scenarios.

The input parameters for the emulation originate from many subgroups of the ATLAS

experiment. In preparation for the different modelling activities during the “demonstra-

tor project,” two internal ATLAS DAQ notes [34, 35] were prepared. Their basic aim,

was to collect all the important numbers and so establish a set of well-defined assump-

tions from which to work. In the following chapter, the parameters used in the emulation

are summarised.

5.1 Trigger Menus

A very important constraint on the level-2 trigger is that it should be very flexible in

terms of the physics processes it selects. This flexibility is envisaged to be implemented

by having, from run to run, a configurable trigger menu. The trigger menu consists of a

63
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set of constraints on the trigger items. Sometimes this flexibility is referred to as “the

programmable trigger.”

The trigger item is an abstraction of the physics we are interested in saving to tape

for later analysis. One trigger item, for instance, a µ with a transverse momentum

(pt) greater than twenty GeV/c, could correspond to some very interesting physics, e.g.,

H → WW → lνjj. A trigger menu consists of a list of signatures, also known as menu

items, covering the physics programme in ATLAS.

The first level trigger menu itemises the conditions for acceptance of events at the

first level trigger and represents the distribution of trigger types expected. Thus, the

trigger menu is the physics input to the second level trigger. The estimated total event

rate from the first level trigger at low luminosity is 37.5 kHz. To allow for uncertainty

in the level-1 rate estimates and to allow increased rates for interesting channels, the

level-2 trigger must be designed for a 75 kHz input rate and be scalable to 100 kHz

[36]. The trigger rate comes mainly from well known low-pt processes rather than from

the interesting physics processes. The signature of the physics processes determines the

trigger menu, but not the distribution or frequency of data which the trigger sees.

In the following the trigger items and trigger menus which are currently being con-

sidered for the final system will be described.

The trigger community anticipates using the following five components in the trigger

items: jets, electro-magnetic showers, muons, the missing transverse energy and the

energy sum from the first level trigger.

The ATLAS detector will contain four main subsystems, the magnet, the calorime-

ter, the inner detector and the muon spectrometer. The calorimeter consists of two sub-

detectors: the electro-magnetic calorimeter (ECAL) and the hadron calorimeter (HCAL).

Of the inner detectors, data from the Transition Radiation Tracker (TRT) and the Semi-

Conductor Tracking (SCT) detectors are available to the level-2 trigger. From the muon

spectrometer, data from the Monitored Drift Tube (MDT) chambers and from the Re-

sistive Plate Chambers (RPC) are available. The data from the MDT are high precision,

while the RPC provides more coarse information mainly used for triggering purposes.

The second level trigger uses full-granularity, full-precision data from the detectors.

In order to cut down on the load of the trigger networks as well as processors, only data
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from regions which the first level trigger found to contain interesting information will

be transferred and processed. The main function of the second level trigger, therefore,

becomes verifying the level-1 triggers.

Upon accepting an event the level-1 trigger provides information to the second level

trigger’s supervisor. This information includes information on the position in η and φ of

the Regions of Interest (RoIs) and the level-1 selection criteria. Based on this information

the supervisor can determine the type of the RoIs and which read-out buffers (ROBs)

contain interesting data. For certain cases of the RoI type, the level-2 supervisor decides

not to read out all the sub-detectors. For the jet RoI type, only the ROBs in the RoI

region for the calorimeter are read out; for the electro-magnetic showers, all ROBs in RoI

region except for those in the muon detector are read. If the RoI type is that of a muon,

all ROBs in the cone specified by the RoI are read, see figure 5.1.

Data used by the level-2 trigger Jet RoI

SCT

MUON

CALO

TRT

EM RoI

µ RoI

Figure 5.1: Correspondence between RoI types and sub-detectors.

The LHC will run at a range of luminosities, starting around 1033cm−2s−1 and building

towards the design luminosity of 1034cm−2s−1. The beam energy remains the same,

hence the high-pt physics remains constant. The number of p-p interactions per bunch

crossing rises with luminosity so the events look different due to the “pile-up” of several
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low transverse momentum events. This results in higher occupancies in the tracking

detector. At the low intensity runs in the start, ATLAS will concentrate on B-physics,

while during the high intensity runs the focus will be on high-pt physics. This means

that we must have, at least, two trigger menus.

The trigger menus can be expressed in two different ways, inclusively and exclu-

sively. The inclusive form is more compact and readable, but for the various simula-

tion/emulation studies, they do not contain enough information. To emulate the trigger,

we must know how many RoIs there are and their types in order to find the data rates

through the network and to estimate the processing power needed. The trigger menus

can be configured as either “minimal” or “extended.” In the first case, only the level-1

trigger RoIs are included; in the extended case, the secondary RoIs are also used. For

the emulation studies, the high-luminosity, extended menu have been used. A full listing

of this trigger menu has been included in appendix C.

Another important set of assumptions for the emulation is the selection strategy used

by the trigger. The selection strategy and the order of processing will be strongly linked

in any efficient trigger system. For architecture B, it is natural not to do the selection

until all features of all the regions of interest have been determined (in parallel). In the

emulation, this selection strategy has been used.

5.2 Algorithm Benchmarks

During the emulation, no real physics algorithms run in the processors, but instead

the processors wait for an amount of time which corresponds to the amount of CPU

time which the physics algorithm would take; therefore the time involved in the individ-

ual processing steps is an important input parameter. These are taken from algorithm

benchmarks as described below; see table 5.1 for a summary. The “physics” algorithm

execution time in the global processor has been estimated as 150 µs per event.

In architecture B, the different feature extraction algorithms are executed on processors

where there is only access to a specific type of detector data. Depending on the RoI-

type given by the level-1 trigger, some detector within the RoI might be disregarded

altogether, as mentioned earlier.
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RoI type Sub-detector

SCT TRT CALO MUON

Jet — — 100 µs —

Em 500 µs 310 µs 100 µs —

µ 500 µs 590 µs 100 µs 100 µs

Table 5.1: Extrapolated algorithm times based on 500 MHz processors

The principal features of the algorithms are given here. The track finding used to

extract features from the silicon tracker and transition radiation tracker is performed

by using histograming for the initial pattern recognition. Then, a fit is done for all

the combinations of hits consistent with the bins above threshold in the histogram. The

feature extraction for the calorimeter is a calculation of the size and position of the cluster

area. The feature extraction for the muon spectrometer is performed by combining the

hits into a track.

5.3 Configuration

The parametrisation of the sub-detector data used by the level-2 trigger will be sum-

marised first in this section. Following this, the trigger system itself will be summarised.

Detector System Sub-detector # ROBs

Inner Detector SCT 256

TRT 512

Calorimeter ECAL 432

HCAL 48

Muon Spectrometer MDT 192

RPC 22

Total: 1462

Table 5.2: The number of ROBs for the different sub-detectors.
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Upon an accept from the level-1 trigger, each sub-detector feeds the read-out buffers

(ROB) with data via the front-end electronics. The number of buffers for the individual

sub-detectors is detailed in table 5.2. The RoI information for an event is expected to be

contained in about 200 bytes. All the data in all the ROBs are available to the level-2

trigger. The amount of data per buffer depends not only on the detector but also on

the type of RoI; see table 5.3. From each local processor participating in the event, 150

Bytes, which includes the feature information, are sent to the global processor.

Detector System Sub-detector Jet RoI em RoI µ RoI

Inner Detector SCT — 1000 1000

TRT — 740 740

Calorimeter ECAL 60 1300 1300

HCAL 890 890 890

Muon Spectrometer MDT — — 600

RPC — — 100

Table 5.3: Size in bytes of data in a ROB for a given RoI type.

Having gone through the most important detector parameters, from the point of view

of my measurements of the level-2 trigger, we now turn to the parameters of the trigger

itself.

Architecture B has five processor farms; four local and one global. Figure 5.2 shows a

diagram of the architecture marking the ROBs, FeX etc. The precise size of the processor

farms is an unknown at present, since it depends on the processing requirements as well

as the technology available at the time of construction. The aim of the “Paper Model”

[37] is to allow a quick investigation of different parameters and options in the second

level trigger. It consists of a simple model implemented on a spreadsheet. The input to

this model is the trigger menu and various technology parameters. Assuming 500 MIPS

per processor and the current trigger algorithms, the “Paper Model” has estimated the

size of the farms; these numbers are quoted in Table 5.4. It must be stressed, though,

that the algorithms are in a very early stage of development and that, accordingly, the

processing power needed has a very high level of uncertainty associated with it.

Initial emulation measurements had shown that a maximum output on the traffic
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Figure 5.2: Diagram of architecture B.

nodes with this kind of traffic was limited to 8 MBytes/s. To ensure that the data

fragments could be accepted by the receiving traffic nodes at a 100 kHz event rate, we

adjusted the farm size such that, the output rate would be around 8 MBytes/s at an

event rate of 120-130 kHz. In Table 5.4, the farm sizes used for the emulation are shown;

the number of MIPS needed per processor for current algorithms are also shown.

5.4 Drive Files

The contents of the drive file can be read as a trace or log of the event flow through the

level-2 trigger in terms of how much data enters the system and how long the data is being

processed at the various stages. The task of the “drive file” became to guide the emulation

on all the things that the emulation itself does not do, e.g. to put data in the read-out-

buffers or to process the data. Therefore, the drive file had to contain information that

in the real system would come after a level-1 trigger, i.e. RoI information from level-1

and data from the sub-detectors. Since we do not perform real feature extraction or any

other physics algorithms, Monte-Carlo data is not required; but instead, the amount of
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Farm Paper Model Emulation

Farm size MIPS Farm size MIPS

Global 18 500 12 750

SCT 37 500 80 231

TRT 41 500 118 174

Calorimeter 74 500 286 129

Muon Spectrometer 5 500 10 250

Table 5.4: Farm sizes for high-luminosity/extended trigger menu. The MIPS quoted

under the emulation is calculated using the adjusted farm size and the current processing

estimates.

data to be transferred.

The drive files are generated during computer modelling [38] and provide input to the

emulation. The computer modelling of the second level trigger implemented in Simdaq++

takes the trigger menu as input and uses a random number generator to create a set of

events in the second level trigger. This set of events can be dumbed to an ASCII file.

This facility has been used to generate the drive file used as input for the emulation.

This ensures that the emulation, the computer modelling and the “Paper Modelling”

start with common input parameters. The parameters listed previously in this chapter

are the parameters which have been fed into the computer model. Some of these, like

the algorithm bench marks, are averages over a distribution. The averages rather than

the distribution have been used in the conventional modelling, and therefore also in the

emulation, because it is less complex. In the conventional modelling, the trigger item for

the current event is picked from the trigger menu. Each menu item has a probability to

be picked in proportion to its frequency. The menu item specifies the number of RoIs

and their individual types.
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To drive the emulation studies, the following information must be provided for all

events:

• for each RoI in the given event:

– type of RoI (electro-magnetic, jet or muon), this is used to determine which

sub-detectors should be involved (see table 5.1) and how many FeXs must be

allocated to this RoI.

– for each feature in the current RoI:

∗ number of ROBs involved, this information is used to tell the fex in charge

of this feature how many data fragments to collect before the processing

can begin.

∗ for each ROB:

ROB identifier, used instead of performing the (η, φ) to ROB mapping

in the supervisor.

An example of the format of the drive file is given below, the content is not real

values.

....
<EVENT> 3 2 0 1000 150 1 1000
<ROI> 0 jet 2.400000 0.000000 14 0 1
<FEX> cal 150 111 2
<SUBFEX> emcal 6
<ROB> 376 92 10 78 <\ROB>
<ROB> 377 92 10 78 <\ROB>
<ROB> 391 92 10 78 <\ROB>
<ROB> 392 92 10 78 <\ROB>
<ROB> 393 92 10 78 <\ROB>
<ROB> 407 92 10 78 <\ROB>
<\SUBFEX>
<SUBFEX> hadcal 2
<ROB> 40 922 10 44 <\ROB>
<ROB> 47 922 10 44 <\ROB>
<\SUBFEX>
<\FEX>

<\ROI>
<ROI> 1 jet -3.200000 0.392699 0 1 1
<FEX> cal 150 111 2
<SUBFEX> emcal 5
<ROB> 0 92 10 78 <\ROB>
<ROB> 1 92 10 78 <\ROB>
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<ROB> 8 92 10 78 <\ROB>
<ROB> 9 92 10 78 <\ROB>
<ROB> 10 92 10 78 <\ROB>
<\SUBFEX>
<SUBFEX> hadcal 2
<ROB> 0 922 10 44 <\ROB>
<ROB> 1 922 10 44 <\ROB>
<\SUBFEX>
<\FEX>

<\ROI>
<\EVENT>

<EVENT> 4 2 0 1000 150 1 1000
....

The <EVENT> 3 2 0 1000 150 1 1000 tells that event number 3 has 2 RoIs, that

the level-2 decision is “no”, that the size of level-2 output is 1000 bytes, and that 150 µs is

used for the global processing step. The last two numbers are not used in the local-global

architecture. The following line containing <ROI> 0 jet 2.400000 0.000000 14 0 1

says that the first RoI is of type jet, the following four numbers are the η, φ coordinate

and index respectively. The last number says that only one FeX is needed to handle this

RoI. The third line <FEX> cal 150 111 2 gives the sub-detector, here the calorimeter,

the FeX output of 150 bytes, the feature extraction time of 111 µs and that data fragments

from two set of ROBs are expected. The following line <SUBFEX> emcal 6 says that the

first set of ROBs is the electro-magnetic calorimeter ROBs, and it contains 6 fragments.

<ROB> 376 92 10 78 <\ROB> says that ROB number 376 must send 92 bytes to a FeX.

The last two numbers are extraction and pre-process time respectively.

The drive file generated for the emulation contained 140,000 events corresponding to

1.4 seconds at the 100 kHz event rate for the second level trigger. Due to memory size

constraints in the traffic generating nodes and the transputers, not all the emulation

studies have been run on the complete event sample.

From the drive files the event fragment distributions for the four local farms and

the global farm can be extracted. The distributions are shown in figure 5.3. From the

distribution corresponding to the SCT local farm, one can see that the average number of

ROBs sending data to one SCT feature extractor is four. For the calorimeter the average

is about fourteen, this includes contributions from both hadron and electro-magnetic
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ROBs.

Component Rate [kHz] Component Rate [kHz]

SCT ROB aver. 1.81 max 2.79 SCT FeX 1.436

TRT ROB aver. 1.79 max 2.33 TRT FeX 0.974

ECAL ROB aver. 6.24 max 7.59 CAL FeX 0.823

HCAL ROB aver. 14.83 max 16.49 MUON FeX 3.321

MDT ROB aver. 0.39 max .67 GTP 8.333

RPC ROB aver. 2.57 max 7.48

Table 5.5: Component rates obtained from the drive file.

The hitrate of the components can also be obtained from the drive files. These rates

are shown in table 5.5. The rates have been compiled as follows:

ROBs For each ROB; count how many times it is hit per second.

FeXs For each sub-detector; count number of RoIs in sub-detector per second; divide

by number of FeXs.

GTP With an event rate of 100 kHz and twelve global trigger processors the hit rate

becomes 100 kHz/12 = 8.3 kHz.
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Figure 5.3: The event fragment distribution from the five networks.



Chapter 6

Emulation on the Macramé

Test-bed

This chapter describes the Macramé test-bed and the results obtained by applying AT-

LAS level-2 trigger traffic to it.

The test-bed consists of traffic generating nodes, timing nodes and a DS-Link net-

work. For the measurements described here, the test-bed was configured with 512 traffic

generating nodes, and two timing nodes connected as a Clos network.

The aim of this chapter is to present the constraints and possibilities of the Macramé

test-bed, the measurements performed, the results obtained and finally the understanding

which came out of the study. The measurements and results presented in this chapter

are the authors work.

6.1 Constraints and Possibilities

Macramé is a network test-bed, not a parallel computer. This gives some practical

limitations to what is possible and what is not. The traffic generating nodes send data

out into the network according to traffic descriptors. Each node looks in its memory, to

determine when, according to the global clock, it should send a packet with a specified

size and destination. The total amount of data sent and received by each node is logged

such that, at the end of the emulation run, knowledge of the transmit and receive rates

can be obtained, i.e. simple averages. The traffic generating nodes have no ability to act

upon either the content, or the number of packets they receive. A packet once received is

75
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discarded. A timing node sends trace packets with a specified frequency and length, to a

second timing node. The receiving timing node calculates the latency of the trace packet

by comparing the time stamp in the packet to the global clock. The packet descriptors of

the timing nodes can only be specified once, i.e. with a specific interval, a certain length

packet is always sent to the same destination. For more detail on the Macramé test-bed

see chapter 3.

Macramé allows each node to independently deliver a predetermined set of packets

to the network and can as such be used to model ATLAS level-2 architecture B traffic

where data is pushed through the network. The size of the test-bed is comparable to the

size of the networks needed in the trigger.

6.2 Implementation Details

Having covered the main constraints of the test-bed and what was emulated as a result,

the focus is now turned toward the details of the emulation on the Macramé test-bed.

First, the assumptions made will be summarised, this is followed by a description of the

measurements performed.

Assumptions The time distribution between events is assumed to be constant and

the timing of the individual packets associated with a given event is assumed to be

synchronised, i.e., all ROBs participating in a given event are instructed to send the

data at the same time according to the global clock. In the global network, the same

assumption is applied to the FeXs. This strict synchronisation will not occur in ATLAS

but, due to various smoothing mechanisms in the data acquisition system, it is probably

closer to reality than a random timing distribution.

The sizes of the ROB output quoted in chapter 5 table 5.3 is only the detector data.

For the emulation on Macramé, thirty-two bytes have been added to take into account

the routing information etc. needed by the level-2 protocol, such as e.g. which global

trigger processor is assigned to this event.

Some networks could be completely emulated within the 512 nodes available. Where

the total requirement, i.e. ROBs plus processors, exceeded 512, only a fraction of the

network could be mapped onto Macramé. For the TRT, a total of 630 nodes were required

for the full system. In the cases where it was not possible to emulate the full system,
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we chose to emulate the first N per cent of the network, where N is the largest fraction

possible to emulate. In the case of the TRT network N equal eighty. The implication

of this approach is that if an RoI is within the first N per cent it is fully emulated, if

it straddles the border only some of the data packets are sent, and if the whole RoI is

outside the N per cent, it is completely discarded.

Generation of Traffic Descriptors For each traffic generating node a program ex-

tracts from the drive file the following information for each packet to be sent:

• the time between packets

• the length of the packet

• the address of the receiving node

As there is memory for only 6552 packet descriptors per node, the number of events

which the traffic nodes cycle over in the emulation varies, depending on how often data

from the given source are needed. Table 6.1 gives the number of events for each subnet-

work emulated. Precautions were taken to ensure that the descriptor lists for all traffic

generating nodes wrap around at the same time.

Processor, i.e. receiver, assignment is made using round-robin scheduling. For the

global network emulation, the FeXs to be used as sources are also assigned by a round-

robin scheduler per sub-detector.

The Basic Measurements At initialisation, traffic nodes are assigned as receivers

or sources and loaded with the traffic descriptors generated from the drive file. After

initialisation, all the traffic nodes are started simultaneously and start sending packets

according to their packet descriptors. When the traffic nodes have been sending for some

time, such that a steady state is reached, the timing nodes start sending their trace

packets. The process continues until of the order of 100,000 trace packets have been

transmitted.

As already mentioned, each traffic node monitors how many bytes per second it

transmits and receives. The timing nodes only record the latency of incoming trace

packets. The timing node can discriminate between data-packets coming from traffic

nodes and trace-packets coming from another timing node. Upon receiving a trace packet,
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it observes what time it is, and from the time-stamp contained in the trace packet, it

calculates the latency of the packet. This will be referred to as the “single packet latency.”

As the network approaches saturation, the traffic nodes cannot send their packets at

the specified time intervals. Two possibilities arise corresponding to a transient and a

permanent state. In both cases, the traffic node knows that it has a back-log of packets

to send. In the first case, it manages to make up for the lost time by sending the

next few packets back to back. In the second case, the node cannot catch up, and the

synchronisation between the nodes is irreversibly lost once a buffer counter inside a traffic

node overflows. In this case, the “offered” and “accepted” data rates will differ.

6.3 Configurations Emulated

The configuration information for each run can be divided in two: how many components

are being emulated and how they are mapped onto the hardware.

Network % done Sources Sinks # events

SCT 100 % 256 ROBs 80 FeXs 101,442

TRT 80 % 414 ROBs 94 FeXs 105,729

Calo 66 % 286 Ecal ROBs 190 FeXs 38,171

32 Hcal ROBs

Calo 50 % 216 Ecal ROBs 143 FeXs 38,171

24 Hcal ROBs

Muon 100 % 192 MDT ROBs 10 FeXs 67,863

22 RPC ROBs

Global 100 % 80 SCT FeXs 12 GTPs 108,874

117 TRT FeXs

288 Calo FeXs

10 Muon FeXs

Table 6.1: Configuration of emulated networks.

A number of emulation runs were performed; each involving only one level-2 trig-

ger network. Table 6.1, gives the number of components emulated for the individual

networks. Initially, sixty-six per cent of the calorimeter network was emulated. Due to
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severe problems with the achieved throughput, later runs were performed with a different

component to node mapping. For these future runs, only fifty per cent of the network

could be accommodated on Macramé.

Two basic mappings, the “grouped” and the “distributed” were implemented. In the

grouped case, the first sixteen sources are placed on traffic nodes connected to the same

final-stage switch, the following sixteen are placed on the traffic nodes on the next final-

stage switch and so on, until there are no more sources, thereafter we simply continue

with the destination components. For the distributed mapping we take the first thirty-

two1 components and place each one onto the first traffic node on all the final-stage

switches, then continue with the next thirty-two components which are placed on the

second traffic node on all the final-stage switch, etc. until all the components have been

placed, see figure 6.1.

......
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Figure 6.1: The two different mappings, grouped and distributed for terminal-stage

switch number 1 in the case of the SCT sub-detector. See Figure 3.7 for a diagram

of the Clos network.

1There are thirty-two final-stage switches in the Clos network.
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6.4 Description of Results

This section describes the results obtained and conclusions reached from performing the

measurements described above and the analysis of the output. The main measurements

are the network throughput and trace packet latency distribution as a function of event

rate.

Distributed versus Grouped Mapping Figure 6.2 shows the network throughput

versus attempted event rate for both the distributed and the grouped mapping for the

TRT local network. The throughput scales linearly with the event rate as long as the

Figure 6.2: Network throughput for 80 % of the TRT network; distributed mapping vs.

grouped.

attempted event rate is achieved. Where the rate falls below this straight line, saturation

has occurred and the event rate cannot be sustained. The event rate achieved by the

network is the maximum rate before the onset of saturation. It can be seen that the

emulation of the network achieved an event rate of 125 kHz in the distributed case, but

only 80 kHz with the grouped mapping.
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In the figure 6.3, a latency plot at 10 kHz event rate for the TRT network is shown.

The latency for a trace packet is measured from the time the timing node is instructed

to send a packet to the time it is received. This includes any time queued in the timing

node awaiting access to the network.

1 %

Figure 6.3: Single packet latency distribution for 80 % of the TRT network; distributed

mapping vs. grouped.

Here, the probability that the latency is greater than a certain time is plotted. Note

that the latency is lower for the distributed mapping, e.g., for the distributed case, 99

per cent of the packets have a latency less than 600 µs, the number for the grouped case

is 975 µs.

When comparing the distributed versus the grouped mapping, it was observed that

for both the single packet latency and the achieved event rate, the distributed mapping

gave a better performance, independent of the frequency or the emulated network, see

Table 6.2. We have used l10kHz
1% as a measure of the latency where l10kHz

1% is defined as the

time for which only one per cent of the packets exceed this latency at an event rate of

10 kHz.
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Network Event Rate [kHz] l10kHz
1% [µs]

Grouped Distributed Grouped Distributed

SCT 80 125 599 408

TRT 80 125 984 600

Calorimeter 25 25 945 830

Muon 100 142 358 264

Global 100 125 103 74

Table 6.2: Achieved event rates for the various network for both the grouped and the

distributed mapping.

A network hot-spot occurs in the grouped case when packets from up to sixteen

consecutive events are heading for destination nodes connected to the same switch, in

the distributed case the packets are funnelled to a different terminal-stage switch for

subsequent events.

The improvement can thus be attributed to a reduction in congestion in the terminal

stage switch for the receivers. It must therefore be concluded that a distributed mapping

of the emulated components onto the network nodes is preferable to the grouped mapping

in terms of network performance. The results quoted in the rest of this chapter have all

been obtained with distributed mapping.

In figure 6.4, the achieved network throughput as a function of the second level event

rate is shown for all the emulated networks. One observes that the 512 Clos network

could sustain the traffic emulating the global, the SCT and 80 % of the TRT network up

to 125 kHz and the muon network even up to 142 kHz. The Clos network could, however,

only deal with an event rate of 25 kHz for 66 % of the calorimeter network.

Optimising the Hadron Calorimeter ROB Mapping From the “paper modelling”

[37], it was known that the HCAL read-out buffers were heavily loaded at 100 kHz and we

expected the output DS-Link to saturate at around 60 kHz event rate. The deterioration

in performance above 25 kHz was not expected and needed explanation.

In order to try to overcome the poor performance, we tried two additional configu-

rations. The basic idea was to enhance the HCAL ROB interface to the network. First,

an increased link speed was emulated by using three traffic nodes to send the data for
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Figure 6.4: Throughput for the distributed runs.

one HCAL ROB, where for an event each traffic node sends one third of the data. Since

they all fire at the same time, this scenario is called “Salvo”. In the other scenario, three

traffic nodes per HCAL ROB were also used, but here the traffic nodes took turns to

send an event, i.e. one traffic node sends all the data for one event, but only participates

in one third of the data transfers. This scenario we call “Round Robin.” All three con-

figurations (basic, Salvo and Round-Robin) were run with 50% of the calorimeter being

emulated.

Measurements on the three configurations are shown in Figure 6.5. The top row

shows the transmit rate as a function of the traffic node number, the second row shows

the corresponding hit rates; all the plots correspond to a 10 kHz event rate. The hit rate

is defined as the number of RoI data fragments sent per ROB per second. The spikes are

the HCAL ROBs, the ECAL ROBs appear as the steady “background”.

The first column a) contains data where the calorimeter has been emulated, with a

distributed mapping. Here it can be seen from the transmit rate that, by scaling up to

100 kHz, that the network will not be able to sustain such an event rate, since this would

demand a transmit rate of 13-15 MBytes/second out of the HCAL ROBs well beyond the
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Figure 6.5: The first row shows the transmit rate for the calorimeter ROBs at 10 kHz

event rate, the second row shows the corresponding hit rate. The first column a) is from

emulating half the calorimeter using the normal distributed mapping. The second b) and

third c) column is for the “salvo” and “round-robin” scenario respectively. The spikes in

the histogram corresponds to the HCAL ROBs, the “background” are the ECAL ROBs.

The rearrangement of the spikes along the node axis is because the exact mapping was

not the same for the emulations, but the overall distributed mapping was still applied.
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theoretically available link speed for data of 9.5 MBytes/s, (this is why the performance

was expected to saturate above 60 kHz).

The first approach was to use the “Salvo” scenario described earlier. Looking at the

transmit rate in the second column b) in Figure 6.5, one observes that the link bandwidth

is not a limiting factor even at a 100 kHz event rate. The output link bandwidth is also

not the problem, as the number of feature extractors was chosen in section 5.3 such that

at 100 kHz event rate the throughput is less than 8 MBytes/s. The third column c)

shows the transmit and hit rate for the “Round Robin” scenario.

The cause of the problem requires a more detailed study of the data transfers to the

FeXs. For the calorimeter data, there are on average 14 event fragments to be collected,

with a minimum of 4 and a maximum of 26 fragments, see Figure 5.3. On average,

two of the 14 fragments will come from the HCAL ROBs and each contain 890 bytes of

data plus the 32 byte protocol header. The rest of the fragments come from the ECAL

ROBs and have sizes according to the RoI type, see Table 5.3. From the trigger menus,

approximately half the RoIs are jets. Collecting the 14 fragments takes of the order of:

(9.5MBytes/s)−1 ∗ (2 fragments∗922 B+12 fragments∗1/2(1332+92) B) = 1 ms (6.1)

As all fragments try to send at the same time, this implies an average wait-to-send time

of 0.5 ms. During this waiting time, a sending node participating in the event is stalled

and any subsequent events are queued. This is known as “head-of-line-blocking.” The

wait-to-send time should be compared to the hit-rate. At 100 kHz event-rate the hadron

calorimeter read-out buffer hit rate is 16 kHz giving an average separation for sending of

data fragments of only 63 µs. This is clearly much smaller than the average 500 µs wait-

to-send time calculated above. However, queued packets for subsequent events will suffer

a shorter wait-to-send time when they do access the network since some other fragments

for that event will have been transferred already. Measurements on the test-bed show

that problems arise in the case of the calorimeter, when the hit separation is less than

half the average wait-to-send time.

The Salvo technique does very little to alleviate this problem, as it mainly reduces

the time a link is active. The small improvement in performance, see Figure 6.6, is due

to the increase in probability of transferring part of the data with a reduced wait-to-send

time. The Round-Robin technique reduces the hit-rate for any one HCAL ROB links
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by a factor of three and therefore improves the rate limit by a similar factor. With this

technique, the network operates up to nearly 80 kHz.

Figure 6.6: Throughput measurement on the three different emulations of half the

calorimeter network.

Alternatives to the round-robin technique are:

• Using faster links throughout the network, e.g. gigabit links [39]. This will decrease

the wait-to-send time for the buffers since the data are removed faster from the

links.

• Structure the data dispatch times so that the wait-to-send time is substantially

reduced, i.e. traffic shaping.

The Latency Distributions The latency distributions for the five different networks

are shown on the following pages. The latency distribution is shown both at the 100

kHz event rate (80 kHz for the calorimeter) and at the 10 kHz event rate, such that

the evolution of the latency distribution can be evaluated. The latency distributions are

shown first as a simple histogram with the fraction of events with a given latency on the

y-axis. In the second plot, the probability of the latency being greater than L is plotted
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against L.

The latency distribution for the SCT network is shown in figure 6.7. The majority of

trace packets arrive in a little more than 100 µs. The position of the peak corresponds

to the minimum transfer time of a packet in the SCT network:

1032B/9.5MBytes/s + 3 switches ∗ 1µs/switches = 112µs. (6.2)

In the case of the latency distribution for the 100 kHz event rate, it is easy to see the step-

like nature of the histogram in figure 6.7(a). The width of these steps also corresponds

to the packet transfer time. The maximum latency measured is 900 µs for the 10 kHz

event rate and 1850 µs for the 100 kHz event rate. From figure 6.7(b), it can be seen that

these maxima occur only for one event per hundred thousand. From the same figure, it

is also possible to read that one per cent of the trace packets will have a latency greater

than 0.4 ms in the case of the 10 kHz run and 0.6 ms in the case of the 100 kHz run.

Figure 6.8 shows the latency distribution of the TRT network. Here, the peak con-

taining most of the entries is moved to 85µs corresponding to the packet size of 782

Bytes. As in the case of the SCT, we can observe steps on the plot in figure 6.8(a). The

sharp cut in the 100 kHz TRT distribution at 2 ms is due to the latency measurement

limit in the Macramé test-bed.

The latency plot for the calorimeter network, shown in figure 6.9(a), differs from the

SCT and TRT latency plots in the sense that there are no clear steps. This is due to

mixture of data packet sizes (92 Bytes, 922 Bytes and 1332 Bytes). The position of the

peak at 97µs corresponds to the size of the trace packet, 922 Bytes. The sharp cut at 2

ms is also seen in the 80 kHz calorimeter distributions.

The latency distribution for the muon network, figure 6.10, can be compared to the

latency distribution of the calorimeter, as also there are multiple length data packets.

The worst case latency compares, however, more to the SCT local network. This is due

to the relative ease with which the Macramé test-bed handles the muon network traffic,

compared to the calorimeter local network traffic.

Figure 6.11 shows the latency distributions for the global network. The step like

structure on the plot in figure 6.11(a) is back again as the traffic on the global network

consists of only 150 bytes packets. The ease at which the test-bed handles the traffic is

evident in the short tail on the latency distribution, even in the case of the 100 kHz event

rate.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. Both the 10 kHz and the 100 kHz event rate runs are

shown. Notice the very clear step structure in the case of the 100

kHz event rate.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.7: Latency distribution for the SCT network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. Both the 10 kHz and the 100 kHz event rate runs are

shown.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.8: Latency distribution for the TRT network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The 10 kHz and the 100 kHz event rate runs are both

shown.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.9: Latency distribution for the calorimeter network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. Both the 10 kHz and the 100 kHz event rate runs are

shown.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.10: Latency distribution for the muon network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. Both the 10 kHz and the 100 kHz event rate runs are

shown.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.11: Latency distribution for the global network.
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Modelling the Latency Distributions In an attempt to better understand the la-

tency distributions, a simple model has been developed. The latency distributions are

measured with trace packets sent from one timing node to another timing node.

The main ideas behind the model are:

• all packets, i.e. both trace and data packets, are queued in the switch until they

have arrived at the destination node (this is ensured by the flow-control in the

DS-Link network),

• all packets, i.e. both trace and data packets, compete equally for access to the

destination node, and

• there is only one effective point of contention in the network2.

Furthermore the model assumes that:

• all packets, including the trace packets, are of the same size and require a time tp

for transfer across a single link,

• all data packets from an event attempt to access the network simultaneously, and

• there are a maximum of two events headed for the same destination in the network

at any point.

Consider a time interval where the first competition time is at time 0, the second at

tp, the third at 2tp etc. At the first competition, there are N data packets; at the second

one N − 1 etc., where N is the total number of data packets for this event. The trace

packet, which is applied to the network at a random time, waits for the next opportunity

in which it competes equally with all the remaining data packets. The latency of the trace

packet is calculated from when it first enters the network until it “wins” a competition;

to this is added the nominal transfer time(tp).

In order to calculate the latency distribution of the trace packets all possible times,

with respect to the data packets, for applying the trace packet to the network must be

considered. This is done by stepping through all possibilities, adding each result as an

entry to the latency histogram. In the cases where the trace packets arrive after all the
2This is consistent with the fact that a Clos network is non-blocking.
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data packets have arrived at the destination node, the trace packets will not have any

competition and their latency will be tp.

So far we have only taken into account one event size, i.e. the trace packets competing

with N data packets. As shown in figure 5.3, the number of data packets in a sub-detector

RoI varies from event to event. To take this into account, the histogram calculated above

must be recalculated for all possible number of data packets. These histograms are then

finally summed up according to their weights.

One overlapping event is taken into account by increasing N by M , the number of

packets in the next event, after the average time between events destined for the same

processor. Also here, we have used different values of M, and thereafter, done a weighted

sum. Figure 6.12 provides a sketch of the model.

This model was compared to the latency measurements. Figure 6.13 to 6.15 shows

the modelled single packets latency distributions superimposed on the measured distri-

butions. Good agreement between model and measurement was obtained.

The calorimeter and the muon networks were not modelled in this simple way because

they have several different sizes of event fragment packets.
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Figure 6.12: Sketch of how the latency model works. In the figure, the event has 3

fragments, and there is no overlapping event. The trace packet can arrive at any time

in the four intervals. If it arrives during the last interval, it can be transfered across

the network with the minimum latency; giving rise to the first peak. If the trace packet

arrives in the first interval, it has 1/4 chance of getting transferred first, second, third

or last; giving rise to the base in the calculated latency. The latency histograms are

calculated for each possible number of fragments and then summed with the appropriate

weights (see Figure 5.3).
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The stepped lines are the model.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.13: Model superimposed on latency distribution for the SCT network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The stepped lines are the model.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.14: Model superimposed on latency distribution for the TRT network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The stepped lines are the model.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.15: Model superimposed on latency distribution for the global network.
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In section 6.2, earlier in this chapter, we argued that the event separation is smoothed

but that it will not be completely constant, as we have implemented it on the Macramé

test-bed. Rather, it will be somewhere between randomly distributed and constant.

To illustrate the range of possible expectations for the final level-2 trigger system’s

latency distributions, we have changed the overlapping events in the previous model

to appear at a random time rather than at a fixed time. The probability of having

overlapping events has been taken from the following distribution:

Prob =
1
X

∫
e−t/Xdt

where X is the mean time between events. The probability of having more than one

overlapping event is small and has been discarded in this model. If taken into account it

would raise the small probability of obtaining a large latency.

The model does not estimate the height of the first peak, rather, it calculates the

shape of the latency distribution. The measurement and the model has been aligned at

the first “step” on the histogram.

The results of this model are compared to the Macramé test-bed results, see figure

6.16 to 6.18. This model is in good agreement with the SCT and TRT results at the 100

kHz event rate. For the 10 kHz event rate, and the 100 kHz event rate in the case of the

global network, the model does not agree as well as the first model does.

This can be understood in the following way:

10 kHz The random spacing between events can space two events very closely, causing

very fierce competition. This results in long tails on the latency distributions. On

the Macramé test-bed and in the case of the first model, overlapping events do not

occur, resulting in small tails.

This reasoning also applies to the global network at the 100 kHz event rate, due to

the small packet length (150 bytes) compared to the average event spacing.

100 kHz (SCT, TRT) The large packet size compared to the event rate, creates a

situation where the two models generate the same result. This is because even

with the average event separation, the last packets from one event are not delivered

before the next set of packets appears at the bottleneck.

Close overlapping events cause tails on the latency distributions. One can use this to

monitor network overload, as traffic overload causes growing latency distributions.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The stepped lines are the model.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.16: “Random” model superimposed on the latency distributions for the SCT network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The stepped lines are the model.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.17: “Random” model superimposed on the latency distributions for the TRT network.
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(a) The logarithm of the fraction of events against the single packet

latency in µs. The stepped lines are the model.

(b) The logarithm of the probability of obtaining a latency greater

than L plotted against L.

Figure 6.18: “Random” model superimposed on the latency distributions for the global network.
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6.5 Conclusion

The emulation studies of the ATLAS second level trigger, architecture B on the Macramé

Test-bed have shown that distributing the sources and sinks evenly over the network

rather than grouping them is important for enhancing the usable bandwidth of the net-

work. Emulating the calorimeter network showed that decreasing the hit rate may be

necessary to improve the throughput and thereby the sustainable event rate. The la-

tency distribution can be understood by a simple model for how data blocking can occur

throughout the switching network.

The local muon and SCT networks and the global network were emulated at full

size. Substantial fractions of the TRT (80%) and the calorimeter (50%) networks were

emulated, so that only a limited extrapolation is necessary for scaling to full size. The

Clos networks have been shown to scale for systematic traffic from 64 nodes up to 512

nodes using Macramé [39], and theoretical considerations of the Clos topology show it

should scale further [40].

Finally, it should be noted that the emulation of the calorimeter local network ran

at an event rate of almost 80 kHz when three links for the hadron calorimeter read-out

buffers were used. The other networks ran with an event rate of 125 kHz.



Chapter 7

Emulation on the GPMIMD

Machine

This chapter describes the emulation study of the ATLAS second level trigger performed

on the GPMIMD machine. This machine is a parallel computer with sixty-four transput-

ers which are fully interconnected via four Clos networks as described in detail in chapter

3. The advantage of the GPMIMD machine over the Macramé test-bed is that unlike

Macramé the nodes are microprocessors and it is possible to programme the individual

transputers to act as a component of the ATLAS second level trigger. By programming

different transputers in this way, it is possible to get the combined set of processors to

behave in a manner similar to the ATLAS second level trigger. The GPMIMD machine

is, however, not large enough to emulate the whole second level trigger at once.

The main objective of this study was to design a process model of the second level

trigger, map it to the GPMIMD machine, and execute it there. To facilitate identification

of bottlenecks etc. the implementation was benchmarked. A very simple model was used

to compute latency and throughput for comparison with the measurements. Agreement

with the model was rather poor. A detailed investigation of the mismatch was not carried

out due to lack of time.

7.1 Design

This section details the design of the second level trigger as it was emulated on the

GPMIMD machine. Flow diagrams will be used to explain the interactions between

104
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the components, i.e. who sends what to whom, and if applicable how tasks have been

split into independent objects. State diagrams will be used to describe the actions taken

within a given object when receiving messages. One component can consist of one or

more objects.

First, the overall flow diagram of the system will be described. Next, the flow diagrams

of the components, and the state diagrams of the objects will be shown and described.

FEX

ROB

(7) throttle

Supervisor

Level-1

desisions

GTP

(4) feature data

(3) RoI  data

(5) gtp output

(1) RoI info

Event Filter

(6) group of final level-2 

(6) group of final level-2 decisions

(2) RoI request

(7) throttle

Figure 7.1: Flow diagram of the overall second level trigger system.

Level-2 Trigger Flow Diagram The level-2 trigger flow diagram is shown in figure

7.1. Compared to the sketch of the protocol in chapter 2, figure 2.3, throttle signals are

added from the processors to the supervisor. This allows them to tell the supervisor

that they have too much work to do. This information permits a prioritised round-

robin scheduling of processing power to be implemented. Table 7.1 defines the second

level trigger protocol. The numbers in the table correspond to the numbers on the flow

diagram.

The Four Main Components The supervisor, the read-out buffer, the feature ex-

tractor and the global trigger processor constitute the main components of the level-2

trigger. Here, we will discuss the limitations of our design of these components compared

to the final system. In general, these limitations are about eliminating event processing
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Message No. Signal Name Sender Receiver Content

1 RoI information LVL1 Supervisor event identifier

no. of RoIs

list of RoI types

RoI data

2 RoI request Supervisor ROB event identifier

feature identifier

RoI type

no. of features

no. of ROBs/feature

FeX identifier

GTP identifier

3 RoI data ROB FeX event identifier

feature identifier

RoI type

no. of features

no. of ROBs/feature

GTP identifier

RoI data

4 Feature data FeX GTP event identifier

no. of features

feature data

5 GTP output GTP Supervisor event identifier

decision

GTP output data

6 Level-2 decision Supervisor Event Filter event identifier

ROB decision

7 Throttle Processor Supervisor up/down

Table 7.1: The level-2 trigger protocol.
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aspects. This is justifiable, as our interest is not in the “number-crunching,” but rather

in the protocol handling and software design issues.

The emulated supervisor does not convert η, φ coordinates and RoI type to read-out

buffer identifiers. The information of which read-out buffers are involved in a given event

will, instead, be available to the supervisor as static information.

The read-out buffer in the final system, will not only interface to the level-2 trigger

but also the event filter and the front-end electronics connected to the detector. For the

emulation, only the interface to the second level trigger has been implemented.

Both the emulated feature extractor and the global trigger processors do not per-

form any physics algorithms. Rather, they are descheduled for a time equivalent to the

estimated execution time in a 500 MHz processor; see table 5.1.

Flow Diagrams Figure 7.2 shows the flow diagram for the read-out buffer component.

The buffer object receives RoI requests and level-2 decisions from the supervisor and sends

RoI data to feature extractors.

(3) RoI data

(6) Level 2 decision

ROB

supervisor

    FeX

Buffer

(2) RoI request

Figure 7.2: Flow diagram of the read-out buffer component.

The feature extractor as well as the global trigger processor component is split into

two objects, a buffer object, and a processing object. The buffer object receives the data

from the read-out buffer or the FeX and collects the data together. When a complete

set of data is assembled, it is transferred to the processing object. The buffering object

is also responsible for letting the supervisor know if it cannot handle the load. The task

of a processing object is, as the name suggests, to process the data and upon completion

send the result to the global trigger processor or supervisor. The flow diagrams for the
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FeXrequest

supervisor

data set

(7) throttles

 data set

   GTP

    ROB

Control Unit

Buffer

(4) feature data

(3) RoI data

(a) The FeX flow diagram.

GTPrequest

supervisor

data set

(7) throttles

    FeX

supervisor

 data set

Control Unit

Buffer

(5) gtp output

(4) feature data

(b) The GTP flow diagram.

Figure 7.3: Flow diagram of a FeX and a GTP component.

feature extractor and global trigger processor are shown in figure 7.3.

The supervisor component is split up into three separate objects, a Job Issuer (JI), a

Job Controller (JC), and a Process Manager (PM). The task of the Job Issuer is to receive

the RoI records from the first level trigger, assign processors, and issue RoI requests to the

read-out buffers. The task of the Process Managers is to keep track of which processors

should be assigned more jobs, and to provide this information to the Job Issuer. The

Job Controller receives processed data from the global trigger processors, and decides

whether or not the current event should be accepted. This decision is propagated to the

read-out buffers and the third level trigger. Figure 7.4 shows the flow diagram for the

supervisor.

State Diagrams The following section describes in detail the actions of the individual

objects with the help of state diagrams. All the objects can run in parallel on one or

more transputers, being synchronised only at points of message passing between objects.

The symbol “>” on the state diagrams indicate the start state.

The First Level Trigger The first level trigger object acts as the source for the

emulation. Its state diagram, see figure 7.5, contains only one state, the “send data” state.

The level-1 trigger object repeats this state, as it tries to send data to the supervisor

as fast as possible. The rate will then be determined by the supervisor’s capacity, as

new data will not be transferred before the old data have been accepted. The shown



CHAPTER 7. EMULATION ON THE GPMIMD MACHINE 109

Supervisor

(5) gtp output

(1) RoI information

GTP

(6) lvl2 desisions

ROBLVL1

Processor Managersend new list, please

new list

Job Issuer

Event Filter

(7) throttles (7) throttles

Job Controller

FEX

(2) RoI request (6) lvl2 desisions

Figure 7.4: Flow diagram of the supervisor component.

done
send RoI info(1)

Figure 7.5: State diagram of the first level trigger object.

state diagram is simplified in the send state. Figure 7.6 details the sending state. First,

permission to send data is requested. When this has been granted by the receiving

process, the data is transfered. Thereafter the process can go back and ask to send more

data if it wishes to. For all subsequent shown state diagrams containing a send state,

this is what happens in detail.

data have been
        sent

transfer data 

got permission

to send data
ask for permission 

done

Figure 7.6: State diagram of a process sending data.

The Job Issuer The Job Issuer object receives, as being part of the supervisor

component, the RoI records from the first level trigger. Having received a RoI record,

the next job is to allocate one or more FeXs according to the content of the RoI record,

as well as a GTP for this event. Having sent the RoI requests to the ROBs involved,

serially, the Job Issuer object returns and listens for more RoI records. In figure 7.7, the
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state diagram of the Job Issuer object is shown. There is no buffering of events inside

the Job Issuer.

a GTP

"listen"

request

compose RoI

GTP list

request new

GTP list

receive new 

FEX list

RoI request(2)

No GTP

receive new 

FEX list

retreive GTP

request newretreiving FEXs?

 enough FEXs

Not enough FEXsreceive RoI record(1)

send 

Figure 7.7: State diagram of the Job Issuer object.

The Job Controller The Job Controller object receives recommended level-2 de-

cisions from the global trigger processors, and stores them. When a number of decisions

have been collected, the read-out buffers and the event filter are informed. The state

diagram for the Job Controller object is shown in figure 7.8.

robs 

send

to event filterinformation

receive gtp output(5)

grouped enough

decisions(6) 

decisions

done

receive gtp output(5)

store 
decisions(6) to

send  

Figure 7.8: State diagram of the Job Controller object.

The Processor Manager The task of the Processor Manager object is to keep

track of which processors are available, and upon request, to give this information on

to the Job Issuer object. See figure 7.9 for the state diagram of the Processor Manager

object.

The Read-Out Buffer The Read-Out Buffer object deals only with the task which

is directly linked to the second level trigger, e.g. sending data to feature extractors. The

ROB object does not, in any way, emulate getting data from the detector or sending data



CHAPTER 7. EMULATION ON THE GPMIMD MACHINE 111

please"

message

reallocate

content

investigatereceive throttle(7)
"listen"

send list

receive
"send new list,

deallocate
close

done

done
open

done

change request

Figure 7.9: State diagram of the Process Manager object.

to the event filter. The state diagram in figure 7.10 shows how the ROB object listens

for the “level-2 decision” signal and the “RoI request” signal. In case of receiving the

"listen"

clear events
done

decisions(6)

done

receive
receive

RoI request(2)

send RoI data(3)

Figure 7.10: State diagram of the read-out buffer object.

first signal, the ROB object pretends to clear the mentioned events; but as no data is

really stored this is a “dummy” routine. In the case of the RoI request signal arriving,

the ROB sends “dummy” data to the FeX processor specified in the signal. The steering

information, e.g. the GTP identifier, is forwarded to the FeX, as well.

The FeX Buffer The FeX buffer object can receive two different signals: a request

for more data from the FeX Control object, and RoI data fragments from ROB objects.

In the case of the first signal, a flag is raised; in the latter case the RoI data must be

stored together with other fragments belonging to the same event and region of interest.

Having stored the data, the buffer manager is updated. If no signals are coming in, event

data have been requested, and a complete set of event data has been collected in the

buffer, then these data are sent to the FeX Control object, and the buffer manager is

updated to reflect the new state of the buffer. The state diagram for the FeX buffer

object is shown in figure 7.11. In case of space problems in the buffer, the throttle signal

is sent from within the “update” state to the processor manager.

The FeX Controller The job of the FeX Controller object, as sketched in figure

7.12 is to request a set of RoI data, then wait to receive the data. Upon receiving the data
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done

done

update

send RoI data
event requested

receive RoI data(3)

and available

flag request

"listen"
receive request 

for new event

done 

storing

RoI data

done

Figure 7.11: State diagram of the FeX buffer object.

waiting for

RoI data

extract

feature
listen

send 

receive RoI data set

done
done

request 

RoI data

feature data(4)

Figure 7.12: State diagram of the FeX controller object.

the FeX Controller object must extract the feature; this is a “dummy” routine during

which the object sleeps, i.e. becomes descheduled. Having “extracted” the feature, this

feature is sent to the global trigger processor.

The GTP Buffer The state diagram for the global trigger buffer object is shown

in figure 7.13. It is very similar to the state diagram for the FeX buffer object presented

in figure 7.11. The only real difference is in the type of data it receives, rather than its

actions.

done

done

and available

storing

feature

receive feature data(4)

send features

flag request

"listen"
receive request 

for new event

done 

update

event requested

done

Figure 7.13: State diagram of the GTP buffer object.

The GTP Controller The state diagram for the global trigger controller object is

shown in figure 7.14. As with the GTP buffer, the GTP controller is very closely related
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to its FeX counterpart.

done

waiting for

features

request 

features

listen
gtp decision

done

receive features

send 
gtp output(5)

calculate

Figure 7.14: State diagram of the GTP controller object.

The Event Filter In the emulation of the second level trigger the Event Filter

object acts as a pure sink for the data. This can be seen from the state diagram in figure

7.15, where the “store data” state is a pseudo-state and used for book-keeping rather

than emulation purposes.

store datalisten

lvl-2 decision(6)

done

receive

Figure 7.15: State diagram of the event filter object.

7.2 Implementation Issues

This section describes the implementation issues of the level-2 trigger emulation. First

the programming language choice and general implementation strategy is explained, then

initial benchmarking is discussed. These benchmarks resulted in implementation im-

provements and additional benchmarks. Finally, a short summary is given of software

implementations concerns.

Choice of Programming Language The parallel programming language Occam [26],

developed especially for transputers, was chosen for the implementation of the emulation

on the GPMIMD machine. The reasons for this choice was that Occam provides an

optimal environment for parallel programming of transputers. Occam provides simple

constructs for message handling and parallelism; see also section 3.4. The implementation
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of the Occam compiler combined with the T9000 transputer ensures both low context

switch time, 1.9 µs per context switch, and low message overhead of 2.3 µs [21].

One Object — One Occam Process The implementation of the individual objects

and their communication follows from the design. This not entirely obvious, but is

mainly due to the choice of programming language, Occam. It allows us to take any of

the previously shown state diagrams and implement it once and for all no matter how

we later want to place the processes on the nodes in the GPMIMD machine. This means

that whether we want the whole emulation to run on a single node or to spread it out

over many nodes, does not affect the Occam source code.

WHILE TRUE -- forever
ALT -- be prepared to handle these two incoming signals

-- receive level2 decision from Job Controller
-- using a user defined protocol
r.lvl2.decision ? num.of.decision.ids::decision.id;

num.of.decisions::decision
-- clear or keep the data
clear.keep.data( num.of.decision.ids,decision.id,

num.of.decisions, decision)

-- receive RoI request from Job Issuer
-- using a user defined protocol
r.RoI.request ? event.id; feature.id; roi.type;num.feature;

num.robs.in.roi;fex.id; gtp.id
SEQ
Delay(RobDelay)
-- send RoI data to the appropriate FEX
-- using a user defined protocol
s.RoI.data[fex.id] ! event.id; feature.id; roi.type;

num.feature; num.robs.in.roi; gtp.id;
Output[subD.id][roi.type]::data

Figure 7.16: Occam code for the read-out buffer object.

An example of the code corresponding to a state diagram is shown in figure 7.16. This

is the Occam code for the ROB object of figure 7.10. The code is for a continuous loop.

From the start state there are two possible events which can happen; it can receive one of

two messages. The “ALT” construct allows the object to watch two or more conditions
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at the same time. Here it watches for the conditions of having received a message. Until

one of the messages has arrived nothing happens; as indicated by the state diagram.

Having received a message the corresponding action is carried out, and control is placed

back in the ALT construct.

The other state diagrams have been implemented using the same technique.

Runtime Procedures In order to be able to measure the latency and rate through the

emulation setups, the implementation has been enhanced to start and stop the Occam

processes, and print out measurements from them.

The level-1 process is given the task of starting all the processes, while the event

filter process is in charge of starting the shut down. These processes were chosen for

these tasks because there is only one instance of each and because inherently level-1 is

the source of action, and the event filter is the sink.

The first task of the level-1 process is to perform its own initialisation. Thereafter,

it sequentially performs a “start dialog” with all the other processes. The “start dialog”

consist of the exchange of two messages, a “start command” message from the level-1

process and a “Ok, I start right now” message being returned from the process to the

level-1. The process being asked to start must not answer the start dialog before it

has performed its own initialisation. When the level-1 process has asked all the other

processes to verify that they are ready to start in this way, it starts its own main activity

of sending RoI information to the supervisor component.

During the emulation the event filter knows how many events to expect. When having

received them all, it waits a short amount of time, e.g. 10 sec. Thereafter it saves to a file,

on the UNIX file system, the time-stamps recorded from each received message. Having

done its own termination procedure, it dispatches a “stop” message to the level-1 process.

The event filter process exits after this communication. The level-1 process is, from here

on, responsible for the shut down. In a way similar to the start procedure, the level-1

process conducts a “stop dialog” with each of the remaining processes sequentially. Each

process is responsible for saving to disk its output from the emulation during the stop

dialog, and afterwards to exit.

All the processes time-stamp incoming messages. After the emulation, these are saved

on files on the UNIX file system, as described above. From this information, it is possible
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to extract the rate throughput and event latency.

Process to Node Mapping All processes belonging to one component are mapped

onto one transputer node, except for the three supervisor processes, where each is mapped

onto one transputer node. In the cases of more than one instance of a component, e.g.

multiple ROBs, each instance is mapped onto one transputer node.

The level-1, event filter and supervisor components are mapped onto transputer nodes

on the first motherboard in the GPMIMD machine. The ROB components are mapped

onto transputer nodes on the second to fifth mother board. The FeX components are

mapped onto the fifth and sixth mother board, while the GTP components are mapped

onto the last motherboard, see figure 3.9 showing the components of the GPMIMD

machine.

This means that communication from the level-1 component and to the event filter

component travels through only one C104 switch, while the rest of the communication

traverses three C104 switches.

Initial Implementation and Improvements After having verified that the imple-

mentation did not crash, deadlock, or perform any other obvious misbehaviour, with

some minimal configurations, we benchmarked the individual parts of the system. The

motivation behind the benchmarks was to predict latency and throughput in the later

setups.

In general, the benchmarking was done at the component level. However, for the

supervisor, the benchmarking was done individually for the Job Controller and the Job

Issuer. The Process Manager has not been benchmarked, as it is not a critical element

for the event throughput. The benchmarking of components and objects corresponds to

the process to transputer mapping. Both objects in the feature extractor, as well as the

global trigger processor are mapped onto one transputer. The three objects constituting

the supervisor are mapped onto three transputers. It is considered important for the

comparison between benchmarks and complete loop measurement, that the process to

transputer mapping be the same.

The general procedure for preparing the benchmarking of a process, or a set of pro-

cesses, has been to allocate, in addition, the processes which communicate with the

process(es) in question. E.g. for benchmarking the level-1 process, the Job Issuer process
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must be there to accept the RoI records. Having allocated the “neighbour” processes,

these are trimmed such that they do not do more than is necessary. E.g. the Job Issuer

in the above example simply receives the RoI info.

The measurements done during the benchmarking are restricted to two readings of

the clock in the receiving process, one at start up, before receiving any messages, and

one after the expected number of messages is received. Only the difference is reported.

By varying the number of expected events through the system it is possible to calculate

the throughput. For the benchmarking done here, the average of five measurements with

500 events, and then five measurements with 1000 events were used.

Value of Parameters The motivation for the work described here is to estimate

the performance of the raw (physics independent) protocol. Consequently the trigger

execution time in the FeX and the GTP is not important. Therefore, the drive-files, as

described in chapter 5, have not been used for the benchmarks. The fragment data size

from the ROBs, in message no. 3, is set to 40 bytes, and the GTP data output size in

message no. 5 is reduced to 1 byte. The RoI data size in message no. 1, and the feature

data size in message no. 4 are the same as stated in chapter 5, respectively 206 and 150

bytes. The number of RoI per event was set to one for the benchmarking of the Job

Issuer. Ten events were grouped before information about them was sent (message no.

6, the level-2 decision) to the event filter and the read-out buffers for the benchmarking

of the Job Controller, ROB and Event filter.

Process(es) Inverse event rate [µs]

LVL1 70

JI 88+88*rob

ROB 206

FeX 63+112*rob

GTP 49 + 94*f

JC 122

Event Filter 3

Table 7.2: Initial benchmark results to within a micro second.

The results from the benchmarks are listed in table 7.2. The level-1 trigger can provide
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an event rate of 14 kHz to the Job Issuer. The Job Issuer uses 176 µs to receive a message

from the level-1 process and transmit a RoI request to a ROB. For each additional ROB

which needs a RoI request 88 µs is added to the elapsed time per event. The ROB

takes 206 µs to receive a RoI request and send 40 bytes of data to a FeX along with the

information in the RoI request message. The feature extractor takes 63 µs plus 112 µs

per ROB fragment to handle one event. Here the feature extractor is the combined set of

the buffer process and the controller process. Similarly for the global trigger processor.

The benchmark result for the GTP is 49 µs plus 94 µs per FEX output. The elapsed

time for an event to go through the Job Controller is 122 µs. The benchmark for the

Event Filter is 3 µs, i.e. 30 µs per group of 10 events.

Looking closer at the benchmark results, for instance, the 206µs elapsed time for the

read-out buffer appears long, for essentially receiving seven integers and forwarding six of

them along with 40 bytes of data. However, in estimating the elapsed time for receiving

and sending this information, we must take into account the effective link speed. This

speed depends on the packet length and the number of switches the packet must traverse.

Table 7.3 gives the values [41] used later in this section, as well as the asymptotic

value for large packets.

Packet Length Throughput

4 Bytes 0.42 ± .05 MBytes/sec

8 Bytes 0.79 ± .05 MBytes/sec

9 Bytes 0.87 ± .05 MBytes/sec

28 Bytes 2.3± .2 MBytes/sec

40 Bytes 1.96 ± .03 MBytes/sec

64 Bytes 2.7± .2 MBytes/sec

1000 Bytes 3.02 ± .01 MBytes/sec

> 10000 Bytes 3.08 ± .03 MBytes/sec

Table 7.3: The effective link speed using one virtual channel and traversing three switches

in network.

When sending to or from the read-out buffer, one virtual channel is used and the

packets go through three switches. An Occam facility to define a protocol has been
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used, both when receiving and sending. See figure 7.17 for an example of a user defined

protocol. The assumption is, that using this facility would provides the most optimal

PROTOCOL RoI.request IS -- request from supervisor to ROBs

INT; -- event identifier
INT; -- identifier of this feature
INT; -- roi type
INT; -- the number of features in this event
INT; -- the number of ROBs in this RoI
INT; -- address of FeX in charge of this feature
INT: -- address of GTP in charge of this event

Figure 7.17: Occam declaration of the user defined protocol “RoI.request.”

message passing. As an integer is four byte long, the message received by the ROB is 28

byte long. The message transmitted consists of 6 ∗ 4 bytes + 40 bytes = 64 bytes of data.

Using the effective link speed values from table 7.3, the expected elapsed time due to

message transfers is

28bytes

2.3± .2Mbytes/s
+

64bytes

2.7± .2Mbytes/s
= 36± 3µs. (7.1)

The expected time (36µs) is a small fraction of the measured time (206µs) and, as

this was the major part of the ROB object activity, we investigated the cause of this

difference.

Having gone carefully through our above calculation including assumptions, we came

up with the hypothesis that the implementation of the user defined protocols did not

match our expectations. We had assumed that the compiler had bundled the integers

into one packet. If no such optimisation had taken place and the integers were sent

individually, then different link speeds would have to be used in the calculation. The

expected elapsed time due to message transfers would then be

(7 + 6) ∗ 4bytes

0.42 ± .05Mbytes/s
+

40bytes

1.96 ± .03Mbytes/s
= 144±17

13 µs. (7.2)

This would account for 70 per cent of the measured time. Checking the assembler output

of the ROB object code from the compiler verified our hypothesis that no optimisation

had been performed.



CHAPTER 7. EMULATION ON THE GPMIMD MACHINE 120

Therefore, we abandoned the use of user defined protocols and performed the optimi-

sations which we had expected from the compiler by hand. Unfortunately this resulted in

less maintainable code. The option of changing the compiler and hiding the optimisation

there was not available.

The benchmark results from this optimised protocol implementation is shown in table

7.4. Considerable improvement is seen everywhere. For the ROB an improvement of

108± 20
16 µs on the elapsed time for the ROB were expected from our calculations above.

The measurement show an improvement of 130µs.

Further improvements to the the system were made by replacing a linear search for

existing fragments of an event by a unique (modulo 100) slot identifier for each event.

The event identifier, and in the case of the FeX the feature identifier, is used to calculate

the buffer slot identifier according to the equations shown below.

slot.id = ((event.id ∗ 10) + feature.id) modulo 100 (7.3)

slot.id = event.id modulo 100 (7.4)

The first (eq. 7.3) is used in the feature extractor, and the second (eq. 7.4) in the global

trigger processor. The buffer repetition factor (modulo 100) was chosen because it left

the space needed for the buffers reasonably small, and provided enough leeway to protect

against overwrites. By reducing the search routines to a calculation of a slot identifier,

the time to search for the slot is constant. The benchmark results after improving the

buffer implementations is shown in table 7.4.

The increase in the constant part of the results can be understood as increased ex-

traction time from the buffers. The decrease of the messages dependent part can be

attributed to the improved insertion time. The improvement is not in performance, but

in scalability.

The conclusion to be drawn from the above mentioned improvements is that it is

important to understand the software, especially the communication overhead, and to be

aware of any effects which increases the execution time as the size of the system increases.
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Process(es) Inverse event rate [µs]

Original Source Impr. Protocol No lin. Search

LVL1 70 µs 51 µs 52 µs

JI 88+88*rob µs 56+15*rob µs 65+11*rob µs

ROB 206 µs 76 µs 68 µs

FeX 63+112*rob µs 60+41*rob µs 108 + 33*rob µs

GTP 49 + 94*f µs 55 +68*f µs 68 + 60*f µs

JC 122 µs 76 µs 77 µs

Event filter 3 µs 3 µs 3 µs

Table 7.4: Benchmark results to within a micro second accuracy.

7.3 Test Measurements and Results

This section describes the two test configurations, as well as the motivation behind them.

Having presented the setups, the results of the measurements are shown. In the rest of

this chapter the improved implementation, as discussed above, will be used.

Two setups have been chosen for the initial measurements. The pipeline has been

chosen because its simplicity. The second setup, known as the “5-4-2 loop,” which has

five ROBs, four FeXs, and two GTP, has been chosen as a small size implementation of

a non-trivial system.

The aim of the setups is to ensure that we understand the throughput and latency.

The data sizes from the ROBs has been decreased with respect to the “real system,” and

the traffic pattern through the system has been made simple and systematic.

The Pipeline Setup The configuration of the “Pipeline” consists of one read-out

buffer, one feature extractor and one global trigger processor. For a sketch of the con-

figuration, see figure 7.18. The pipeline setup uses the same parameters as were used

during the benchmarking. The number of RoIs per event is set to one for all events, and

the number of ROBs hit per RoI is also set to one for all RoIs. The measurements were

performed with one thousand events.
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The “5-4-2 Loop” Setup The configuration of this larger loop, consists of five read-

out buffers, four feature extractors and two global trigger processors, see figure 7.18.

The value of the various variables has been kept the same as with the pipeline setup,

except that the number of ROBs participating in each feature was five rather than one.

The traffic pattern emerging from these values is such that all five ROBs are requested

to participate in all events, each sending 40 bytes of data to the current FeX. The local

processors each participate in a quarter of the events, while each global processor partici-

pates in half of the events. Here also, the measurements were performed with a thousand

events.

JI
JC

LVL1

EF

ROB

FEX

GTP

ROBROBROBROB ROB ROB ROB

Pipeline                                                           "5-4-2 Loop"    

FEX

GTP GTP

FEX FEXFEX
JI
JC

LVL1

EF

Figure 7.18: Diagrams of the two test setups.

The Results from the above mentioned setups are shown in table 7.5.

Configuration Latency Event Rate Inv. Event Rate

Pipeline 239.3 ± .2µs 6.7 ± .1 kHz 149 ± 2µs

“5-4-2 Loop” 481.6 ± .5µs 5.6 ± .1 kHz 177 ± 3µs

Table 7.5: Results from the test setups.

The latency is measured from the point at which the RoI information (message no 1)
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has arrived at the Job Issuer, to the point where the Job Controller has received the

GTP output (message no. 5). The Job Issuer and the Job Controller are both placed on

nodes on the same motherboard. Therefore, they share the same clock, and we do not

need to worry about asynchronous clocks.

The event rate is measured by subtracting the time-stamp of the first RoI info message

(no. 1) from the time-stamp of the last level-2 decision message (no. 6), and dividing

this by the number of events. These time-stamps are performed in the Job issuer and

the Event Filter processes respectively, which also share the same clock.

Interpreting the Results from the Pipeline First, we will look at the basic num-

bers. The expected message transfer time over DS-Links can be calculated as in eq. 7.1

and 7.2 using R. Heeley’s measurements [41]. The results are shown in table 7.6. The

processing time, i.e. the message independent part, for the objects can be calculated by

subtracting the message times from the benchmark shown in table 7.4. For example the

processing time of the Job Issuer object:

PJI = BMJI − (m2 + m3) = 11.1 ± 1.4µs, (7.5)

where BMJI is the benchmark result taken from table 7.4. Table 7.7 shows the values

for the processing times. PFeX and PGTP includes the transfer of the message over an

internal channel.

No Signal Name Time [µs]

m1 RoI info 52.7 ± .3

m2 RoI request 12.2 ± 1.1

m3 RoI data 23.7 ± 1.8

m4 Feature data 56± 2

m5 GTP output 10.3 ± .6

Table 7.6: Calculated message transfer

times.

Object Time [µs]

PJI 11.1 ± 1.4

PROB 32± 2

PFeX 61± 2

PGTP 62± 3

PJC 66± 2

Table 7.7: Calculated processing times.

The minimum possible latency should be

Lmin = PJI + m2 + PROB + m3 + PFeX + m4 + PGTP + m5 = 268 ± 5µs (7.6)
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Already this is in disagreement with the measured latency of 239 µs by 29µs. In

addition, at peak throughput the latency is determined by the latency of the longest

stage and its position in the pipeline plus the times of following stages. The latency at

peak throughput for an n-stage pipeline with no buffering between stages is given by:

Latency = max stage ∗ tmax stage +
n∑

i=1+max stage
ti (7.7)

where “tj” is the time spent in the jth stage of the pipeline, and “max stage” is a stage

number such that: tmax stage = max{tj}. See the example in figure 7.19.

Latency = 2*t2 + t3 = 8

  
    1
    2
    3

Latency

max stage = 2
t1 =1; t2 = 3; t3 =2stage no.

Figure 7.19: Example of latency calculation for a pipeline.

When identifying the independent stages for the pipeline the starting point is the

Occam code, as each process runs as a single thread of control. The input and output

from a given process, is however, overlapped with the corresponding output and input

from the “interacting” processes. Choosing to consider the input and the processing as

one independent stage, we get the situation outlined in figure 7.20. The FeX and the
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GTP Job Controller
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PP
 JC GTP

(DS Link)

stage 5stage 2 stage 3 stage 4

(channel)(DS Link)

stage 1 

FeX buffer FeX
Ctrl. Unit

ROBJob Issuer GTP buffer

PP
 ROB  FeX

(DS Link) (DS Link) (DS Link)

Storing

measured latency

Figure 7.20: Stage definition of the pipeline.

GTP processes differs from the rest, in that they use channel communication from the

buffer process to the control unit process within the same transputer, whereas all the

other communications are over DS-Links between different transputers. For the buffers,
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no processing time is used in the further calculation, and for the ctrl units the message

transfer times over the transputer internal channel are not specified but kept as part of

PFeX and PGTP . This is because the FeX (and the GTP) has been benchmarked as one

unit rather than two. The time for each stage is given by table 7.8

Stage Time component Value

t1 m1 + PJI 63.8 ± 1.7µs

t2 m2 + PROB 44.2 ± 2.3µs

t3 m3 23.7 ± 1.8µs

t4 PFeX 61± 2µs

t5 m4 56± 2µs

t6 PGTP 62± 3µs

t7 m5 + PJC 76.3 ± 2.1µs

Table 7.8: The definition of the stages and their times.

Assuming the t7 is not the limiting time as PJC is outside the loop, the time is either

t1 (but m1 is outside the loop) in which case the latency is 269 or is t4 at 61µs giving a

latency of 4 ∗ 61µs + 56µs + 62µs + 10µs = 372µs. It does not matter at this stage, as

both are in disagreement.

To get agreement between the measured latency and the measured times in each

process it would be necessary to increase all message times by about 20% or some by

larger amounts (note increasing m1 and m2 by 20% makes PJI negative).

Turning to the throughput measurement, the inverse event rate is 149µs. Throughput

is determined by slowest element in the pipeline and this would indicate that the slowest

element takes 149µs. The assumption has been made that the processes shown in figure

7.20 are running independently. However, in the level-2 demonstrator project [15], P.

Maley observed that processes which should have been running in parallel ran sequentially

- it required very careful appraisal of the code to verify this. The longest period in one

processor is the FEX stage at 141µs in reasonable agreement with the 149µs measured

when network delays are added (switches have to be traversed both into and out of the

FeX and this adds to the measured process time).

Due to insufficient time and the lack of the necessary equipment it was not possible
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to determine the actual message passing times or the precise operation of the code in the

processors.

In conclusion, the throughput measured in the pipeline is consistent with the FeX

processor running its processes sequentially and providing the dominant delay in the

system. The latency measured for the system is inconsistent with the pipeline model and

only matches the single event latency if calculated message passing times are too low by

about 20%.

Interpreting the Results from the “5-4-2 loop” The minimum latency for an

event in the “5-4-2” loop setup should be

Lmin = PJI + 5m2 + PROB + xm3 + PFeX + m4 + PGTP + m5, (7.8)

where x is 5 − 4m2
m3

since m2 < m3. With x = 2.9, Lmin becomes 363 ± 6µs. This is

significantly lower than the measured latency at peak throughput of 482µs. This means

that the events are being held back by bottleneck(s) internal to the setup.

Stage Time component Value

t1 m1 + PJI 63.8 ± 1.7µs

t2 5m2 + PROB 93± 3µs

t3 5m3 118± 4µs

t4 PFeX 61± 2µs

t5 m4 56± 2µs

t6 PGTP 62± 3µs

t7 m5 + PJC 76.3 ± 2.1µs

Table 7.9: The definition of the stages and their times.

Trying to estimate a more realistic latency of the events table 7.9 provides the time

for the individual stages in a manner similar to table 7.8. Stage three, the fan-in of the

ROB data, is the longest with 118µs. As all five ROBs were used for this stage there is

no work load sharing. The latency according to the model explained earlier is

L = 3 ∗ t3 +
7∑

i=4

ti − PJC = 543 ± 8µs. (7.9)
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This estimate of the latency is in approximate agreement with the measured latency of

482µs.

In an effort to estimate the inverse throughput the work sharing between the four

FeXs and the two GTPs must be taken into account. The benchmark of the FeX is

(rob ∗ 33 ± 1µs + 108 ± 1µs) according to table 7.4. The message independent part of

the benchmark, i.e. the 108µs must, when locating the slowest element, be divided by

the number of FeXs. The message part is not shared between the ROBs therefore that

part is unchanged. The benchmark for the FeX then becomes:

5ROBs ∗ (33± 1µs) +
(108 ± 1µs)

4FeXs
= 192 ± 6µs. (7.10)

The two GTPs share the events among them, so also here the benchmark has to be

modified. The GTP benchmark then becomes:

1feature ∗ (60 ± 1µs) +
(68 ± 1µs)

2GTPs
= 94± 2µs. (7.11)

From this it is evident that the FeX becomes the slowest part (with the Job Issuer

as the second slowest with 5ROBs ∗ (11± 1µs) + (65± 1µs) = 120± 6µs). The inverse

throughput was measured to be 177 ± 3µs in reasonable agreement with the calculated

inverse throughput, as given by the FeX benchmark.

In conclusion, the throughput measured in the “5-4-2 loop” is also here consistent

with the FeX processor running its processes sequentially and providing the dominant

delay in the system. The latency measured for the system is consistent within 11 per

cent with the pipeline model.

7.4 SCT Measurement and Results

The previous measurement showed us that the protocol and process model of the second

level trigger works, i.e. can handle events correctly etc. Now, an attempt is made to

emulate something closer to a realistic system.

The number of components in the full level-2 trigger is much larger than the number

of available processors for the emulation. According to chapter 5, there will be 1462

ROBs, see table 5.2, and 506 processors, see table 5.4. Of the 64 processors in GPMIMD

there are, however, 8 transputers which are connected to the network via one more layer

of C104s, see chapter 3.4 and one of the transputers is dead. This leaves 55 processors for
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the emulation. The choice, therefore, lies in either: trying to emulate the whole trigger

by adding many processes onto each transputer, or: emulating only a fraction of the

trigger by only placing one or two processes per transputer. The first solution will leave

us without the possibility to measure latency and throughput, as many processes will be

forced to occur in sequence rather than in parallel.

Knowing that we can emulate about two percent of the complete level-2 trigger, the

next question is: “Which two per cent?”. There are two basic possibilities, to emulate two

per cent of every sub-detector, or to emulate a larger fraction of one sub-detector. The

first solution will give an unrealistic RoI collection, as very few ROBs per sub-detector

will be emulated. The feature collection in the global trigger processor will be reasonably

realistic for one of the RoIs, the rest of the RoIs of the event will however most likely not

be emulated. The feature collection will therefore also not be realistic. By choosing the

possibility of emulating only one sub-detector, at least the RoI collection in the feature

extractor will be fairly realistic. The feature collection in the global trigger processors

will, however be unrealistic — as features from only one sub-detector will reach it.

The SCT sub-detector was chosen for the emulation on the grounds that the SCT is

not too large (256 ROBs, 80 FeX) in terms of components, it acts on half the RoIs, and

from measurements on Macramé, it is known as a “typical” sub-detector. The TRT (512

ROBs, 118 FeXs) and the Calorimeter (480 ROBs, 286 FeXs) are both very large. The

muon spectrometer is small (214 ROBs, 10 FeXs) and acts only on 10 % of the RoIs.

As we can emulate only about one eighth of the SCT local farm, edge effects result

from RoIs not being fully within the emulated part. These effects must be small enough

that the throughput can be scaled to the full SCT subfarm. The scaled throughput can

then be compared to the event rate expected in the SCT. The expected rate can be

extracted from the drive file.

Description of the SCT Setup In determining how large a fraction of the SCT local

farm we can emulate, the placement of processes must be considered carefully. With 55

transputers we can emulate about sixteen per cent of the SCT (55 processors/(256ROB+

80FeX + 12GTP) = 16%). The first five transputers on the first mother board are used

for the supervisor (three), the level-1 trigger (one) and the event filter (one). This leaves

50 transputers to be shared between the SCT ROBs, the SCT FeX, and the GTP. To
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ensure that all messages have to pass through the same number of C104 switches, the

supervisor processor can not be on the same mother board as ROBs or GTPs, and FeXs

can not share mother boards with ROBs and GTPs. To meet these requirements we

chose to emulate a higher proportion of SCT ROBs than SCT FeXs.

The chosen configuration is 39 SCT ROBs (15 %), 9 SCT FeXs (11%) and 2 GTPs

(16%). They have been placed as shown in figure 7.21.
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Figure 7.21: Placement of the processes for the SCT configuration.

The thirty-nine SCT ROBs must be chosen from a cone originating from the centre

of ATLAS, to ensure that RoIs have a possibility to be completely within the emulated

section. A RoI in the SCT hits between two and eight ROBs, see figure 5.3. A RoI should

therefore have a good possibility to be completely within the emulated cone. The cone

chosen has a direction towards the cavern ceiling, and is defined by η ∈ [−0.8; 0.8] and

φ ∈ [5.24; 1.05]

We chose a subset of the events in the drive file where all ROBs from at least one RoI

hit the thirty-nine SCT ROBs emulated. The number of events chosen depends on how

many events can be stored on the transputers. Table 7.10 lists essential numbers from

the subset of events from the drive file.
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Event Characteristics

# Events emulated 2166

ROBs/feature 3.32

ROBs/event 3.76

RoIs/event 1.13

Table 7.10: Characteristics of the chosen events.

The results from the emulation of the SCT local farm are shown in table 7.11 and

the latency distribution is shown in figure 7.22.

Configuration Latency Event Rate Inv. Event Rate

SCT setup 4284 ± 23µs 1.8± .1 kHz 569± 4µs

Table 7.11: Results from the SCT emulation.

Figure 7.22: The latency distribution for the SCT emulation.

Interpreting the Results from the SCT Setup The average latency of the events

through this system is more difficult to estimate than for the test setups, as there are

many parallel paths in this setup. The minimum latency can, however, be estimated
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by adding up the time spent in each component. Referring to figure 7.20 the minimum

latency is:

Latencymin = PJI +m2+PROB +m3∗#ROB

RoI
+PFeX +m4∗#RoI

event
+PGTP +m5 (7.12)

where m2 and m4 are unchanged from table 7.6. The values of m3 and m5 are determined

according to equations 7.13 and 7.14.

m3 =
1000bytes

3.02 ± .01Mbytes/s
− 40bytes

1.96 ± .03Mbytes/s
= 311 ± 4µs. (7.13)

m5 =
1000bytes

3.02 ± .01Mbytes/s
= 331± 1µs. (7.14)

PJI and PROB are unchanged from table 7.7. To PFeX and PGTP , the processing time is

added, 500µs and 150µs respectively. This amounts to a minimum latency of:

Latencymin = 11.1± 1.4µs + 12.2 ± 1.1µs + 32± 2µs +

311± 4µs ∗ 3.32 + (500 + (61 ± 1))µs + 56± 2µs ∗ 1.13 +

(150 + (62 ± 3))µs + 311± 1µs

= 2235 ± 9µs (7.15)

The minimum latency measured is 2.3ms in good agreement with that calculated.

The throughput is determined by the slowest element in the setup. To take into

account the parallelism in the system, the processing and message part must be divided

by the available capacity.

The slowest element in the setup is the GTP control unit, with

PGTP /2 + m5 = (150 + 62)µs/2 + 311µs = 417 ± 4µs. (7.16)

Thus, we expect the SCT emulation to have a throughput of 2.4 kHz (1/417µs). However,

the throughput was measured to be 1.8 kHz.

In an effort to find the bottleneck experimentally various parameters in the setup

was varied. By this procedure we found that by halving the amount of data being sent

from the ROBs to the FeXs the inverse throughput increased to 435µs; consistent with

the Job Controller being the bottleneck. Further investigations of the trace files confirm

that the Job Controller is the bottleneck under these conditions.

For the combined level-2 trigger system to operate at 100 kHz the various bottlenecks,

starting with the Job Controller, must be eliminated. Getting the scale factor, needed
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for the emulation to deal with the full rate for all sub-detectors, will need full-sized

simulation/Monte Carlo rather than just saying: “we were capable at running at 1.8

kHz, therefore we just need a system 55 times larger.”

The simple implementation of the supervisor in the emulation with its low perfor-

mance is not a problem for the complete system, as the supervisor has already received

special attention. In 1996 a prototype hardware realisation of the supervisor was running

at CERN [42, 15]. This prototype shows that a realisation of the supervisor is possible,

and therefore not a major concern of this emulation.

In conclusion, the minimum latency measured was in good agreement with the ex-

pected. The throughput model did however not show good agreement, and would need

much work before it could be used reliably for large systems.

7.5 Conclusion

The emulation of the second level trigger on the 64 node GPMIMD machine shows that

the protocol is robust against variations in the size of the setup and the traffic.

The measurements on the two small test setups, showed that simple models for the

throughput and the latency gave a reasonable approximation to the measured param-

eters. The SCT emulation showed that for more complex setups these simple models

breaks down, at least for the throughput. Here, more sophisticated simulation work is

necessary. Using the variable parameters in the emulation it is, however, possible to

locate bottlenecks and in other respects try to understand the performance.

To summarise the performance of the emulation setups: the pipeline and the small

setup achieved event rates of 6.7 kHz and 5.6 kHz respectively, while the SCT setup

achieved 1.8 kHz — seven times less than required for the 15 % of the SCT emulated.

The most significant points when designing and implementing the trigger system is

that the system must use parallel processing wherever possible and that the software

must be scalable.

The final system must operate with many processes running in parallel on both the

same and different processors. It will be important to ensure that these processes do

indeed run in parallel and are not constrained to operate sequentially.
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The software must be fully scalable. Any part of the system where the processing

time increases with system size is very likely to create a bottleneck in the full size system.



Chapter 8

Conclusion

This thesis has presented the results of the emulation for one possible architecture of the

ATLAS level-2 trigger system, and the produced network diagnostic software, Netprobe.

The level-2 trigger will be a vital part of the ATLAS experiment. To increase our knowl-

edge of this subsystem and to help future design decisions the system was emulated in

two complementary ways: the pure network aspects on the Macramé test-bed and soft-

ware and protocol issues on the GPMIMD machine. Both used point-to-point DS-Link

technology. To facilitate the use of large DS-Link networks, a reliable diagnostic software

tool was needed to ensure the correct configuration/wiring etc. For this use, Netprobe

was developed.

The construction of Netprobe improved the facilities, performance and user friendliness

of working with DS-Link networks. Netprobe played a crucial role for the work on the

Macramé test-bed. Currently, it is being used in the ARCHES test-bed and in the L3

LEP experiment’s second level trigger.

Experience with large networks has demonstrated the absolute necessity of this kind

of software utility if network problems are to be located and fixed quickly, as is required

in a dead-time-sensitive environment such as a high energy physics experiment.

The emulation of the individual networks of the ATLAS second level trigger local-

global architecture on the Macramé test-bed showed a variety of things. Distributing

the sources and sinks over the switching network makes a sixty per cent difference in the

network throughput in the case of the SCT, and increases the achievable event rate by
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up to fifty-six per cent.

The 512 node Clos network could sustain traffic in excess of a 100 kHz event rate

from the SCT, from 80 % of the TRT, from the complete muon spectrometer, and from

the global network. Each level-2 network was emulated separately. The emulation of the

calorimeter local network achieved an event rate of 80 kHz by using three traffic nodes

per hadron calorimeter read-out buffer.

The shape of the single packet latency distribution across the SCT, the TRT and

the global network was understood by a simple queueing model. The model was not

applicable to the other networks due to its use of a constant packet size.

The emulation of the second level trigger on the 64-node GPMIMD machine shows

that the protocol is robust with regard to various sizes of the setup and the traffic.

Measurements on two small test setups, showed that simple models for the throughput

and the latency gave a reasonable approximation to the measured parameters. Fifteen

per cent of the SCT was emulated, showing that for larger setups these simple models

break down. Using the variable parameters in the emulation it was, however, possible to

locate bottlenecks and in other respects try to understand the performance.

The pipeline and the small setup (5 ROBs, 4 FeXs, 2 GTPs) achieved event rates of

6.7 kHz and 5.6 kHz respectively. The emulation of fifteen per cent of the SCT achieved

1.8 kHz, or seven times less than required for the final SCT system.

The most significant points when designing and implementing the trigger system can

be summarised as:

• The final system must operate with many processes running in parallel on both the

same and different processors. It will be important to ensure that these processes

do indeed run in parallel and are not constrained to operate sequentially.

• The software must be fully scalable. Any part of the system where the processing

time increases with system size is very likely to create a bottleneck in the full size

system.

• The network/processing nodes must be easily configurable and diagnosable, such

as to limit down time due to reboots and hardware debugging.
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• The assignment of processing nodes and read-out buffers to the network interfaces

must utilise a distributed approach, such as to ensure an efficient usage of the

network.

The DS-Link technology has currently not found a market which will guarantee its

availability in the long term. The ATLAS level-2 trigger community is not expected

to make a choice as to which technology to use until June 2001. However, even if the

technology studied in this thesis will not be available or optimal, we have still shown that

point-to-point technology networks are a feasible solution to the network problem.



Appendix A

The Netprobe Commands

A.1 General Commands

connect

Name connect - connects to a DS-Link host

Synopsis connect <host>

Description The program attempts to connect to the host specified.

disconnect

Name disconnect - disconnects Netprobe from a DS-Link network host.

Synopsis disconnect

Description If Netprobe is connected to a DS-Link network host it closes the connection

to the host. If it is not connected, it does nothing.

dbg

Name dbg - turn on debug mode

Synopsis dbg

Description Makes the calls to the network maximally verbose. Can only be called

after a connection to a network has succeeded.
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info

Name info - turn on info mode

Synopsis info

Description Makes the calls to the network more verbose. Can only be called after a

connection to a network has succeeded.

starttrace

Name starttrace - Start tracing the calls to the DS-Link network

Synopsis starttrace <filename>

Description Start the tracing of all calls to the DS-Link network. The trace is appended

to the file specified.

stoptrace

Name stoptrace - Stop tracing the calls to the DS-Link network

Synopsis stoptrace

Description Stop the tracing of all calls to the DS-Link network.

quit

Name quit - quit Netprobe

Synopsis quit, Quit, Q or q

Description If Netprobe is still connected to a network it disconnects before it exits.

help

Name help - online help

Synopsis help [<command name>]

Description If no command name is given a help page is displayed, if a command name

has been specified a help page on this specific command is given.

See also the registerhelp command section A.1.
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registerhelp

Name registerhelp - get help on register content etc.

Synopsis registerhelp [<registername>]

Description Gives online help on all DS-Link registers, if no register name is specified

a list of the configuration registers is given.

See also the help command A.1.

A.2 Local Commands

start

Name start - send start command to next device

Synopsis start [ <headerin> <headerout> ]

Description Netprobe sends a start command to the next device with either the header

specified or the default headers. Default “headerin” is deviceId, default “headerout” is

(0x8000+deviceId).

When Netprobe is connected to a network, the first device can be started by the start

command. Before one can start the next device, the control chain must be started. If

the devices are daisy chained, it is adequate to start the control down link, this can be

done by “cpoke clnkc 1 s.” Now, the next device can be started. On the other hand, if

the devices are connected with a control fan-out the appropriate STC104 links must be

started and the interval registers must be set.

If the user wish to start the whole network automatically, this can be done by issuing

the spy, verify or configure command, see section A.3 for further details.

device

Name device <device no> - select current device

Synopsis device <device no>

Description This command is used to select a new device, which must be started.

identify

Name identify - send identify command

Synopsis identify
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Description Prints the identity of the device in decimal. The correspondence between

device id and device type is summarised in table A.1.

Device Id Device Type Revision

300 T9000 Alpha

301 T9000 Beta

302 T9000 Gamma

320 C100 —

340 C100 —

384 C104 —

13 RCube —

Table A.1: Correspondence between device id and device type.

reset

Name reset - send reset command

Synopsis reset <level>

Description Reset the device according to the level specified. See table A.2 for details

on the reset levels.

Level Description

0 hardware reset

1 labelled control network

2 configured network

3 booted network (only T9000)

Table A.2: Reset levels.

cpeek

Name cpeek - send cpeek command, print return value

Synopsis cpeek {<register-name> [<interval number>] [<link>] | <address> }
Description This command reads the specified register in the configuration space.
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See also The online help pages which can be accessed through the command “register-

help” see section A.1 for further details.

cpoke

Name cpoke - send cpoke command

Synopsis cpoke {<register-name> [<interval number>] [<link>]

{<bit-pattern>|<value>} | <address> <value>}
Description This command writes the specified value into the specified register in the

configuration space.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.

peek

Name peek - send t9000 peek command, print returned value

This command is only supported in the Irun/B103 environment.

Synopsis peek <address>

Description Reads the specified memory address of the T9000.

poke

Name poke - send t9000 poke command

This command is only supported in the Irun/B103 environment.

Synopsis poke <address> <value>

Description Writes into the memory of the T9000

systemservicereg

Name systemservicereg - cpeek all system service registers

Synopsis systemservicereg

Description Cpeek all system service registers.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.
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ctrllnkreg

Name ctrllnkreg - cpeek all control link registers

Synopsis ctrllnkreg [<link>]

Description Cpeek the mode and status registers for the specified control link.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.

datalnkreg

Name datalnkreg - cpeek all data link registers

Synopsis datalnkreg [<link>]

Description Cpeek the data mode and status registers for the specified data link. If no

link is specified all data links are listed.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.

intervalreg

Name intervalreg - cpeek all interval registers

Synopsis intervalreg [<link>]

Description Cpeek all 36 interval registers for the specified data link. If no link is

specified all data links are listed.

See also The online help pages which can be accessed through the command “register-

help¡” see section A.1 for further details.

packetreg

Name packetreg - cpeek the mode and the command packet registers

Synopsis packetreg [<link>]

Description Cpeek both the command packet register and the mode packet register for

the specified data link. If no link is specified all data links are listed.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.
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randomreg

Name randomreg - cpeek all randomize registers

Synopsis randomreg [<link>]

Description Cpeek all randomize registers for the specified data link. If no link is spec-

ified all data links are listed.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.

allpacketreg

Name allpacketreg - cpeek all packet registers

Synopsis allpacketreg [<link>]

Description Cpeek all randomize registers, all interval registers, the packect command

and mode registers for the specified data link. If no link is specified all data links are

listed.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.

allreg

Name allreg - cpeek all registers

Synopsis allreg [<link>]

Description Cpeek all the configuration registers.

See also The online help pages which can be accessed through the command “register-

help,” see section A.1 for further details.

recovererror

Name recovererror - send recover from link error

Synopsis recovererror

Description Restores the protocol after a link error in the control system.
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boot

Name boot - send t9000 boot command

This command is only supported in the Irun/B103 environment.

Synopsis boot <length> <address>

Description A boot sequence is started. The length variable is the length of the boot

code to be loaded and the address variable indicates where in the memory the boot code

is written.

bootdata

Name bootdata - send t9000 boot data command

This command is only supported in the Irun/B103 environment.

Synopsis bootdata <int1> <int2> <int3> <int4>

Description Send boot data to the T9000. The data will be written to the address

specified by a previous boot command.

reboot

Name reboot - send T9000 reboot from read only memory (ROM) command

This command is only supported in the Irun/B103 environment.

Synopsis reboot

Description The T9000 reboots from ROM.

run

Name run - send t9000 run command

This command is only supported in the Irun/B103 environment.

Synopsis run <Wptr> <Iptr>

Description The run command causes the processor to start executing with a workspace

pointer (Wptr) and an instruction pointer (Iptr).

stop

Name stop - send t9000 stop command

This command is only supported in the Irun/B103 environment.
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Synopsis stop

Description Stop the processor “cleanly” so that register values are preserved for de-

bugging.

A.3 Global Commands

hardreset

Name hardreset - hardware reset network

Synopsis hardreset

Description Performs a hardreset on all devices and links in the network.

labelled

Name labelled - obtain the labelling of the network

Synopsis labelled [< numdevices >]

Description Netprobe asks “numdevices” to identify themselves. If the device responds,

it’s labelling information is requested. If no number of devices is specified, Netprobe

simply ask devices to identify themselves until it fails. This failure will be reported to

the screen in the same way as any other error message from the network.

This command can be used when Netprobe is accessing a network which has already

been labelled.

list

Name list - return current device information

Synopsis list

Description Displays a list of the devices Netprobe is aware of. For each device the

following is shown: the type of the device, the headers in and out of the device and the

current state of the device. The state information of the device is described in table A.3.

spy

Name spy - spy the network

Synopsis spy [options]
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State Description

Labelled There is access to the device.

Booting A boot command has been sent to this device.

Running A reboot or a run command has been sent to this device.

Stopping A stop command has been sent to this device.

Table A.3: The state of a device.

Description The spy command explores the configuration of the network.

Options

SI display information

ST {filename} saves the final table to a file

VS print status of network after each new device

FS print final status of network

C100 give details on C100 connections

V print status of network as a list, default is a table

CS {speed} specify link speed for control links

DS {speed} specify link speed for data links

SLOW use the slow algorithm

GNDL {filename} generate an ndl file

ROM read and display Htram rom information

(SGS-Thomson Htrams only)

verify

Name verify - verify the network

Synopsis verify <verifyfile> [options]

Description The verify command takes a network description (NDL) file or a previous

spy output table and checks if the network contains what is specified in the verify file.

Options

NDL the verify file is an NDL file and not a spy table

STRICT verify the network strictly

i.e. also check that unused links are in fact not used



APPENDIX A. THE NETPROBE COMMANDS 147

IE ignore the edges

SI display information

VS print status of network after each new device

FS print final status of network

V print status of network as a list, default is a table

CS {speed} specify link speed for control links

DS {speed} specify link speed for data links

GNDL {filename} generate an ndl file

configure

Name configure - configure the network according to a description within a file

Synopsis configure <filename> [options]

Description This command enables the user to configure a network according to an NIF

or NDL file. Networks containing T9000s in the control chain can only be configured from

a NIF file.

Options

SI display information

SEED {seed} seed for random number generator. It is only used when the

random registers are set.

See also The verify command.

btl

Name btl - load the network

This command is only supported in the Irun/B103 environment.

Synopsis btl <bootfile>

Description Load the network as specified in the bootfile.

See also The serve command section A.3.

serve

Name serve - serve on disconnect

This command is only supported in the Irun/B103 environment.
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Synopsis serve

Description Serve starts serving the network as soon as Netprobe disconnects from the

network. This command is needed when the user wants to start running an application

on the T9000s.

See also The btl command section A.3.

halt

Name halt - halt processors

This command is only supported in the Irun/B103 environment.

Synopsis halt

Description Halt all the processors in the network.
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Example NDL description

The following code is an example of an NDL file. It describes a single C104 switch

(labelled “Switch” below) which has three links connected to terminal nodes. The con-

nections to the nodes are described as “edges” in the NDL. See figure B.1 for a diagram

of the network.

Host
controller

Switch

Cu Cd

Cu = control up
Cd = control down

(runs Netprobe)

= control links

terminal

terminal

16 17  18

terminal

Figure B.1: Diagram of the network.
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-- Declaration of the connection to the host

CONTROLPORT host:

ARC HostCLink:

[1]NODE Switch:

[3]EDGE terminal:

NETWORK

DO

-- Set all default link speeds

SET DEFAULT (link.speed.multiply := 10)

SET DEFAULT (link.speed.divide := [1])

SET DEFAULT (control.speed.divide := [2])

-- Definition of the types of the nodes used in this network

SET Switch[0] (type := "C104")

SET Switch[0] (link.speed.multiply := 20)

-- Connections between devices

CONNECT Switch[0][control.up] TO host[control] WITH HostCLink

CONNECT Switch[0][link][16] TO terminal[0]

SET Switch[0] (delete[16] := TRUE)

CONNECT Switch[0][link][17] TO terminal[1]

SET Switch[0] (delete[17] := TRUE)

CONNECT Switch[0][link][18] TO terminal[2]

SET Switch[0] (delete[18] := TRUE)

-- Interval labelling

SET Switch[0] (interval.separator[0] := 0)

SET Switch[0] (link.select[0] := 16)

SET Switch[0] (interval.separator[1] := 1)

SET Switch[0] (link.select[1] := 17)

SET Switch[0] (interval.separator[2] := 2)

SET Switch[0] (link.select[2] := 18)

:
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Trigger Menu

The following listing is of the high-luminosity trigger menu for the first level trigger. For

each level-1 (LVL1) trigger item, a set of level-1.5 (LVL1.5) trigger items is shown when

appropriate. The LVL1 trigger items show primary RoIs. The LVL1.5 trigger items

also display the secondary RoIs. The level-2 supervisor gets information about the RoIs

associated with the LVL1.5 trigger item.

The component of the trigger items are to be interpreted the following way. MUx,

is a muon with a transverse momentum greater than x GeV/c. EMx, is a electron or

a photon with a transverse energy greater than x GeV . Jx, is a jet with a transverse

momentum greater than x GeV/c. If the component is followed by an I, then the particle

or jet must also be isolated.

Inclusive Exclusive (Hz)

LVL1 MU6 + EM20I 3000 3000

Total exclusive 3000

LVL1 MU6 + MU6 1000 -

LVL1.5 MU6 + MU6 + J40 1000 328

LVL1.5 MU6 + MU6 + J40 + J40 222 188

LVL1.5 MU6 + MU6 + J40 + J40 + J40 34 34

LVL1.5 MU6 + MU6 + EM20I 300 200

LVL1.5 MU6 + MU6 + EM20I + EM20I 50 50

LVL1.5 MU6 + MU6 + MU6 200 200

Total exclusive 1000

LVL1 MU20 4000 -
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LVL1.5 MU20 + J40 4000 2811

LVL1.5 MU20 + J40 + J40 889 752

LVL1.5 MU20 + J40 + J40 + J40 137 121

LVL1.5 MU20 + J40 + J40 + J40 + J40 16 16

LVL1.5 MU20 + EM20I 300 280

LVL1.5 MU20 + EM20I + EM20I 20 20

Total exclusive 4000

LVL1 EM30I 20000 -

LVL1.5 EM30I + J40 20000 12223

LVL1.5 EM30I + J40 + J40 4444 3760

LVL1.5 EM30I + J40 + J40 + J40 684 604

LVL1.5 EM30I + J40 + J40 + J40 + J40 80 80

LVL1.5 EM30I + EM10 3333 3333

Total exclusive 20000

LVL1 EM20I + EM20I 4000 -

LVL1.5 EM20I + EM20I + J40 4000 1511

LVL1.5 EM20I + EM20I + J40 + J40 889 752

LVL1.5 EM20I + EM20I + J40 + J40 + J40 137 137

LVL1.5 EM20I + EM20I + EM10 1600 1600

Total exclusive 4000

LVL1 J150 3000 -

LVL1.5 J150 + J40 3000 2183

LVL1.5 J150 + J40 + J40 667 565

LVL1.5 J150 + J40 + J40 + J40 102 102

Total exclusive 2850

LVL1 ME100 1000 850

LVL1.5 ME100 + J150 150 150

Total exclusive 1000

LVL1 misc. prescaled 5000 -

LVL1.5 J40 + J40 5000 4227

LVL1.5 J40 + J40 + J40 773 682
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LVL1.5 J40 + J40 + J40 + J40 91 91

Total exclusive 5000

Total LVL1 rate 40850 Hz

Total LVL1.5 exclusive rate 40850 Hz
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