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Introduction

For a Dedekind domain R with quotient field F', the notion of class groups of R-orders A is a
natural generalisation of the notion of class groups of rings of integers in number fields as well as
class groups of group-rings RG where G is a finite group. The class groups of group-rings, apart
from their intimate connections with representation theory and number theory also house some
topological invariants (e.g. Swan-Wall invariants) where G is usually the fundamental group of
some spaces.

Now, if R is a Dedekind domain with quotient field F' and A any R-order in a semi-simple

F-algebra X, the higher class groups C¢,(A) n > 0, is defined as
Cln(A) == Ker(SK,(A) — ® SK,(Ap)) (T)
P

where p runs through all the prime ideals of R and coincides with the usual class group C/(A) at
zero-dimensional level. Our attention in this paper is focussed on C?,(A) for R-orders A when
R is the ring of integers in a number field, and we assume in the ensuing discussion that our
R-orders are of this form.

The groups C/;(A),C¢(RG) which are intimately connected with Whitehead groups and
Whitehead torsion have been extensively studied by R. Oliver (see [19]). It is classical that
Cly(A), Cli(A) are finite groups. However, it follows from some more recent results of this
author that C/,(A) is finite for all n > 1 (see 2.2 or [17], [18]). If , is a maximal R-order, it
follows from [8] that C¢,(, ) =0 for all n > 1.

We obtain in 2.3 the basic expression involving C,(A) n > 0 that we want to analyse in

this paper, namely

Ko () Ko (5p)
(Ko (A)) % T (Koer (Ay)) — Cly(A) — 0 (IT)

and use this to show in 2.6 that if A, A’ are two R-orders in semi-simple algebras ¥, ¥’, then a
surjective map ¢ : ¥ — X' such that ¢(A) C A’ induces a surjection C¥,(A) — C¥¢,(A\") and we
then deduce some consequences of this fact (see (2.7)). We show in 2.4 that there exists a finite
set P of prime ideals p of R such that for p & P, Ap is a maximal Rp—order in a semi-simple
Fy-algebra 3, which is unramified over its centre, in which case, SK, (Ap) = 0 for all n > 1.
We denote by P the set of rational primes lying below the primes p € P.

Our analysis of the exact sequence (IT) above at first concentrates on @ K1) _ yhich
P Im(Kn-H(Ap))

maps on Cl,(A) for all n > 0. We show that for all n > 1, the group @ Kt1(®p)  pag g

pgp Im Kn_l,_l(Ap)
p-torsion for any rational prime p ¢ P and deduce that for all n > 1, p-torsion can occur in

Cl,(A) only for rational primes p € P.
In [9], the authors considered only odd dimensional class groups and showed by a different
method that p-torsion could occur in C'y, 1 (A) only for primes lying in P. Our result in 2.9

shows that this holds also for even dimensional class groups.



In 2.1.2, we obtain further analysis of pEeBP %

the way for our applications to finite p-groups in Section 3. In Section 3, we at first show that

which maps onto C¢,(A) to prepare

(I) and (II) above have particularly simple forms for even dimensional class groups i.e., we have

exact sequences

Kora() Korp1(, p)

0— < — Cly (ZG) — 0 11
Im K27"+1(ZG) Im K2r+1(ZpG) 27( ) ( )
where , is a maximal order containing ZG, and
0 — Clo(ZG) — SKop(ZG) — SKop(Z,G) — 0 (IV)
Ko, 41(T) Karp1(T))

where G is a finite p-group (see 3.1 (i)). We show also that and are

Im K»41(ZG) Im Ko, 11(ZpG)

finite groups.

For odd-dimensional class groups, we show that for all » > 1, Cls,_1(Z@G) is a finite p-group

(3.1 (vi)) if G is a finite p-group and in the process show that #S(FZ)G) is a finite p-group and

KZT(fp)
Im Ko, (ZpG)
In Section 4, we indicate how to use induction techniques of “Mackey functors” to obtain

further results on C?,(RG) n > 0, G a finite group, R a Dedekind domain. First we show

that is a p-torsion group (see 3.1 (iii) and (iv)).

that for all n > 0, the C/¢,,(R—) are Mackey functors that are modules over the Green functors
Go(R—) and that they are hyper-elementary computable. Furthermore, we exploit the properties
of Cly(R—) (n > 0) as p-local Mackey functors to obtain a decomposition of C'¢,,(ZG),), G any

finite group, in terms of certain twisted group rings of p-groups (see 4.11).

Notes on Notation For any ring A, we write K, (A) for the Quillen K-groups m,+1(BQP(A)) =
m(BGL(A)") where P(A) is the category of finitely generated projective A-modules. If A is
Noetherian, we write G, (A) for w11 (BQM(A)) where M(A) is the category of finitely generated
A-modules. If R is the ring of integers in a number field F', and A is an R-order in a semi-simple
F-algebra %, we write SK,(A) = Ker(K,(A) = Kn(%)), SK,(Ap) = Ker(K,(Ap) = Kn(Xp))
where Ap = Rp ®r A, f]p = Fp ®p X are the completions of A and X respectively at a prime
p of R. We shall write P(A) or just P for the finite set of prime ideals p of R such that Ap is
not a maximal order in ﬁ]p and P(A) or P for the finite set of rational primes lying below the

prime ideals p € P := P(A) (see 2.5).

1 Definitions of class groups and higher class group of orders
and group-rings

In this section, we give the classical definition of class group of orders, which coincides with the
zero dimensional form of higher class groups and record some of the known properties of class

groups.



Definition 1.1 Let R be a Dedekind domain with quotient field F'. An R-order A in a finite
dimensional semi-simple F-algebra ¥ is a subring of ¥ such that (i) R is contained in the centre
of A, (ii) A is a finitely generated R-module and (iii) FQrA = X. For example, if G is any finite
group, RG is an R-order in FG. A mazimal R-order , in ¥ is an order that is not contained
i any other R-order in X. Note that every R-order is contained in at least one maximal order

and every semi-simple F-algebra Y contains at least one mazimal order.

Definition 1.2 Let R, F,3, A be as in 1.1. A left-A-lattice is a left A-module which is also an
R-lattice (i.e. finitely generated and projective as an R-module).

A A-ideal in ¥ is a left A-lattice M C X2 such that FM C X.

Two left A-lattices M, N are said to be in the same genus if M, ~ N, for each prime ideal p
of R. A left A-ideal is said to be locally free if My ~ Ay for all p € Spec(R). We write M V N

if M and N are in the same genus.

Let P(A) := {p € Spec(R)|A, is not a maximal Ry-order in $,}. Then P(A) is a finite set
and P(A) = 0 iff A is a maximal order. Note that the genus of a A-lattice M is determined by
isomorphism classes of modules {Mp|p € P(A)} see [4].

Theorem 1.3 [4] Let L, M, N be lattices in the same genus. Then M & N ~ L @& L' for some
lattice L' in the same genus. Hence, if M, M’ are locally free A-ideals in X, then M & M' =
A @ M" for some locally free ideal M".

Definition 1.4 Let R, F,% be as in 1.1. The idéle group of X, denoted J(X) is defined by
J(2) == {(ap) € TI(Zp)*|ap € A’l; almost everywhere}. For o = (ap) € J(X), define
Aa:=3¥N {g Apap} = g {E N Apap}

The group of principal idéles, denoted u(X) is defined by u(X) = {a = (ap)|ap = = € X* for all
p € Spec(R)}. The group of unit idéles is defined by

U(A) =11 (Ap)" € ()

Remarks 1.5 (i) J(X) is independent of the choice of the R-order A in ¥ since if A’ is another
R-order, then A, = A} a.e.

(ii) A« is isomorphic to a left ideal of A and A« is in the same genus as A. Call A« a locally
free (rank 1) A-lattice or a locally free fractional A-ideal in X. Note that any M € g(A)
can be written in the form M = A« for some o € J(X) (see [4]).

(iii) If ¥ = F and A = R, we also have J(F),u(F) and U(R) as defined above.

(iv) For o, 8 € J(2),Aa ® A3 = A ® Aaf (see [4]).



Definition 1.6 Let F,%, R, A be as in 1.1. Two left A-modules M, N are said to be stably
isomorphic if M & A% ~ N o A®) for some positive integer k. If F is a number field, then
MoA® ~ NoA®) jF MO A~ NN We write [M] for the stable isomorphism class of M.

Theorem 1.7 [4] The stable isomorphism classes of locally free ideals form an Abelian group
CU(A) called the locally free class group of A where addition is given by [M] + [M'] = [M"]
whenever M @ M' ~ A®M". The zero element is (A) and inverses exist since (Aa) ® (Aa™!) ~
A® A for any a € J(X).

Theorem 1.8 [4] Let R, F,\,Y be as in 1.1. If F is an algebriac number field, then CL(A) is
a finite group.

Remarks 1.9 Let R, F,A,Y be as in 1.1.
(i) If A = R, then C/(A) is the ideal class group of R.

(ii) If , is a maximal R-order in X, then very left-ideal in ¥ is locally free. So, CY(, ) is the

group of stable isomorphism classes of all left , -ideals in .

(iii) Define a map J(X) — C¢(A);a — [Aa]. Then one can show that this map is surjective
and that the kernel is Jy(X)X*U(A) where Jy(X) is the kernel of the reduced norm acting
on J(X). So J(X)/(Jo(X)X*U(A)) =~ CL(A) (see [4]).

(iv) If G is a finite group such that no proper divisor of |G| is a unit in R, then C¢(RG) ~
SKo(RG). Hence CU(ZG) ~ SKy(Z@) for every finite group G (see [4]).

For computations of C¢(RG) for various R and G see [4].

Definition 1.10 Let R be a Dedekind domain with quotient field F, A any R-order in a semi-
simple F-algebra 3. For n > 0, let SK,(A) = Ker(K,(A) = K,(X)) and for any prime ideal
p of R, let SK,(Ap) = Ker(K,(Ap) = Kn(2p)). We now define Cl,(A) := Ker(SK,(A) AN

~

© SKn(Ap)).

Theorem 1.11 [4] CY(A) = Cly(A) = Ker(SKy(A) — @ SKo(Ap)).

2 Higher dimensional class groups of orders and group-rings

2.1 Quite a lot of work has been done, notably by R. Oliver, on C¢;(A) and C¢;(ZG) where
G is a finite group in connection with his intensive study of SK;(A) and SK,(ZG), SK1(Z,G)
etc. (see [19]). We note in particular the following properties of C¢;(A), where R is the ring of

integers in a number field and A any R-order in a semi-simple F-algebra.

(i) Cly(A) is finite;



(ii) If G is any Abelian group, C¢;(RG) = SK;(RG)
(iii) Cl(ZG) # 0 if G is a non-Abelian p-group
(iv) Cl(ZG) =0 if G is a Dihedral or quaternion 2-group.

For further information on computations of C¢1(ZG), (see [19]).
We now endeavour to obtain information on C?,(A) for all n > 1.
We first show that for all n > 1, C¢,(A) is a finite group. This follows from some earlier

results of the author. We state this result formally.

Theorem 2.2 Let R be the ring of integers in a number field F', A any R-order in a semi-simple

F-algebra X.. Then, Cl,(A) is a finite group for alln > 1.

Sketch of Proof It suffices to show that for all n > 1, SK,(A) is a finite group. Now in
[16], it was shown that K, (A) is a finitely generated Abelian group. So SK,(A) is also finitely
generated. Also it was shown in [17], that SK,(A) is torsion. Hence SK,(A) is finite. Also, see
[18], 1.7, for a more direct proof that SK,(A) is finite.

We next present a fundamental sequence involving C,(A) in the following

Theorem 2.3 Let R be the ring of integers in a number field F', A any R-order in o semi-simple
F-algebra 2. If p is any prime=mazimal ideal of R, write Ap = R ®r A, f]p = F ® X where

Rp, F are completions of R, F respectively at p. Then we have the following exact sequence:

0 = Kn41(2)/Im(Kpq1(A)) — pEmEEX(R)(KTH_I(XA: )/Im(Kp41(Ap)) = Clu(A) -0 (T)

Proof. Consider the following commutative diagram of localisation sequences of Quillen where
S=R-0; S'p:Rp—O:

0 — s — KJ(Hs()  — SK,(A) — 0

lan Jp J'Yn (IT)

_Kng1(Sp) (A 2
0 — %Im(Kn+1(?\p) — %Kn(HSP(Ap) — EESKn(Ap) — 0

P R
where K, (Hg(A) = @ Kn(ng(Ap)) is an isomorphism. By applying the Snake lemma to
P
diagram (II), we have Ker v, ~ Coker «, and Coker 7, = 0 and Ker o, = 0. Since, by
definition, C,(A) = Ker(SK,(A) — ® SK,(Ap)), we have the required exact sequence
P

Lemma 2.4 In the exact sequence

0= Clp(A) = SK,(A) = ®SK,(Ap) =0,
P

SKn(Ap) = 0 for almost all p, i.e. @ SKn(Ap) is a finite direct sum.
P



Proof. It is well known that for almost all p, Ay is a maximal order in a split semi-simple
algebra, ﬁ]p. Now, when Ap is a maximal order in ﬁ]p, we have by [12], 1.1, that SKzn_l(Ap) =0
iff f]p splits. Moreover, SKQn(Ap) = 0 for all n > 1 by [10], 1.3(b). So, for almost all p,

~

SK,(Ap) =0 for all n > 1.

Remarks 2.5 (i) In view of 2.4, there exists a finite set P(A) of prime ideals p of R such that
for p ¢ P(A), Ap is maximal and 3, splits in which case SK,,(Ap) = 0 for all n > 1. We shall
often write P for P(A) when the context is clear, as well as P = P(A) for the set of rational
primes lying below the prime ideals in P = P(A).

(ii) If A = RG where G is a finite group, then the prime ideals p € P lies above the prime
divisors of |G|. In particular if R = Z, then P consists of the prime divisors of |G|.

(iii) If , is a maximal order containing A such that p does not divide [, : A] := the index of
Ain, , then p & P (see [19)).

Theorem 2.6 Let R be the ring of integers in a number field F, A, A" R-orders in semi-simple
F-algebras X, Y respectively. Suppose that ¢ : ¥ — Y/ is a surjection of algebras such that
©(A) C A'. Then ¢ induces a surjection

Clp(A) — Cl,(A') for all m > 1

Proof. Consider the following commutative diagram of short exact sequences

Kny1(2) Kny1(Xp)
0 = mEe 7 Phkage 0O — 0

U

0 = E[?Imlf;(tlflz(,/)\') — 9 K”+1(2p) — an(A,) — 0

p ImK,1(A})

By the Snake lemma, we have
0 — Ker oy — Ker g — Ker o) — Coker px — Coker ¢y — Coker pp — 0

Now, since ¢ : ¥ — X' is a projection onto a direct summand, then ¢y is onto (that is Coker
s = 0) and so @y is also onto i.e., Coker p¢ = 0. Hence coker py = 0 ie., ¢y is onto as

required.

Corollary 2.7 (i) Let R be the ring of integers in a number field F. If A C A’ are R-orders
in a semi-simple F-algebra X, then the induced maps C¥¢,(A) — Cl,(A’) are surjective for all
n>1

(ii) If G — G’ is an epimorphism of finite groups, then the induced maps C¢,(RG) —
Cl,(RG") are surjective for all n > 1.



Proof. Follows from 2.6 by considering 3 = ¥'.

KnJrl(iP)

Remarks 2.8 Since from 2.3, the group C?,(A) is the homomorphic image of & Tm o1 (g’
n+1{Ap

P
we analyse the latter group as much as possible. First we prove the following.

Theorem 2.9 Let R be the ring of integers in a number field F', A any R-order in o semi-simple

F-algebra X, P(A),P(A) as in 2.5. Then, for all n > 1, we have

(i) Clay(A) is the homomorphic image of @ Kgnﬂ(f]p)/lm(Kan(Ap)).
peP

(11) Clap_1(A) is the homomorphic image of ?P Gon—1(Ap/PAp)@( EBP (Kon (Ep)/Im(Kapn (Ap)).
p S

Hence for all n > 1, p-torsion can occur in Cl,(A) only for rational primes p lying in 75(A)

Remarks 2.10 In [9], the authors considered only odd-dimensional class groups and showed
by a different method that p-torsion could occur in Cly,_1(A) only for primes p lying in P(A).

It follows from 2.9 above that this is also the case for even-dimensional class groups.

Proof of 2.9 Let P = P(A) be as defined in 2.5. We first show that for all n > 1,

Kn1(Sp) o LR Ko (B
> Im Knﬂ(?\p) B (p?? Gnlhe/ pAp)) v <p6e§7> Tm (Kn-l-l(l)Ap)) g

Now, for p & P, A, is a maximal order (a regular ring) and so, K, (Ap) ~ G, (Ap). So, for each

p € P, we have Quillen’s localisation sequence
o K1 (Ap) — K1 (Bp) — Kn(Mg (Ap)) — Kn(Ap) — Kn(Ep) — ...

where S’p = Rp — 0 and M S‘p(AP) is the category of finitely generated S’p—torsion Ap—modules.
Now Kn(/\/lgp (Ap)) =~ Gn(Ap/pAp) by Devissage. This proves (I) above.

Now, G,(Ap/PAy) =~ K, ((Ap/pAp)/rad(A,/pAp)) =~ K, (Ap/rad(A,)) where Ay /radAy,
as a finite semi-simple ring is a product of matrix algebras over finite fields and so, when n is
even, i.e. n = 2r,r > 1, we have Ga, (A, /pAp) =~ Kop(Ap/radA,) = 0.

If n is odd, i.e. m = 2r — 1,7 > 1, then |Ky, 1(Ap/radAy)| = 1(p) by Quillen’s results on
K-theory of finite fields where p is a rational prime lying below p.

So, we have shown that in (I), for all n > 1, p?P % ~ p?P (Gu(Ap/PAy) has no

p-torsion for p ¢ P and hence that for all n. > 1, p-torison can occur in C¥¢,(A) only for primes
p lying in P.

Remarks 2.11 We now obtain a further analysis of & EnEp) g Jet ,A p be a maximal order
pep Im(Kn(Ap)

containing Ap, p € P. Then the inclusion Ap — ,Ap induces homomorphisms Kn(f&p) = Kn(; p)-

We now have the following



Lemma 2.12 (i) For p € P and all » > 1 we have an exact sequence

>

0 —s K2r(a pA) . K?r( p)

— =B — P Goroi(s p/Ps p) — O
Im Kor(Ap)  Im Ko (Ap) 2r=1(; /P )

where |G2,«_1(,Ap/p:p)| =1 (p) for some rational prime lying below p

(ii)

Kopiq (2 K :

2r41( p) ~ 2r1(s pA) H, forany peP, r>1,
Im K2r+1(Ap) Im K2r+1(Ap)

Ko y1(Dp)

TKar s (hs) of order = 1 (mod p) for some rational prime p lying

where Hp, is a subgroup of

below p.

Proof. Consider the following commutative diagram

Ko(hp) 5 Ku(p)

Then we have an exact sequence

K (Ap)

0— K — SK,(Ap) — SK,(, p) — — 2 P7
er ( p) ( p) Im(Kn(Ap)

Kn(Sp)

—— —0
Im Kn(a p)

— K,(3p)/ImK, (Ap) —

Now, since SKQT-(,AP) =0 for all p (see [10] or [13]), we have an exact sequence

0 —s KZr(a p) N KQT(EpA) L> KQT(EDA)
Im KQ,«(AP) Im KQ,«(, p) Im KQ,«(, p)

Now, consider the localisation sequence
~ A~ 6 ~ ~
0 — Kor(, p) — K2r(Zp) — G2r—1(, p/Ps p)

L)SKQ,«_l(,Ap) — 0.

By a similar argument to that given in the proof of 2.9, we have that

G2r71(;p/p;p) a K2r71(:p/1“ad :p)

has order relatively prime to the rational prime lying below p. Hence (i) is proved.
(ii) From diagram (I), we obtain an exact sequence
~ 0 Kn(a p) N Kn(zp) N Kn(zp)

o — SKy( p) — = = : —0 (IT)
Im (Kn(Ap)) Im (Kn(Ap)) Im(Kn(, p))




If n = 2r + 1, we have an exact sequence
. Kora(; p/rad, p) — Kopp1(; p) — Kap1(2p) — 0 (IT')

Hence

Kopy1(2
Korn(®p) (I11)
Im Kory1(; p)

Next, we show that |SKa-41(, p)| = 1 (mod p) for a rational prime lying below p. To do
this, first note that

m m
' p = HMH(’ i) and Xp = Han(DZ)

i=1 i=1
where , ; is a maximal Rp-order is a division algebra D; over Fj,. Then K, (; p) ~ [T, Kn(, i)
and K, (3p) = [1, Kn(D;). So it suffices to show that for each i, SKy41(, ;)] = 1(p). Put

, i =, i/rad, ;, ép = Ry /radRp. Let (, ; : Rp) =t. Also |SKa41(, ;)| = 1Kzre1To)l (see [8]).
_ ~ |K2rt1(Rp)| B
If |Rp| = p’ for some integer ¢ > 1. Then K1 (Rp)| = pU) — 1 and |Kopi1(, 5)| =

(r+1)t

p — 1. Hence SKo-4+1(, i) = 1(p) as required.

Now putting Hp = Im (§) in the sequence (II) above, we have an exact sequence

Korii(; p) R Kor11(5p)

= — — 0.
Im Korp1(Ap)  Im Koppa(Ap)

0— Hp —
Hence the result (ii).

3 Applications to finite p-groups

Let p be an odd rational prime, G a finite p-group. In this section we apply the foregoing
to A = ZG,¥ = QG and obtain simplified forms of (I) and (II) of the Introduction. In

the process of analysing the terms in (I) and (II), we prove that if , is a maximal Z-order

containing ZG, then for all » > 1, Cly._1(Z@G) is a finite p-group, ImK”i((F%G) is a finite p-
Ko, (T Kopq1 (D Kopi1(T
group, % is a p-group, that W and #ﬁ&@ are finite groups, and

SKor(Z,G) ~ SKo (ZG) /Clay(ZG).

Theorem 3.1 Let G be a finite p-group, (p an odd prime), , a mazimal Z-order in QG con-
taining ZG. Then

(i) For all r > 1, we have the exact sequences

Korni(o) Korp1(, p)

0 —s - — Ol (ZG) — 0
Im K27"+1 (ZG) Im K2r+1(ZpG) 27"( )
and
0 — Clo,(ZG) — SKy (ZG) — SK (ZyG) — 0
where ImK[Z:iEI(%G) and Imei;ijzpi & ore finite groups

10



(ii) For all v > 1, we have an ezxact sequence

KZT(QG) S GQT_I(ZqG/quG)@ KQ?"(QPG)

0 —2re ) -
Im Ko (ZG) — 4¢#p Im Koy (Z,G)

— ngr_l(ZG) —0

where

|Gor—1(Z4G /4LqG)| = |(9)
(iii) In the following exact sequence (see 2.12 (i)).

KZr(aAp) s KZT(Q;DG)

0— = =
Im Ko, (ZyQ) Im Ky (Z,Q)

— GQT—I(:p/p:p) — 03

Ko, (fp)
Im Ko, (ZpG)
(i) above.)

Kar (QPG)

is a p-group and |G2r,1(:p/p:p)| = 1(p). (Note that Tm K, (B,) UPPEOTS n

(iv) In the following exact sequence (see (II) in the proof of 3.3 (i))

Kal) | KalQG) | K2(QG)

O o Koy (ZG) " Tm Kop(ZG) " Tm Koy, )

— 0,

K>, (')

K2 (QG)
Tm Ko, (ZG)

Tm Ko, (1) —

that the middle term % appears in (ii) above.)

is a finite p-group and @ Gor—1(, /p,) is a torsion group. (Note
P

(v) For all r > 1, Clyr_1(ZG) is a finite p-group.

Remarks 3.2 Let R be the ring of integers in a number field F'; A any R-order in a semi-simple
F-algebra 3 such that f]p splits for all prime ideals p of R. First we analyse the group %

and observe that this situation applies notably for A = ZG, ¥ = QG when G is a finite p-group.

Theorem 3.3 Let R be the ring of integers in a number field F', A any R-order in a semi-simple
F-algebra X such that ﬁ]p splits for all prime ideals p of R. Suppose that , is a mazimal order
containing A.

Then for all r > 1, we have

(i)
Kor1(8) Koyrqaly) o it sron
Im(K27«+1(A)) _Im(K2r+1(A)) finit g p
(i)
Kn(S)
ey = @ Gl /)

K2r(z) / K2r(a )
Im KQT-(A) Im KQ,«(A)
where for each p, |Gor—1(, /P, )| = 1(p) for some rational prime p lying below p. Moreover,

K2, (%)

T 7, (T has no non-zero divisble subgroup. Also, Ko (, )/Im Ko.(A) is a finite group.

11



Proof. From the commutative diagram

Ka(d) 5 Kal,)
N W
Kn (%)
we obtain an exact sequence
K,(, K,(® K,(2

Now, SK,(, ) =~ @ SK,(, p) (see [8]).
P
Moreover, SK,(, p) = 0 for all n > 1 by [12] 1.1 and [10].

Hence SK,,(, ) =0 for all n > 1. So, we have a short exact sequence

Kal,) Ki(S) | K(®)

O K Tm Ko () Tm Ko(, )

— 0. (IT)
Now consider the localisation sequence
— Kn-i—l(a ) — Kn-l—l(z) _>EE Gn(a /pa ) — Kn(a ) — Kn(z) (HI)

— GSanl(a /pa ) — SGanl(a ) —0

Then Gar(, /p, ) = 0 for all » > 1 since , /p, is a finite ring (see [11]. So, it follows from the
sequence (IIT) above that Kop11(X)/Im(K2r41(, )) = 0. By substituting in (II) with n = 2r +1,
we have proved (i). The finiteness assertion follows from [18], 1.5.

We also have an exact sequence

@G2r(7 /pa ) — KZT‘(? ) — K27‘(2) %%9 G2r+1(7 /pa ) — SGerl(a ) —0

where Go.(, /p,) = 0 and SGor 1(,) = @ SGa 1(, p) = 0 (see [8], [10], [12]). Hence
P

Kor (2 . . o . .
% ~ % Gor+1(, /P, )- Now, since , /p, is a finite ring, each Ga,11(, /p, ) is finite

(see [11]). So, % has no non-zero divisible subgroups.

Now, by Devissage, Gor41(, /P, ) = Kor—1((, /p, )/rad(; /p, )) where ((, /p, )/rad(, /p, ))

is a finite semi-simple ring and hence a finite product of matrix algebras over finite fields. So, by
applying Quillen’s result on K-theory of finite fields, we have |Ga,_1(, /p, )| = 1(p) as required.
That ImK%;E()F) o~ (ImK%f()FJ / (M) follows from (II) above. Finally, it follows from

Im Ks-(A)
Kor(T) - o
[18], 1.5 that m is finite.

Proof of 3.1 First observe that for a finite p-group G, P = {p} (in the notation of 2.5) and so,
for any prime q # p, ZqG is a maximal order in QqG which splits and so, by (III) in the proof

12



Ko 41(QqG)  _ ) K2r1(QG) o Krga(T)
of 2.12, Imi(;lm = 0. Also by 3.3 (i) 2[(;1.:,.1(26*) ~ K;il(ZG)' Hence the sequence (I)

of 2.3 becomes (i) For n =2r, r > 1,

Ko i1(,) R K2T+I(QpG)

0— >
Im K2r+1(ZG) Im K2r+1(ZpG)

— Cly(ZG) — 0 (I)

(ii) For n = 2r — 1,

0— 7K2T(QG) — © Gor_1 Z;qG 2 (KQT(QA;DG)
ImKs, (ZG) q#p qZ4G ImKy, (Z,G)

— CKZT,I(ZG) —0 (II)

where |Go,_1 (q%%) | = 1(q). Moreover, the exact sequence 2.4 yields
0 — Clo(ZG) — SKop(ZG) — SKop(Z,G) — 0 (I11)

since for ¢ # p, SKy,(Z,G) = 0 and because Z,G is a maximal order (see [10] or [13]).
It follows from 2.12 (ii) that

Ko 1(QpG) | Korni(sp)
Im K2r+1(ZpG) Im K2r+1(ZpG)

where we observe that H, = 0 since SK,(, ,) = 0 for all n > 1 because Q,G splits (see [12] 1.1

K27‘+1(F) : 3 K2T+1(f‘ ) . .
and [10]). That — Koz 1 finite follows from [18], 1.5. Hence e K%H(é’pG) is finite from

(I) above since Cly,(ZG) is finite

(iii) It follows from lemma 2.12 (i) that we have an exact sequence

KZr(aAp) N K2T(QPG)

L s Gor1(, »/ps p) — O
Im Ko (Z,G)  Tm Koy (Z,G) 21 o/Pr )

0—

- - Ko (T
and that Ga,—1(, p/p, p) = 1(p). We now prove that %

Let |G| = p*, say. Then a = p*, , is an ideal of ZpG and , p and so we have a Cartesian

is a p-group.

square

~

7,6  — .,

L =
ZpG/a — ,Ap/a

which by [3], [23] leads to a long Mayer-Vietoris sequence. So, if for any Abelain group A, we
write A (%) for AR Z (%), then we have the following exact sequence

o R (/) (1) K6 (1) = Kl (3) @ 6 3

p



Now, p® annihilates (ZpG)/a and ,Ap/a and so, (ZpG)/a and ,Ap/a are 7 /p°Z-algebras. More-
over, I = rad ((ZpG)/a) ,J = rad (,Ap/a) are nilpotent in the finite rings (ZpG)/a, ,Ap/a re-
spectively and so, by [23], 5.4, we have that for all n > 1 K,,(Z,G)/a, I) and K,(, ,G)/a,J) are
p-groups. Now, by tensoring the long exact relative sequences (VI), (VII) below by Z (%)

oo — K1 (Zy)a) [T) — K, ((Z,G)/a, ) — K,((Z,G)/a) — K, (Z,G/a)/T) — ...

VD)
and
e Bt (@) T) — Kl pfs T) — Eonl(C pfa) — Knl( pfa)/T) —5 .. (V1D
we have that ) . ) .
Ko(; p/a) (5) ~ Ko(( pfa)/) (5)
and
Ko((24G)/2) (})) ~ Ko (2,G)/a)/T) (}))

Now (Z,,G /a)/I and (,Ap /a)/J are finite semi-simple rings and hence direct products of matrix

algebras over finite fields. So, by Quillen’s result,

K (2,6 /2) (1) = Kar (2,6 /)/1) (3) =0 (v

" K /) (1) = Ko/ (3) =0 (1x)

Now if n = 2r in the M — V sequence (V) and we substitute (VIII) and (IX) above, then
(V) becomes

= Korn(p/a) (%) s Ko (2,G) (%) Kol ) (%) 0 (X)

Koy (Fp)

i.e. Kop(ZpG) — Ko (, p) is an epimorphism mod p-torsion, i.e. T (Ko (50

is a p-group.

K (I) Kar(I'p)
m Ko, (2G) Im Ko, (7,G)
some details. If |G| = p* and we write b = p®, , then the Cartesian square

(iv) The proof that is a p-group is similar to that for and we omit

72G —

l l

ZG/b —s /b

yields a long Mayer-Vietoris sequence
1 1 1 1
oo — Kpi(, /b) [ = ) — Kn(ZG) | = | — Ku(,) | = ) @ Kn(ZG/b) | -
p p p p
1

s Ko, /a) <5> s Ky 1 (ZG) G)) . (XT)

14



and when n = 2r, we have by similar arguments to those of (iii), that Ky, (ZG/b) (l>

0=
P
Ko (, /b) (%) Hence the exact sequence (XI) becomes

s Korn( /b) (%) — Ko, (ZG) (%) — Ko, ) (})) —0

and so, Ko, (ZG) — Ko, (, ) is an epimorphism modulo p-torsion and so #(I(%G) is a p-group.

We now prove that #% is finite. Observe tht QG = Q @ (é Mnl(Q(wl)> say,
r l:1

where w; is a p-power root of unity and , = Z @ (é M,, (Z[wz]> (see [4]) where Z[w;] is
i=1
the ring of integers in Q(w;). So, for all n > 1, K,(QG) ~ K,(Q) & (é Kn(Q(w,)> and
i=1
K,(,)~K,(Z)® (é Kn(Z[wz]> But it is well know that if F is a number field, and Op the
i=1

ring of integers of F', then for all r > 1, K5, (Op) is finite (see [2]). Hence Ko, (, ) is finite. Hence

#&%G)) is finite. Hence #&%G)) is a finite p-group. (Note that it also follows directly

from [18], 1.5, that #E(FZ)G) is finite.)

(v) We now prove that for all » > 1, Cly,_1(ZG) is a finite p-group. To do this, it suffices to
show that SKy, 1(Z@G) is a finite p-group. This we now set out to do. If we put n =2r — 1 in
the M — V sequence (XI), and use the fact that Ko.(Z/b) (%) =0 = Ko (, /b) (%), then the

exact sequence (XI) becomes

0 — Kor (ZG) G)) s Ko a(,) (%) ® Ko 1(ZG/b) G) .

which shows that K9, 1(ZG) — Ky-—1(, ) is a monomorphism mod p-torsion: i.e.
Ker(Kor—1(ZG) — Kar_1(, )) is a p-torsion group. It is also finite since it is finitely generated
as a subgroup of Ky, 1(ZG) which is finitely generated (see [16], 2.1). Hence

Ker(Kor_1(ZG) N Kyr—1(, )) is a finite p-group.

Now, the exact sequence associated to composite « = v in the commutative diagram
Ky 1(ZG) % Ky 1(QG)
B y
Kor1(,)
is
0 — Ker f — SKo9 1(ZG) — SKor—1(, ) — ...

where Ker 3 is a finite p-group.
t
Now, , =Z® (EB M, (Z[wd) where wj; is a p-power root of unity (see [4]). So, SK,(, ) ~
i=1

t
SK,(Z)® (EB SKn(Z[wi]>. But it is a result of Soule [22] that if F' is a number field and Op
i=1
the ring of integers of F', then SK,,(Or) =0 V n > 1. Hence SK,(,) =0 V n > 1. So,
SKy _1(ZG) ~ Ker (3 is a finite p-group and hence Cly,._1(ZG) is also a finite p-group.
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4 Some induction techniques for higher class groups of group-
rings

4.1 Let C be a class of finite groups closed under subgroups. For each finite group G, let
C(G) = {H < G|H € C}. Then a Mackey functor M = (M*, M,) (see [5], [6], [15], [19])
(defined from the category of finite groups with monomorphisms to the category of Abelian
groups) is called C-generated if for any finite group G, Y ?G M(H) M M(G) is onto. M is
called C-computable (with respect to induction) if for ariy(Gz, M., (covariant functor) induces
an isomorphism M(G) ~ lim M(H).
Hee(G)
M is called C-detected (or resp. C-computable) with respect to restriction if for all finite

groups G the homomorphism M(G) — lim M(H) induced by M* (a contravariant functor)
HeC(q)
is a monomorphism (resp. isomorphism).

If H< G andi:H — G the inclusion map, it is usual to write ind% = M, (i) : M(H) —
M(G) and res§; = M*(i) : M(G) — M(H) for the induced homomorphisms.

The next result is crucial for the applications.

Theorem 4.2 [5], [19] Let M be a Mackey functor that is also a module over the Green functor
G. Suppose that C is a class of finite groups such that G is C-generated. Then M is C-computable

for both induction and restriction.

Remarks 4.3 Let R be a Dedekind domain with quotient field F. In [6], [7], [13], it was
proved that the higher K-functors K,(R—),SK,(R—),Gn(R—),SG,(R—), etc. for alln > 0
are Mackey functors on the category of finite groups and that they are also modules over the
Green functors Go(R—). It was also shown that these K-theoretic functors are hyper-elementary

~

computable (see [5], [6], [13]). Hence C¢,(R—) := Ker(SK,(R—) - ® SK,(Rp—) are also
Mackey functors since (SK,(R—) — ® SK,(Rp—) is a morphism of M:ckey functors that are
modules over the Green functors Go(llw)?—).

On the other hand, it follows easily from [19], 1.18, that if R is a Dedekind domain with quo-
tient field F', then the functors K,,(R—), C¢,(R—) are additive functors from the category of R-
orders with bimodule morphisms to the category .4b of Abelian groups and so, K,,(R—), C¢,(R—)
are Mackey functors that are modules over the Green functors Go(R—) and are also hyper-
elementary computable.

In this section, we obtain further results on C?,(RG) based on these induction techniques

that have worked at lower levels, see [19], [15], [5].

4.4 A Mackey functor M = (M*, M) (M* contravariant, M, covariant) is said to be p-local
if M(G) = M*(G) = M.(G) is a Z()-module for all finite groups G. Let H < G, define
o QG) = Z by or(S) = |S”| = number of elements in S¥ where S is a G-set and
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SH = {5 € S|gs = s for all g € H}. Let Conj(G) be the set of conjugacy classes of G. Then we
have a homomorphism ¢ = llyy : Q(G) — I1 7 which is injective with finite cokernel
Geconj(G)
(see [15] or [5]).
Note that any Mackey functor is in a canonical way an (—)- module and any Green functor
is a Q(—)-algebra [15], [19]. Moreover, any p-local Mackey functor is an (—),)-module. Hence
all the higher K-functors Ky, (R—) ) SKy(R—)p) Cly(R—)(p) ete. are Q(—)

for any functor M we write M, for Z ) @ M.

)

py-modules, where

It is also well known that an element x € Q(G) (or in Q(G),)) is an idempotent if and only
if o (x) € {0,1} for all H < G (see [15], [5] or [19]).

Theorem 4.5 [19] Let p be a rational prime and G a finite group, C, a cyclic subgroup of

G or order prime to p. Then there exist idempotents ec(G) € Q(G) ) such that for all H <
1 if for some C' conjugate

to C,C" <H and H/C'

is a p — group
0 otherwise

G, ou(ec(@)) =

Definition 4.6 Letp be a prime. A p-hyper-elementary group is a finite group of the form Cp, X
where C, is a cyclic group of order n and w is a p-group. Let K be a field of characteristic zero.
A p-hyper-elementary group is said to be p — K -elementary of Im[n cony Aut(Cp) =~ (Z/n)*] C
Gal(K (¢,)/K) where ¢, is the primitive n'* root of 1 and the Galois group Gal(K((,)/K) is
regarded as a subgroup of Aut(C,,) via the action on ((,) ~ Cy. A finite group is K -elementary
if it is p— K -elementary for some p. Note that a group is hyper-elementary iff it is Q-elementary
since Gal(Q((n)/Q) = Aut(Cy). The group Cy, x 7 is C-elementary if it is a direct product.

Definition 4.7 Let G be a finite group and F a field of characteristic zero. Then two elements
g,h € G are said to be F-conjugate if h is conjugate to g* for some a in Gal(F(,/F) where n
is the order of g. For example, g and h are Q-conjugate iff (g) and (h) are conjugate subgroups
of G.

Also, if C = {(g) is a cyclic subgroup of G such that n=order of g = |C|, define N5(C) =
NE(g) = {z € Glzgz~! = g* for some a € Gal(F(,/F). Write P(G) for the st of p-subgroups
of G.

We now record the following important result

Theorem 4.8 [19] Let p be a fized prime, F a field of characteristic zero, G = Cp, X w(p{n,w
a p-group) a p-hyper-elementary group. Then FC, ~ II", F; where F; = F((,;) for some n;
dividing n. Moreover, G is p — F-elementary if and only if the conjugation action of m on FC,
leaves each Fj invariant. In this case FG = F(Cp x ) ~ I, F;(m)! where F;(m)! is the twisted

group-ring with twisting t : m — Gal(F;/F) induced by conjugation action of m on F;.
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If further, R is a Dedekind domain with field of fraction F and if R; C F; is the integral
closure of R, then TI' | R;[x]" is an R-order in FG and RG = R[C,, x 7] C I, R;[x]' C 1RG.

Remarks 4.9 If in 4.8, F = @Q, then Gal(Q¢,/Q) = (Z/n)*, Z(, is the ring of integers in

QCr, QC, = TI Q¢; and the maximal order in QC), is II Z(y (see [19], [4]). So, if G =
dln dln

Cp X m,ptn, ™ a p-group, we have an inclusion of Z-orders ZG = Z(C,, x ) C I Zy[x]" (of
dn
index prime to p) and so by Corollary 2.7 and Theorem 2.9

Cln(2G)p) = dI‘In Cln(ZCalm]") ()
since p & P.

Remarks 4.10 Let R be a Dedekind domain with quotient field F, M = C¢,(R—) n>1,pa
rational prime and Cy(G) the set of conjugacy class representatives of cyclic subgroups C' C G
of order prime to p. For each C' € Cy(G), let ec € Q(G)(,) be the idempotent defined in 3.4.
Put M¢(G) = ec(G)M(G) C M(G). Then it follows from [19], 11.5, that

(i) For any finte group G, M(G) = &  M¢c(Q)
CeCy(Q)

(ii) For any finte group G and each C € Cy(G)

Mc(G) >~ lin Mc(C X 7r) ad IHP Mc(C X 7T)
TEP(N(C)) TEP(N(C))

where the limits are taken w.r.t. M,, M* applied to inclusions and conjugation by elements

of N(C) =: N(C)

(iii) Let G = C,, x m where 7 is a p-group and p { n. For any H = C,,, x 7 C G, (m|n),
Res{; o Ind% is an automorphism of M (H) and for each k dividing m, write Mj for M¢
where C' < G is the subgroup of order k and set My(G) = 0 if k  m. Then we have
isomorphisms ¥ind% : My (H) ¢ My(G) and *Res$; : My, (G) ~ My,(H). Moreover,

My (G) = Ker(@Res : M(G) = M(Cp @ ) — ©p|nM(Cyyp ¥ )] .

The following theorem 4.11 is the target result for this section. The proof is an adaptation

of that in [19], 11.8, in the context of C'¢; and some details are omitted.

Theorem 4.11 Let p be an odd rational prime, G any finite group. let g1,...,9, be a set of

conjugacy class representatives of elements of order prime to p. Let s; := order of g; = |{g:)|.
Then for alln > 1, Cly(ZG)py~ & lim  Cly(Z¢s, (1)) -
" meP(Na((9:)
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Proof. Let M = Z,) ® Cly(Z~) := Cl(Z~)(p), for n > 0. Note that M is a Mackey functor
either through [6], [7], [13] or because it is a functor on the category of Z-orders with bimodule
morphisms (see 4.2 and [19]). Let G be a fixed finite group and Cy(G) a set of conjugacy
class representatives of cyclic subgroups C C G of order prime to p. Note that two elements
g, h are QQ-conjugate iff they generate conjugate subgroups (see 4.7 or [19]). Hence, by 4.10 (i)
MG)= @& Mce(G). If for a fixed C, s = |C|, we have by 4.10 (ii) that

CeCy(G)

Mce(G) = lim M (C x ) (IT)
T€P(Ne)
(in the notation of 4.10 (iii)).
Now, by [19], 11.2, M is computable with respect to p — Q-elementary subgroups. So, for
any m € P(N(C)),
Ms(C ) = lim{Ms(C = p)lp € wN NE(C)}

Now, by 4.8, Z(Cs x ) =~ [I Z((m)! < L Z(Cy x m) and Z(s(m)! C I Ziy(m)t < 1 Z¢ [
d|s d|s
Also by Remarks 4.9,

Clo(Z(Cs x )y = (}‘IS Cén(ZCd(Tr)Ep)

Now, since there are r ()-conjugacy class representatives of elements of order prime to p, we

have
Cln(ZG)p) ~

I P=

lim Lo (245, (m)") )

L reP(Na((gi))

i
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