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1 Synopsis

1. The understanding of the mechanism responsible for the breakdown of the electroweak

symmetry is one of the central problems in particle physics. If the fundamental particles

{ leptons, quarks and gauge bosons { remain weakly interacting up to high energies, then the

sector in which the electroweak symmetry is broken must contain one or more fundamental

scalar Higgs bosons with masses of the order of the symmetry breaking scale v � 174 GeV.

Alternatively, the symmetry breaking could be generated dynamically by novel strong forces

at the scale � � 1 TeV. However, no compelling model of this kind has yet been formulated

which provides a satisfactory description of the fermion sector and reproduces the high precision

electroweak measurements.

2. The simplest mechanism for the breaking of the electroweak symmetry is realized in the

Standard Model (SM) [1]. To accommodate all observed phenomena, a complex isodoublet

scalar �eld is introduced which, through self-interactions, spontaneously breaks the electroweak
symmetry SU(2)L�U(1)Y down to the electromagnetic U(1)EM symmetry, by acquiring a non{
vanishing vacuum expectation value. After the electroweak symmetry breakdown, the interac-

tion of the gauge bosons and fermions with the isodoublet scalar �eld generates the masses of
these particles [2]. In this process, one scalar �eld remains in the spectrum, manifesting itself
as the physical Higgs particle H.

The mass of the SM Higgs boson is constrained in two ways. Since the quartic self-coupling
of the Higgs �eld grows inde�nitely with rising energy, an upper limit on the Higgs mass is
obtained by demanding that the SM particles remain weakly interacting up to a scale � [3]. On
the other hand, stringent lower bounds on the Higgs mass can be derived from the requirement
of stability of the electroweak vacuum [3, 4]. Hence, if the Standard Model is valid up to

scales near the Planck scale, then the SM Higgs mass is restricted to the range between � 130
GeV and � 180 GeV, for a top-quark mass Mt � 176 GeV. Moreover, if the Higgs particle is
discovered in the mass range up to the 100 GeV accessible at LEP2, this will imply that new
physics beyond the Standard Model should exist at energies below a scale � of order 10 TeV.
[These bounds become stronger (weaker) for larger (smaller) values of the top quark mass].

The high precision electroweak data give a slight preference to Higgs masses of less than
100 GeV, despite the fact that the electroweak observables depend only logarithmically on the
Higgs mass through radiative corrections [5]. They do not, however, exclude values up to � 700

GeV at the 2� level [6], thus sweeping the entire Higgs mass range of the Standard Model. By

searching directly for the SM Higgs particle, the LEP experiments [7] have set a lower bound,
mH > 65:2 GeV [95% CL], on the Higgs mass.

The dominant production mechanism for the SM Higgs boson within the energy range of

LEP2 is the Higgs{strahlung process e+e� ! ZH in which the Higgs boson is emitted from a

virtual Z boson [8]. The cross section monotonically falls from � 1 pb at mH � 65 GeV down
to very small values for Higgs masses near the kinematical threshold. The cross section for the
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production of Higgs bosons via WW fusion [9, 10] is nearly two orders of magnitude smaller

at LEP2, except at the edge of the phase space for Higgs{strahlung where both are small. In

the mass range between 60 and 120 GeV, the dominant decay mode of the SM Higgs particle

is b�b [12]. Branching ratios for Higgs decays to �+��; c�c and gg �nal states are suppressed by

an order of magnitude or more.

The experimental search for the SM Higgs boson at LEP2 will be based primarily on the

Higgs{strahlung process. The Z boson can easily be reconstructed in all charged leptonic and

hadronic decay channels while the Higgs decay mostly leads to b�b and, less frequently, to �+��

�nal states. Moreover, neutrino decays of the Z boson, augmented by W fusion events, can

be exploited in the experimental analyses. Higgs events can be searched for with an average

e�ciency of about 25%. Exploiting micro{vertex detection for tagging b quarks, the Higgs

events can be well discriminated from the main background process of ZZ production even for

a Higgs mass near the Z mass. When the results of all four LEP experiments are combined,

after accumulating an integrated luminosity
R L = 150 pb�1 per experiment, the SM Higgs

boson can be discovered in the mass range up to mH ' 95 GeV at LEP2 for a total center of

mass energy of
p
s = 192 GeV.

3. If the Standard Model is embedded in a Grand Uni�ed Theory (GUT) at high energies,

then the natural scale of electroweak symmetry breaking would be close to the uni�cation scale
MGUT, due to the quadratic nature of the radiative corrections to the Higgs mass. Super-
symmetry [13] provides a solution to this hierarchy problem through the cancellation of these
quadratic divergences via the contributions of fermionic and bosonic loops [14]. Moreover, the
Minimal Supersymmetric extension of the Standard Model (MSSM) can be derived as an ef-

fective theory from supersymmetric Grand Uni�ed Theories [15], involving not only the strong
and electroweak interactions but gravity as well. A strong indication for the realization of this
physical picture in nature is the excellent agreement between the value of the weak mixing angle
sin2 �W predicted by the uni�cation of the gauge couplings, and the measured value [15]-[21]. In
particular, if the gauge couplings are uni�ed in the minimal supersymmetric theory at a scale

MGUT = O(1016 GeV) and if the mass spectrum of the supersymmetric particles is of order mZ,
then the electroweak mixing angle is predicted to be sin2 �W = 0:2336�0:0017 in the MS scheme
for �s = 0:118�0:006, to be compared with the experimental result sin2 �expW = 0:2314�0:0003.
Threshold e�ects at both the low scale of the supersymmetric particle spectrum and at the high

uni�cation scale may drive the prediction for sin2 �W even closer to its experimental value.

In the past two decades a detailed picture has been developed of the Minimal Supersymmet-
ric Standard Model. In this extension of the Standard Model the Higgs sector is built up of two
doublets, necessary to generate masses for up{ and down{type fermions in a supersymmetric

theory, and to render the theory anomaly{free [22]. The Higgs particle spectrum consists of a

quintet of states: two CP{even scalar (h;H), one CP-odd pseudoscalar neutral (A), and a pair
of charged (H�) Higgs bosons [23] .

355



Since the tree{level quartic Higgs self{couplings in this minimal theory are determined in

terms of the gauge couplings, the mass of the lightest CP-even Higgs boson h is constrained very

stringently. At tree-level, the mass mh has been predicted to be less than the Z mass [24, 25].

Radiative corrections to m2

h grow as the fourth power of the top mass and the logarithm of the

stop masses. They shift the upper limit to about <
� 150 GeV [26, 27], depending on the MSSM

parameters.

The upper limit on mh depends on tan�, the ratio of the vacuum expectation values associ-

ated with the two neutral scalar Higgs �elds. This parameter can be constrained by additional

symmetry concepts. If the theory is embedded into a grand uni�ed theory, the b and � Yukawa

couplings can be expected to unify at MGUT. The condition of b-� Yukawa coupling uni�cation

determines the value of the top-quark Yukawa coupling at low energies [28], thus explaining

qualitatively the large value of the top quark mass [18],[29]-[32]. For the present experimental

range [33], Mt = 180 � 12 GeV, the condition of b-� uni�cation implies either low values of

tan �, 1 <
� tan � <

� 3, or very large values of tan � = O(mt=mb) [29]-[32]. In the small tan�

regime, the top-quark mass is strongly attracted to its infrared �xed point [34], implying a

strong correlation between the top-quark mass and tan �. The large tan � regime is more
complex because of possible large radiative corrections to the b quark mass associated with
supersymmetric particle loops [35, 36]. For small tan� and Mt <� 176 GeV, the upper bound
on the mass of the lightest neutral Higgs particle is reduced to � 100 GeV. This mass bound
is just at the edge of the kinematical range accessible at a center of mass energy of 192 GeV

[37] { raising the prospects of discovering this Higgs boson at LEP2.

The structure of the Higgs sector in the MSSM at tree level is determined by one Higgs
mass parameter, which we choose to be mA, and tan �. The mass of the pseudoscalar Higgs

boson mA may vary between the present experimental lower bound of 45 GeV [7] and � 1 TeV,
the heavy neutral scalar mass mH is in general larger than � 120 GeV, and the mass of the
charged Higgs bosons exceeds � 90 GeV. Due to the kinematics the primary focus at LEP2
will be on the light scalar particle h and on the pseudoscalar particle A. In the decoupling
limit of large A mass [yielding large H;H� masses], the Higgs sector becomes SM like and the

properties of the lightest neutral Higgs boson h coincide with the properties of the Higgs boson
H in the Standard Model [38].

The processes for producing the Higgs particles h and A at LEP2 are Higgs{strahlung

e+e� ! Zh, and associated pair production e+e� ! Ah [39]. These two processes are com-
plementary. For small values of tan � the h Higgs boson is produced primarily through Higgs{

strahlung; if kinematically allowed, associated Ah production becomes increasingly important

with rising tan �. The typical size of the cross sections is of order 1 pb or slightly below. The
dominant decay modes of the h;A Higgs bosons are decays into b and � pairs, if we consider

SM particles in the �nal state [12]. Only near the maximal h mass for a given value of tan�
do c�c and gg decays occur at a level of several percent, in accordance with the decoupling

theorem. However, there are areas in the SUSY [�;M2] parameter space where Higgs particles
can decay into invisible �0

1
�0
1
LSP �nal states or possibly other neutralino and chargino �nal

states [40, 41]. If the LSP channel is open, the h and A invisible decay branching ratios can be
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close to 100% for small to moderate values of tan �. However, the Higgs boson h can still be

found in the Higgs{strahlung process. The pseudoscalar A, produced only in association with

h, would be hard to detect in this case since both particles decay into invisible channels for

small tan�.

The experimental search for h in the Higgs{strahlung process follows the lines of the Stan-

dard Model, while for associated Ah production b�bb�b and b�b�+�� �nal states can be exploited.

Signal events of the Ah type can be searched for with an e�ciency of about 30%; the back-

ground rejection is somewhat more complicated than for Higgs{strahlung, due to two unknown

particles in the signal �nal state. For small to moderate tan�, h particles with masses up to

� 100 GeV can be discovered in the Higgs{strahlung process. For large tan � the experimen-

tally accessible limits are typically reduced by about 10 GeV. The pseudoscalar Higgs boson A

is accessible for masses up to about 80 GeV. [These limits are based on the LEP2 energy of 192

GeV and an integrated luminosity of
R L = 150 pb�1 per experiment, with all four experiments

pooled.]

The supersymmetric theory may be distinguished from the Standard Model if one of the
following conditions occurs: (i) at least two di�erent Higgs bosons are found; (ii) precision
measurements of production cross sections and decay branching ratios of h can be performed
at a level of a few per cent; and (iii) genuine SUSY decay modes are observed. Near the

maximum h mass, the decoupling of the heavy Higgs bosons reduces the MSSM to the SM
Higgs boson except for the SUSY decay modes.

4. In summary. If a neutral scalar Higgs boson is found at LEP2, new physics beyond the
Standard Model should exist at scales of order 10 TeV. In the framework of the Minimal
Supersymmetric extension of the Standard Model, there are good prospects of discovering the
lightest of the neutral scalar Higgs bosons at LEP2. Even though this discovery cannot be
ensured, observation or non{observation will have far reaching consequences on the possible

structure of low{energy supersymmetric theories.

In section 2 the theoretical analysis and experimental simulations for the search for the

Higgs boson in the Standard Model are presented. In section 3 the Higgs spectrum and the

couplings in the MSSM as well as the relevant cross sections and branching ratios are studied.
In addition, the results of the experimental simulations are thoroughly discussed. Section 4
investigates opportunities of detecting Higgs particles at LEP2 within non-minimal extensions

of the SM and the MSSM. In particular, the next{to{minimal extension of the MSSM with an

additional isoscalar Higgs �eld (NMSSM) is studied.
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2 The Standard{Model Higgs Particle

2.1 Mass Bounds

(i) Strong interaction limit and vacuum stability. Within the Standard Model the value of the

Higgs mass mH cannot be predicted. The mass mH =
p
2�v is given as a function of the

vacuum expectation value of the Higgs �eld, v = 174 GeV, and the quartic coupling � which

is a free parameter. However, since the quartic coupling grows with rising energy inde�nitely,

an upper bound on mH follows from the requirement that the theory be valid up to the scale

MP lanck or up to a given cut-o� scale � below MP lanck [3]. The scale � could be identi�ed

with the scale at which a Landau pole develops. However, in the following the upper bound on

mH shall be de�ned by the requirement �(�)=4� � 1 so that � characterizes the energy where

the system becomes strongly interacting. [This scale is very close to the scale associated with

the Landau pole in practice.] The upper bound on mH depends mildly on the top-quark mass

through the impact of the top-quark Yukawa coupling on the running of the quartic coupling
�,

d�

dt
=

6

16�2

�
�2 + �h2t � h4t

�
+ elw: corrections (1)

with t = ln(Q2=�2). The �rst two terms inside the parentheses are crucial in driving the quartic
coupling to its perturbative limit. On the other hand, the requirement of vacuum stability in
the SM imposes a lower bound on the Higgs boson mass, which depends crucially on the top-
quark mass as well as on the cut-o� � [3, 4]. Again, the dependence of this lower bound on

Mt is due to the e�ect of the top-quark Yukawa coupling on the quartic coupling of the Higgs
potential [third term inside the parentheses of eq.(1)], which drives � to negative values at large
scales, thus destabilizing the standard electroweak vacuum.

Fig.1 shows the perturbativity and stability bounds on the Higgs boson mass of the SM
for di�erent values of the cut-o� � at which new physics is expected. From the point of view
of LEP physics, the upper bound on the SM Higgs boson mass does not pose any relevant
restriction. The lower bound on mH , instead, needs to be carefully considered. To de�ne
the conditions for vacuum stability in the SM and to derive the lower bounds on mH as a

function of Mt, it is necessary to study the Higgs potential for large values of the Higgs �eld �

and to determine under which conditions it develops an additional minimum deeper than the

electroweak minimum. The renormalization group improved e�ective potential of the SM is

given by

Veff: = V0 + V1 ' �m2(t)�2(t) +
�(�)

2
�4(t) (2)

where V0 and V1 are the tree{level potential and the one{loop correction, respectively. A
rigorous analysis of the structure of the potential has been done in Ref.[4]. Quite generally it

follows that the stability bound on mH is de�ned, for a given value of Mt, as the lower value of

mH for which �(�) � 0 for any value of � below the scale � at which new physics beyond the
SM should appear. From eq.(1) it is clear that the stability condition of the e�ective potential

demands new physics at lower scales for larger values of Mt and smaller values of mH.
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Figure 1: Strong interaction and stability bounds on the SM Higgs boson mass. � denotes the

energy scale where the particles become strongly interacting.

From Fig.1 it follows that for Mt = 175 GeV and mH < 100 GeV [i.e. in the LEP2 regime]

new physics should appear below the scale � � a few to 100 TeV. The dependence on the
top-quark mass however is noticeable. A lower value, Mt ' 160 GeV, would relax the previous
requirement to � � 103 TeV, while a heavier value Mt ' 190 GeV would demand new physics
at an energy scale as low as 2 TeV.

The previous bounds on the scale at which new physics should appear can be relaxed if
the possibility of a metastable vacuum is taken into account [42]. In fact, if the e�ective
potential of the SM has a non-standard stable minimum deeper than the standard minimum,
the decay of the electroweak minimum by thermal 
uctuations or quantum tunnelling to the

stable minimummust be suppressed. In this case, the lower bounds on mH follow from requiring
that no transition at any �nite temperature occurs, so that all space remains in the metastable

electroweak vacuum. In practice, if the metastability arguments are taken into account, the

lower bounds on mH become gradually weaker. They seem to disappear if the cut-o� of the
theory is at the TeV scale; however, the calculations are technically not reliable in this energy

regime. Moreover, the metastability bounds depend on several cosmological assumptions which
may be relaxed in several ways.

(ii) Estimate of the Higgs mass from electroweak data. Indirect evidence for a light Higgs boson

comes from the high{precision measurements at LEP [6] and elsewhere. Indeed, the fact that

the SM is renormalizable only after including the top and Higgs particles in the loop corrections
shows that the electroweak observables should be sensitive to these particle masses. Although
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Figure 2: ��2 = �2��2min vs mH curves. Continuous line: based on all LEP, SLD, p�p and �N

data; dashed line: as before, but excluding the LEP+SLD measurements of Rb and Rc; dotted

line: LEP data including measurements of Rb and Rc. In all cases, the direct measurement of

Mt at the TEVATRON is included.

the sensitivity to the Higgs mass is only logarithmic, while the sensitivity to the top-quark

mass is quadratic, the increasing precision of present experiments makes it possible to derive
�2 curves as a function of mH. Several groups [6] have performed an analysis of mH by means
of a global �t to the electroweak data, including low and high energy data. In the light of
the recent direct determination of Mt, the results favor a light Higgs boson. With all LEP,

SLD, p�p and �N data included, a central value for mH around 80 GeV and Mt � 170 GeV is

obtained [6]. However, the recently reported LEP values of Rb � �Z!b�b=�Z!hadrons and Rc �
�Z!c�c=�Z!hadrons which are more than 2 standard deviations away from the SM predictions, and

the left-right asymmetries of SLD which still lead to a 2� discrepancy in sin2 �W compared with
LEP analyses, have drastic e�ects on the SM �ts. Fig.2 shows ��2 = �2 � �2min as a function

of mH ; the curve is rather 
at at the minimum due to the mild logarithmic dependence of the
observables on mH. It should be noticed in this context that the bounds on mH become very

weak if Rb, Rc and/or the left-right asymmetries are excluded from the data.
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In summary. It is clear that the indirect bounds on mH cannot assure the existence of a

light Higgs boson at the reach of LEP2. However, the fact that the best �t to the present

high-precision data tends to prefer a light SM Higgs boson, indicates that this particle may be

found either at LEP or LHC. On the other hand, the stability bounds imply that if the Higgs

boson is light, new physics beyond the Standard Model should appear at relatively low energies

in the TeV regime.

2.2 Production and Decay Processes

The main mechanism for the production of Higgs particles in e+e� collisions at LEP2 energies

is the radiation o� the virtual Z-boson line [8],

Higgs-strahlung : e+e� ! ZH (3)

The fusion process [9, 10, 11] in which the Higgs bosons are formed in WW collisions, the
virtual W 's radiated o� the electrons and positrons,

WW fusion : e+e� ! ��e�eH (4)

has a considerably smaller cross section at LEP energies. It is suppressed by an additional power
of the electroweak coupling with respect to the Higgs-strahlung process, becoming competitive
only at the edge of phase space in (3), where the Z boson turns virtual. In this corner, however,

both cross sections are small and the experimentally accessible mass parameter space will be
extended only slightly by the fusion channel.

Z

e�

e+

Z

H

W

e�

e+

�e

H

��e

W

Figure 3: Higgs-strahlung and WW fusion of the SM Higgs boson.

2.2.1 Higgs-strahlung

The cross section for the Higgs-strahlung process can be written in the following compact form:

�(e+e� ! ZH) =
G2

Fm
4

Z

96�s

�
v2e + a2e

�
�

1
2
� + 12m2

Z=s

(1 �m2

Z=s)
2

(5)

where
p
s denotes the center-of-mass energy, and ae = �1, ve = �1 + 4 s2w are the Z charges

of the electron; � = (1 �m2

H=s �m2

Z=s)
2 � 4m2

Hm
2

Z=s
2 is the usual two-particle phase space
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function. The radiative corrections to the cross section are well under control. The genuine

electroweak corrections [43] are small at the LEP energy, less than 1.5% (for a recent review see

Ref.[44]). By contrast, photon radiation [45] a�ects the cross section in a signi�cant way. The

bulk of the corrections, real and virtual contributions due to photons and e+e� pairs, can be

accounted for by convoluting the Born cross section in eq.(5) with the radiator function G(x),

h�i =
Z

1

xH

dxG(x)�(xs) (6)

with xH = m2

H=s. The radiator function is known to order �2, including the exponentiation of

the infrared sensitive part,

G(x) = � (1� x)��1 �V+S + �H(x) (7)

where �V+S and �H are polynomials in log s=m2

e and � = 2�
�
[log s=m2

e � 1]. �V+S accounts for

virtual and soft photon e�ects, �H for hard photon radiation. The �'s are given in Ref.[45].

The cross-section for Higgs-strahlung is shown in Fig.4 for the three representative energy
values

p
s = 175, 192 and 205 GeV as a function of the Higgs-mass [46]. The curves include

all genuine electroweak and QED corrections introduced above. The Z boson in the �nal state
is allowed to be o�-shell, so that the tails of the curves extend beyond the on-shell limit mH =p
s �mZ. [The Higgs boson is so narrow, �H < 3 MeV for mH < 100 GeV, that the particle

need not be taken o�-shell.] From a value of order 0:3 to 1 pb at mH � p
s � 110 GeV, the

cross section falls steadily, reaching a level of less than 0.05 pb at the mass mH �
p
s�90 GeV.

Since the Higgs particle decays predominantly to b�b and �+�� pairs, the observed �nal state
consists of four fermions. Among the possible �nal states, the channel �+��b�b, the � pair being
generated by the Z decay, has a particularly simple structure. Background events of this type

are generated by double vector-boson production e+e� ! Z�Z�; Z�
� and 
�
� with the virtual
Z�; 
� decaying to �+�� and b�b; Z �nal states generate by far the dominant contribution. Since
these processes are suppressed by one and two additional powers of the electroweak coupling
compared with the signal [except for mH � mZ], the background can be controlled fairly easily
up to the kinematical limit of the Higgs signal. This is demonstrated in Tables 1/2 and Fig. 6

where signal and background cross sections for the process e+e� ! �+��b�b are compared for

three Higgs masses at
p
s = 192 GeV. The invariant �+�� mass is restricted to mZ � 25 GeV

and the invariant b�b mass is cut at m(b�b) > 50 GeV. The following conclusions can be drawn
from the tables and the �gure: (i) The signal-to-background ratio decreases steadily with rising
Higgs mass from a value of about three near mH = 65 GeV; (ii) The initial state QED radiative

corrections are large, varying between 10 and 20%; (iii) The cross sections are lowered by taking

non-zero b quark masses into account, but only marginally at a level of less than 1%. Since
massless fermions are coupled to spin-vectors in Z� decays but to spin-scalars in Higgs decays,
signal and background amplitudes do not interfere as long as b quark masses are neglected.
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Figure 4: The cross section for Higgs-strahlung as a function of the Higgs mass for three repre-

sentative energy values [QED and electroweak radiative corrections included].

�(e+e� ! H + neutrinos) [fb]p
s = 192 GeV

thr
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int
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Figure 5: Higgs-strahlung (dashed) andWW fusion (long-dashed) processes for Higgs production

in the cross-over region [without radiative corrections]. The solid line shows the total cross

section for both processes including the (dotted line) interference term.
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Table 1: The process e+e� ! �+��b�b at
p
s = 192 GeV. No initial state radiation is included.

The cross sections are given in fb.

mH [GeV] 65 90 115 1

CompHEP0 37.264(58) 24.395(46) 10.696(13) 10.634(13)
CompHEP4:7 37.147(58) 24.279(46) 10.580(13) 10.518(13)
EXCALIBUR | | | 10.6398(15)
FERMISV | | | 9.49(23)
GENTLE0 37.3975(37) 24.4727(25) 10.7022(11) 10.6401(11)
HIGGSPV 37.393(27) 24.490(21) 10.694(16) 10.65(05)

HZHA/PYTHIA 36.79(13) 23.53(13) 10.28(13) 10.22(13)
WPHACT4:7 | | | 10.5243�0.24E-02
WPHACT0 37.39896�0.64E-02 24.47269�0.40E-02 10.70272�0.24E-02 10.64070�0.24E-02

WTO 37.40994�0.32E-02 24.47653�0.42E-02 10.70360�0.21E-02 10.64157�0.21E-02

Table 2: The process e+e� ! �+��b�b at
p
s = 192 GeV. Initial state radiation included, cross

sections in fb.

mH [GeV] 65 90 115 1

EXCALIBUR | | | 8.4306(29)
FERMISV | | | 7.90(27)
GENTLE0 33.7575(34) 19.4717(19) 8.47729(85) 8.43290(84)
HIGGSPV 33.759(12) 19.480(09) 8.483(05) 8.44(05)

HZHA/PYTHIA 33.48(11) 18.91(11) 8.31(11) 8.27(11)
WPHACT 33.75217�0.16E-01 19.46923�0.91E-02 8.47665�0.57E-02 8.43236�0.57E-02
WTO 33.77741�0.10E-01 19.48562�0.83E-02 8.48511�0.78E-02 8.44090�0.78E-02

The angular distribution of the Z=H bosons in the Higgs-strahlung process is sensitive to
the spin-parity quantum numbers JP = 0+ of the Higgs particle. At high energies the Z boson
is produced in a state of longitudinal polarization according to the equivalence theorem so that
the angular distribution approaches asymptotically the sin2 � law, where � is the polar angle
between the Z=H 
ight direction and the e+e� beam axis. At non-asymptotic energies the
distribution is shoaled [47],

d�

d cos �
� � sin2 � + 8m2

Z=s (8)

becoming independent of � at the threshold. Were a pseudoscalar particle produced in associ-
ation with the Z, the angular distribution would be given by � (1 + cos2 �), independent of

the energy; the Z polarization would be transverse in this case. Thus, the angular distribu-

tion is sensitive to the assignment of spin-parity quantum numbers to the Higgs particle. The
coe�cients of the sin2 � term and the constant term are independent and could be modi�ed

separately by additional e�ective ZZH, 
ZH couplings or eeZH contact terms induced by
interactions outside the Standard Model [48].
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Figure 6: Comparison of the Higgs signal with

the background in the �+��b�b �nal state for zero

and non-zero quark mass.

2.2.2 The WW Fusion Process

The �nal state in which the Higgs particle is produced in association with neutrinos

e+e� ! H + ��� (9)

is built up by two di�erent mechanisms, Higgs-strahlung with Z decays to the three types of
neutrinos and WW fusion [9, 10, 11, 49, 50]. For �e��e �nal states the two amplitudes interfere.
At e+e� energies above theHZ threshold for on-shell Z, Higgs-strahlung is by far the dominant

process, while below the HZ threshold the fusion process becomes dominant. Correspondingly,
the interference term is most important near the threshold where the cross-over between the
two mechanisms occurs. The cross section for Higgs-strahlung above the HZ threshold is of
order g4W while below the threshold it is suppressed by the additional electroweak vertex as well
as by the o�-shell Z propagator. The fusion cross-section is of order g6W and therefore small

at LEP energies where no log s=m2

H enhancement factors are e�ective.1 The cross section for
WW fusion can be expressed in a compact form [49]:

�(e+e� ! �e��eH) =
G3

Fm
4

W

4
p
2�3

Z
1

xH

dx

Z
1

x

dy F (x; y)

[1 + (y � x)=xW ]2
(10)

F (x; y) =

"
2x

y3
� 1 + 3x

y2
+
2 + x

y
� 1

# "
z

1 + z
� log(1 + z)

#
+

x

y3
z2(1� y)

1 + z
(11)

with xH = m2

H=s; xW = m2

W=s and z = y(x�xH)=(xxW ). The more involved analytic form of
the interference term between fusion and Higgs-strahlung [11] is given in the Appendix 5.1.

1The cross-section for ZZ fusion is reduced by another order of magnitude since the leptonic NC couplings
are considerably smaller than the CC couplings.
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The size of the various contributions to the cross section for the �nal state e+e� !
H + neutrinos is shown in Fig.5 at

p
s = 192 GeV. The Higgs-strahlung includes all three

neutrinos in the �nal state. The nominal threshold value of the Higgs mass for on-shell Z

production in Higgs-strahlung is mH = 101 GeV at
p
s = 192 GeV. A few GeV above this mass

value the fusion mechanism becomes dominant while the Higgs-strahlung becomes rapidly more

important for smaller Higgs masses. In the cross-over range, the cross-sections for fusion, Higgs-

strahlung and the interference term are of the same size. With a cross section of the order of

0.01 pb only a few events can be generated in the cross-over region for the integrated lumi-

nosity at LEP. Dedicated e�orts are therefore needed to explore this domain experimentally

and to extract the signal from the event sample e+e� ! b�b+ neutrinos, which includes several

background channels. Nevertheless, WW fusion can extend the Higgs mass range that can be

explored at LEP2 by a few (perhaps very valuable) GeV.

2.2.3 Higgs Decays

The Higgs decay width is predicted in the Standard Model to be very narrow, being less than
3 MeV for mH less than 100 GeV. The width of the particle can therefore not be resolved
experimentally. The main decay modes (Fig.7), relevant in the LEP2 Higgs mass range, are in
the following channels [12, 46]:

quark decays : H ! b�b and c�c

lepton decay : H ! �+��

gluon decay : H ! gg

W boson decay: H ! WW �

(12)

The b�b decays are by far the leading decay mode, followed by � , charm, and gluon decays at a
level of less than 10%. Only at the upper end of the mass range do decays of the Higgs particle
to W pairs start playing an increasingly important role.

H

�b, �c, �+

b, c, ��

Q

H

g

g

H

W

�f 0

f

W �

Figure 7: The main decay modes of Higgs particles in the LEP2 mass range.

The theoretical analysis of the Higgs decay branching ratios is not only important for the
prediction of signatures to de�ne the experimental search techniques. In addition, once the

Higgs boson is discovered, the measurement of the branching ratios will be necessary to de-
termine its couplings to other particles. This will allow us to explore the physical nature of

the Higgs particle and to encircle the Higgs mechanism as the mechanism for generating the

366



masses of the fundamental particles. In fact, the strength of the Yukawa coupling of the Higgs

boson to fermions, gffH = [
p
2GF ]

1=2mf , and the couplings to the electroweak V = W;Z gauge

bosons, gV VH = 2 [
p
2GF ]

1=2m2

V , both grow with the masses of the particles. While the latter

can be measured through the production of Higgs particles in the Higgs-strahlung and WW

fusion processes, fermionic couplings can be measured at LEP only through decay branching

ratios.

Higgs decay to fermions. The partial width of the Higgs decay to �+�� pairs is given by [51]

�(H ! �+��) =
GFm

2

�

4
p
2�

mH (13)

For the decay into b�b and c�c quark pairs, QCD radiative corrections [52] must be included which

are known up to order �2s [in the �0t term up to order �3s ],

�(H ! q�q) =
3GF

4
p
2�

m2

q(mH)mH

"
1 + 5:67

�
�s

�

�
+ (35:94 � 1:36NF + �t + �0t)

�
�s

�

�
2
#

(14)

�t accounts for the top-quark triangle coupled to the q�q �nal state in second order by 2-gluon
s-channel exchange [53], �t = 1:57� 2

3
log(m2

H=M
2

t )+
1

9
log2(m2

q(mH)=m
2

H), while �
0

t accounts for
Higgs decays to two gluons with one gluon split into a q�q pair [12], discussed in detail below.
The strong coupling �s is to be evaluated at the scale mH, and NF = 5 is the number of active

avors [all quantities de�ned in the MS scheme]. The bulk of the QCD corrections can be
absorbed into the running quark masses evaluated at the scale mH ,

mq(mH) = mq(Mq)

"
�s(mH)

�s(Mq)

# 12
33�2NF 1 + c1 [�s(mH)=�] + c2[�s(mH)=�]

2

1 + c1 [�s(Mq)=�] + c2[�s(Mq)=�]2
(15)

In the case of bottom (charm) quarks, the coe�cients c1 and c2 are 1.17 (1.01) and 1.50 (1.39),
respectively. Since the relation between the pole massMc of the charm quark and the MS mass
mc (Mc) evaluated at the pole mass is badly convergent, the running quark masses mq(Mq) lend
themselves as the basic mass parameters in practice. They have been extracted directly from
QCD sum rules evaluated in a consistent O(�s) expansion [54]. Typical values of the running

b, c masses at the scale � = 100 GeV, which is of the order of the Higgs mass, are displayed
in Table 3. The evolution has been performed for the QCD coupling �s(mZ) = 0:118 � 0:006.

The large uncertainty in the running charm mass is a consequence of the small scale at which

the evolution starts and where the errors of the QCD coupling are very large. In any case the
value of the c mass, relevant for the prediction of the c branching ratio of the Higgs particle, is

reduced to about 600 MeV.

An additional mechanism for b, c quark decays of the Higgs particle [12] is provided by the

gluon decay mechanism where virtual gluons split into b�b; c�c pairs, H ! gg� ! gb�b; gc�c.

These contributions add to the QCD corrected partial widths (14) in which the b, c quarks

are coupled to the Higgs boson directly. As long as quark masses are neglected in the �nal
states, the two amplitudes do not interfere. In this approximation, the contributions of the

367



Table 3: The running b; c quark masses in the MS scheme at the scale � = 100 GeV. The initial

values mQ(MQ) of the evolution are extracted from QCD sum rules; the pole masses M
pt2
Q are

de�ned by the O(�s) relation with the running masses mQ(M
pt2
Q ) =Mpt2

Q =[1 + 4�s=3�].

�s(mZ) mQ(MQ) MQ = M
pt2
Q mQ (� = 100 GeV)

b 0:112 (4:26� 0:02) GeV (4:62� 0:02) GeV (3:04� 0:02) GeV
0:118 (4:23� 0:02) GeV (4:62� 0:02) GeV (2:92� 0:02) GeV
0:124 (4:19� 0:02) GeV (4:62� 0:02) GeV (2:80� 0:02) GeV

c 0:112 (1:25� 0:03) GeV (1:42� 0:03) GeV (0:69� 0:02) GeV
0:118 (1:23� 0:03) GeV (1:42� 0:03) GeV (0:62� 0:02) GeV
0:124 (1:19� 0:03) GeV (1:42� 0:03) GeV (0:53� 0:02) GeV

splitting channels are obtained by taking the di�erences of the widths H ! gg(g); q�qg between

NF = 5 and 4 for b, and NF = 4 and 3 for c �nal states, given below in eq.(16). The b=�b and

the c=�c quarks are in general emitted into two di�erent parts of the phase space for the two

mechanisms; for the direct process the 
ight directions tend to be opposite, while by contrast
for gluon splitting they are parallel.

The electroweak radiative corrections to fermionic Higgs decays are well under control [55,

44]. If the Born formulae are parametrized in terms of the Fermi coupling GF , the corrections
are free of large logarithms associated with light fermion loops. For b, c, � decays the electroweak
corrections are of the order of one percent.

Higgs decays to gluons and light quarks. In the Standard Model, gluonic Higgs decays H ! gg

are primarily mediated by top-quark loops [56]. Since in the LEP2 range Higgs masses are
much below the top threshold, the gluonic width can be cast into the approximate form [57]

�(H ! gg(g); q�qg) =
GF �

2

s(mH)

36
p
2 �3

m3

H

"
1 +

�
95

4
� 7

6
NF

�
�s(mH)

�

#
(16)

The QCD corrections, which include the splitting of virtual gluons into gg and q�q �nal states,

are very important; they nearly double the partial width.

It is physically meaningful to separate the gluon and light-quark decays of the Higgs boson

[12] from the b, c decays which add to the b, c decays through direct coupling to the Higgs

boson. In this case, the partial width �(H ! gluons + light quarks) is obtained from (16) by

choosing NF = 3 for the light u, d, s quarks and by evaluating the running QCD coupling at
mH for three 
avors only [corresponding to �

(3)

MS
= 378+105

�92 MeV for �(5)s (mZ) = 0:118� 0:006].

Higgs decay to virtual W bosons. The channel H ! WW �! 4 fermions becomes relevant for

Higgs masses mH > mW when one of the W bosons can be produced on-shell. The partial

width for this �nal state is given by

�(H ! WW �) =
3G2

F m
4

W

16�3
mH R(x) (17)
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Figure 8: Branching ratios for the Higgs de-

cays in the Standard Model. The bands in-

clude the uncertainties due to the errors in

the quark masses and the QCD coupling.

R(x) =
3(1 � 8x+ 20x2)

(4x� 1)1=2
arccos

�
3x� 1

2x3=2

�
� 1� x

2x
(2� 13x + 47x2)� 3

2
(1� 6x+ 4x2) log x

with x = m2

W=m
2

H . Due to the larger Z mass and the reduced NC couplings compared with
W mass and the CC couplings, respectively, decays to ZZ� �nal states are suppressed by one
order of magnitude.

Summary of the branching ratios. The numerical results for the branching ratios are displayed
in Fig.8, taking into account all QCD and electroweak corrections available so far. Sepa-
rately shown are the branching ratios for � 's, c, b quarks, gluons plus light quarks, and elec-
troweak gauge bosons. The analyses have been performed for the following set of parameters:
�(5)s (mZ) = 0:118 � 0:006, t pole mass Mt = 176 � 11 GeV, and the MS masses mb(Mb) and

mc(Mc) as listed in Table 3. The dominant error in the predictions is due to the uncertainty
in �s which migrates to the running quark masses at the high energy scales.

Despite the uncertainties, the hierarchy of the Higgs decay modes is clearly preserved. The

�+�� branching ratio is more than an order of magnitude smaller than the b�b branching ratio,
following from the ratio of the two masses squared and the color factor. Since the charm quark

mass is small at the scale of the Higgs mass, the ratio of BRc to BRb is reduced to about 0:04,

i.e. more than would have been expected na��vely.

Thus, the measurements of the production cross sections and of the decay branching ratios
enable us to explore experimentally the physical nature of the Higgs boson and the origin of

mass through the Higgs mechanism.
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2.3 The Experimental Search for the SM Higgs Particle

Selection algorithms were developed by the four LEP experiments [58] towards the Higgs pro-

duction via the Higgs-strahlung process, for the following event topologies:

(i) the four-jet channel, (Z! q�q) (HSM ! b�b);

(ii) the missing energy channel, (Z! ���) (HSM ! b�b);

(iii) the leptonic channel, (Z! e+e�; �+��) (HSM ! anything);

(iv) the �+��q�q channel, (Z! �+��) (HSM ! hadrons) and vice-versa;

altogether amounting to more than 90% of the possible �nal states in the LEP2 mass range.

All important background processes were included in the simulations. Whenever possible,

the corresponding cross-sections were computed and events were generated using PYTHIA
5.7 [59]. The Z��� process being not simulated in PYTHIA, the corresponding results were
derived from a Monte Carlo generator based on Ref.[60]. The most relevant cross-sections are
indicated in Table 4 for the three di�erent center-of-mass energies at which the studies were
carried out. Events from the Higgs-strahlung process were generated using either PYTHIA
(DELPHI, L3, OPAL), the HZGEN generator [61] (DELPHI, for the HZ ! b�b�e��e �nal

state) or the HZHA generator [62] (ALEPH, for all signal �nal states), and the signal cross-
section and Higgs boson decay branching ratios were determined from Ref.[46], or directly from
the HZHA program in the case of ALEPH.

Table 4: The cross-sections for the most relevant background processes, in pb. Whenever a Z

is indicated, the cross-section also includes the 
� contribution. The 

 ! f�f cross-section is

given for a fermion pair mass in excess of 30 GeV/c2.

175 GeV 192 GeV 205 GeV

e+e� ! f�f 173.4 135.5 116.5

e+e� ! WW 14.63 17.74 18.07
e+e� ! ZZ 0.45 1.20 1.43
e+e� ! Ze+e� 2.75 2.93 3.05

e+e� ! We� 0.68 0.90 1.10

e+e� ! Z��� 0.011 0.015 0.020



 ! f�f 22.3 24.9 26.3

The selection e�ciencies and the background rejection capabilities were evaluated after a

simulation of each of the four LEP detectors. Fully simulated events were produced by DELPHI
[63, 64], L3 [65] and OPAL [66] for all the background processes and for the signal at several
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Higgs boson masses, including all the detector upgrades foreseen for the LEP2 running. A

fast, but reasonably detailed simulation was used in ALEPH [67] instead, with the current

detector design (in particular, the gain expected from the installation of a new vertex detector

was conservatively ignored), but it was checked in the four-jet topology and in the missing

energy channel, at
p
s = 175 GeV and with mH = 70 GeV, that this fast simulation faithfully

reproduces the predictions of the full simulation chain both for the background rejection and

for the signal selection, up to an accuracy at the percent level.

a) Search in the Four-jet Topology

The four-jet topology arises when the Z decays into a pair

of quarks, in 70% of the cases, and the Higgs boson de-

cays into hadrons, in more than 90% of the cases. This

topology represents therefore by far the most abundant �-

nal state (occurring in � 65% of the cases) produced by

the Higgs-strahlung process. However, the search in this
channel is a�ected by a large background consisting of mul-
tijet events from e+e� ! q�q, WW and ZZ production. For

instance, at
p
s = 192 GeV, and for an integrated lumi-

nosity of 150 pb�1, approximately 1500 q�q, 1000 WW and
80 ZZ events have at least four jets with all jet-jet invariant
masses in excess of 10 GeV/c2, while only 40 HSMZ events
are expected if mH = 90 GeV/c2.

The selection procedures developed by the four collaborations to improve the signal-to-noise

ratio are very close to each other. After a preselection aimed at selecting four-jets events, either
from global events properties or directly from a jet algorithm such as the DURHAM or JADE
algorithms, the four-jet energies and momenta are subjected to a kinematical �t with the four
constraints resulting from the energy-momentum conservation, in order to improve the Higgs
boson mass resolution beyond the detector resolution. Events consistent with the e+e� !WW

hypothesis, i.e. events in which two pairs of jets have an invariant mass close to mW, are
rejected. Only events in which the mass of one pair of jets is consistent with mZ are kept, and

they are �tted again with the Z mass constraint in addition. This last step improves again the

Higgs boson mass resolution, which is found to be between 2.5 and 3.5 GeV/c2 by the four LEP
experiments.

However, these requirements do not su�ce to reduce the background contamination to an

adequate level. This is illustrated in Fig.9a where the distribution of the �tted Higgs boson
mass (i.e. the mass of the pair of jets recoiling against the pair consistent with a Z) is shown, for

the signal (mH = 90 GeV/c2) and for the backgrounds, at
p
s = 192 GeV and for a luminosity

of 500 pb�1 as obtained from the ALEPH simulation at this level of the analysis.
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The high branching of the Higgs boson into b�b must then be taken advantage of to further

reduce the background, by requiring that the jets associated to the Higgs boson be identi�ed

as b-jets. This is done by means of a microvertex detector, either by counting the charged

particle tracks with large impact parameters, or by evaluating the probability P that these

tracks come from the main interaction point [68], or by directly reconstructing secondary decay

vertices [69]. Shown in Fig.9b is the resulting Higgs boson mass distribution after such a b-

tagging requirement is applied. The same distribution as seen by DELPHI is shown in Fig.10,

together with the e�ciency of the DELPHI lifetime b-tagging requirement applied to four-jet

events, in which four b-jets, two b-jets or no b-jets are present, as a function of the logarithm

of the probability P. The OPAL result in this topology is shown in Fig.11a. Due to the

recent vertex detector installation, the L3 b-tagging algorithm is not yet fully optimized and

its performance is thus expected to improve in the future.

(a) (b)

Figure 9: Distribution of the �tted Higgs boson mass as obtained from the ALEPH simulation,

in the four-jet topology before (a) and after (b) a b-tagging requirement is applied, at 192 GeV,

with 500 pb�1 and for mH = 90 GeV/c2.

Table 5: Accepted cross-sections (in fb) for the signal and the backgrounds, as expected by

ALEPH, DELPHI, L3, OPAL, for mH = 90 GeV=c2 at 192 GeV, in the four-jet topology.

Experiment ALEPH DELPHI L3 OPAL

Signal 58 43 43 46

Background 33 33 47 26

The numbers of background and signal events expected to be selected by ALEPH, DELPHI,
L3, and OPAL in a window of �2� around the reconstructed Higgs boson mass are shown in

Table 5 for a Higgs boson mass of 90 GeV/c2 and at a center-of mass energy of 192 GeV.
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(a) (b)

Figure 10: (a) Distribution of the �tted Higgs boson mass as obtained from the DELPHI

experiment, after a b-tagging requirement is applied, at 192 GeV, with 300 pb�1 and for

mH = 90 GeV/c2, and (b) Evolution of the b-tagging e�ciency as a function of the cut on

P when applied to four jet events, with four, two or zero b-jets.

b) Search in the Missing Energy Channel

The topology of interest here, arising in 18% of the cases, is
an acoplanar pair of b-quark jets with mass mH, accompanied
by large missing energy and large missing mass, close to the Z
mass. The background, with the exception of the ZZ ! b�b���
or the Z��� with Z! b�b processes, either has no missing energy
(e+e� ! q�q with no initial state radiation, WW;ZZ ! four-

jets), or no missing mass and isolated particles (e+e� ! q�q(
),
WW! `�+ two jets, Ze+e�), or no missing transverse momen-
tum and small acoplanarity angle (e+e� ! q�q(

), 

 ! q�q),

or light quark jets (e+e� ! (e)�W , WW ! ��+ two jets,
ZZ! q�q���).

The four collaborations developed a selection procedure with a sequence of criteria, based
on these di�erences between signal and background, including a b-tagging requirement. The

mass of the Higgs boson can be either rescaled or �tted by constraining the missing mass to
equal the Z mass, allowing mass resolutions from 3.5 to 5 GeV/c2 to be achieved. The mass

distribution obtained by OPAL in this channel, for a Higgs boson mass of 90 GeV/c2 and at a

center-of mass energy of 192 GeV, is shown in Fig.11b.
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Figure 11: Distribution of the �tted Higgs boson mass as obtained from the OPAL experiment,

in the four-jet channel (a) and in the missing energy channel (b), at a centre-of mass energy of

192 GeV, normalized to a luminosity of 1000 pb�1 and formH = 80 and 90 GeV/c2, respectively.
The signal (in white) is shown on top of the background (shaded histogram).

This selection procedure was supplemented in DELPHI by an alternative multi-variate prob-
abilistic method, con�rming (or slightly improving) the �rst analysis results. The contribution
of the t-channel WW fusion to the H��� �nal topology was also estimated by DELPHI with
the recently released HZGEN event generator which includes both the Higgs-strahlung and the
WW fusion diagrams together with their interference. As can be naively expected, the relative
gain is only sizeable above the HZ kinematical threshold, and amounts to 28% for a 100 GeV/c2

Higgs boson at 192 GeV, corresponding to 0.25 additional events expected for an integrated
luminosity of 300 pb�1.

Table 6: Accepted cross-sections (in fb) for the signal and the backgrounds, as expected by

ALEPH, DELPHI, L3, OPAL, formH = 90 GeV=c2 at 192 GeV, in the missing energy channel.

Experiment ALEPH DELPHI L3 OPAL

Signal 24 24 9 25
Background 13 17 11 20

The numbers of background and signal events expected to be selected by ALEPH, DELPHI,

L3, and OPAL in a window of �2� around the reconstructed Higgs boson mass are shown in
Table 6 for a Higgs boson mass of 90 GeV/c2 and at a center-of mass energy of 192 GeV.
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c) Search in the Leptonic Channel

Although occurring in only 6.7% of the cases, this topology

can be selected in a simple way by requiring the presence of

a high mass pair of energetic, isolated, and thus well identi-

�able leptons (e or �) in association with a high multiplicity

hadronic system. The process e+e� ! ZZ where one of the

Z bosons decays into a lepton pair and the other into q�q

and, to a much lesser extent, the e+e� ! Ze+e� process,

constitute the only irreducible background sources. A mild

b-tagging requirement can also be applied, especially when

mH � mZ, to improve the signal-to-noise ratio. Selection

e�ciencies varying from 50 to 80% were achieved by the

four LEP experiments.

In addition to these high e�ciencies, the mass of the Higgs boson can be determined with

a very good resolution (typically better than 2 GeV/c2) either as the mass recoiling to the
lepton pair with the mass of the pair constrained to the Z mass, or with a full �tting procedure
using the energies and the directions of the leptons and of the Higgs decay products, the
energy-momentum conservation and the Z mass constraint. As shown in Fig.12 from L3, this
drastically reduces the ZZ background contamination, except if mH � mZ when the two mass

peaks merge together.

The numbers of background and signal events expected to be selected by ALEPH, DELPHI,
L3, and OPAL in a window of �2� around the reconstructed Higgs boson mass are shown in

Table 7 for a Higgs boson mass of 90 GeV/c2 and at a centre-of mass energy of 192 GeV.

d) Search in the �+��q�q Channel

At present, only ALEPH [67] and DELPHI [70] have investi-
gated this topology, occurring in 9% of the cases when (Z !
�+��) (HSM ! hadrons) (3%) or when (HSM ! �+��) (Z !
hadrons) (6%). It is characterized by two energetic, isolated

taus, de�ned as 1- or 3-prong slim jets, with masses compatible
with m� , not identi�ed as an electron or a muon pair, and asso-
ciated to a high multiplicity hadronic system. After a selection

of this topology either by successive topological cuts (ALEPH)

or by a single multi-dimensional cut (DELPHI), a �t to the four-
body �nal state hypothesis with the energy-momentum conser-

vation constraint is performed to reject most of the backgrounds.
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Figure 12: Distribution of mass recoiling to the lepton pair as obtained from the L3 experiment,

in the He+e� channel, at a center-of mass energy of 192 GeV, normalized to a luminosity of

1000 pb�1 and for mH = 60; 70; 80; 90 GeV/c2. The signal (in white) is shown on top of the ZZ

background (in black).

Table 7: Accepted cross-sections (in fb) for the signal and the backgrounds, as expected by

ALEPH, DELPHI, L3 and OPAL, for mH = 90 GeV=c2 at 192 GeV, in the leptonic channel.

Experiment ALEPH DELPHI L3 OPAL

Signal 12 11 7 6.5
Background 12 24 10 9.4
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The typical e�ciency for such an analysis is 20 to 30%, corresponding to 6 to 8 signal events

expected for a 90 GeV/c2 Higgs boson with 1 fb�1 at 192 GeV, and the �+�� and the hadronic

mass resolutions amount to approximately 3 GeV/c2. These resolutions can be further improved

by �tting the �nal state to the HZ hypothesis, with mH free and mZ constrained. As in the

leptonic channel, the only really irreducible background source is the process e+e� ! ZZ when

one of the Zs decays into a � pair and the other hadronically. The existence of the Higgs boson

would then be observed as an accumulation around (mH, mZ) in the folded two-dimensional

distribution of these masses. A signal-to-noise ratio between 1 and 2 can be achieved when

mH � mZ. It could be further improved by a factor of two with a b-tagging requirement, at

the expense of a drastic e�ciency loss, since two thirds of these events (when H ! �+��) do

not contain b-quarks.

Summary: Numbers of Events Expected

Tables 8, 9 and 10 summarize the results of the standard model Higgs boson search, with the

total numbers of signal and background events expected by each experiment given for several
Higgs boson masses, at

p
s = 175, 192 and 205 GeV, respectively. The uncertainties are due

to the limited Monte Carlo statistics. No systematic uncertainties (due for instance to the
simulation of the b-tagging e�ciency) are included.

Table 8: Accepted cross-sections (in fb) expected for the signal and the background, for various

Higgs boson masses, at a center-of-mass energy of 175 GeV.

mH (GeV/c2) 60 65 70 75 80 85

ALEPH
Signal 275 � 5 234 � 4 168 � 4 115 � 3 61 � 2 7� 1
Background 51 � 7 45 � 7 38 � 6 31 � 6 24 � 5 24 � 5

DELPHI
Signal 210 � 13 180 � 11 147 � 9 109 � 7 64 � 4 7� 1
Background 25 � 4 25 � 4 28 � 5 28 � 5 28 � 5 15 � 3

L3

Signal 167 � 10 142 � 9 119 � 7 88 � 5 49 � 3 7� 3
Background 79 � 11 83 � 10 87 � 9 65 � 7 44 � 5 44 � 5

OPAL

Signal 188 � 9 160 � 8 128 � 6 98 � 7 56 � 4 6� 1

Background 27 � 5 27 � 5 26 � 4 27 � 5 17 � 4 7� 3

ALL

Signal 840 � 20 715 � 17 561 � 13 410 � 12 229 � 6 27 � 3
Background 182 � 14 180 � 13 179 � 13 151 � 11 112 � 9 89 � 8
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Table 9: Accepted cross-sections (in fb) expected for the signal and the background, for various

Higgs boson masses, at a center-of-mass energy of 192 GeV.

mH (GeV/c2) 80 85 90 95 100

ALEPH Signal 125 � 3 115 � 3 103 � 3 64 � 2 13 � 2

Background 33 � 6 48 � 7 63� 8 57 � 7 51 � 7

DELPHI Signal 99 � 4 108 � 5 85� 4 60 � 4 13 � 2

Background 42 � 5 68 � 5 79� 5 50 � 3 25 � 2

L3 Signal 93 � 5 77 � 4 64� 3 45 � 3 9� 1

Background 66 � 6 67 � 5 68� 5 44 � 5 19 � 3

OPAL Signal 98 � 4 81 � 3 72� 3 40 � 2 13 � 2

Background 28 � 4 37 � 4 46� 5 36 � 5 26 � 5

ALL Signal 414 � 8 381 � 8 323 � 6 209 � 6 47 � 4

Background 169 � 10 220 � 1 255 � 12 187 � 11 121 � 9

Table 10: Accepted cross-sections (in fb) expected for the signal and the background, for various

Higgs boson masses, at a center-of-mass energy of 205 GeV.

mH (GeV/c2) 80 90 100 105 110 115

ALEPH
Signal 118 � 3 90 � 3 63 � 2 46 � 2 32� 3 5 � 1
Background 48 � 7 82 � 9 28 � 5 24 � 5 20� 5 20 � 5

DELPHI

Signal 78 � 4 84 � 4 66 � 4 48 � 3 23� 2 3 � 1
Background 56 � 6 66 � 6 52 � 6 26 � 4 13� 3 8 � 2

L3
Signal 88 � 6 68 � 4 51 � 3 38 � 3 22� 3 4 � 1
Background 70 � 6 94 � 7 59 � 6 30 � 6 20� 6 20 � 6

OPAL

Signal 55 � 2 48 � 2 39 � 2 26 � 2 13� 1 4 � 0:3

Background 25 � 4 45 � 4 26 � 4 20 � 4 15� 4 15 � 4

ALL

Signal 339 � 8 287 � 7 220 � 6 158 � 5 89� 4 16 � 1
Background 198 � 12 288 � 13 166 � 11 101 � 10 68� 9 62 � 9
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2.4 Discovery and Exclusion Limits

Based on the simulations described in Section 2.3, it is possible to derive the exclusion and

discovery limits of the standard model Higgs boson as a function of the luminosity for the three

center-of-mass energies speci�ed earlier. The contours are de�ned at 5� for the discovery in the

case of the existence of the Higgs boson and at 95% C.L. for the exclusion limits in the case of

negative searches, with the speci�cations described in Appendix 5.3.

In Table 11, the minimum integrated luminosities needed to exclude or discover a given

Higgs boson mass at the center-of-mass energies
p
s = 175, 192 and 205 GeV are given for the

combination of all channels for each of the four experiments separately, as well as for the com-

bination of all channels for the four LEP experiments together. The results of the combination

of the four experiments are graphically shown in Fig.13, and summarized in Table 12.

Combining the four LEP experiments, the required minimal integrated luminosity per ex-

periment to discover or exclude a certain Higgs boson mass at a given center-of-mass energy is

reduced to approximately a fourth of the average minimal integrated luminosity of each individ-
ual experiment. This implies that the maximal value of the Higgs boson mass will be reached

at a given energy for luminosities which can be naturally expected at LEP2. The following
conclusions can be drawn from detailed analyses of the �gures and tables.

(i) At a center-of-mass energy of 175 GeV, the maximum integrated luminosity needed is of
the order of 150 pb�1 and this allows the discovery of a Higgs boson with a maximum
mass of about 82 GeV/c2. Indeed, combining the four experiments it follows that raising

the luminosity leads only to a marginal increase of the exclusion and discovery limits,
which are very close to each other.

(ii) At 192 GeV it is again su�cient to have an integrated luminosity of about 150 pb�1, in
this case to discover a Higgs boson with mass up to 95 GeV/c2. Increasing the center-
of-mass energy from 175 to 192 GeV leads to a signi�cant extension in the discovery
range of the Higgs boson mass. It is of great interest to observe that at

p
s = 192 GeV

a 95 GeV/c2 Higgs boson mass can be excluded at the 95% con�dence level with an

integrated luminosity as low as 33 pb�1 while with 150 pb�1 a Higgs boson mass close to
100 GeV/c2 can be excluded.

(iii) This development continues up to 205 GeV, where a luminosity as low as 70 pb�1 is

su�cient to exclude Higgs boson masses up to about 110 GeV/c2, and a 5� discovery

of a Higgs boson with a mass of order 105 GeV/c2 requires an integrated luminosity
of � 160 pb�1. More luminosity is needed in this case, since the cross section of the
irreducible ZZ background increases. With an integrated luminosity of � 300 pb�1 a

Higgs boson mass close to 110 GeV can be discovered.

If each experiment is considered separately, the 5� discovery limit for an integrated lumi-

nosity of 500 pb�1 is, on average, approximately given by mH = 82 (95) (103) GeV/c2 for
p
s=
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Table 11: Minimum luminosity needed, in pb�1, by ALEPH, DELPHI, L3, OPAL, and for a

simple combination of the four experiments, at the three center-of-mass energies and for various

Higgs boson masses. The �rst number holds for the 95% C.L. exclusion, the second one for the

5� discovery.

p
s = 175 GeV

Experiment mH = 60 65 70 75 80

ALEPH 12:34 18:49 25:76 36:126 80:316

DELPHI 16:48 18:51 31:87 40:140 78:335
L3 29:127 39:180 56:244 75:334 152:727

OPAL 17:56 20:75 34:96 44:161 74:294

All 6:15 6:19 8:28 10:41 21:90

p
s = 192 GeV

Experiment mH= 80 85 90 95

ALEPH 33:117 42:166 59:238 103: 510
DELPHI 50:195 50:231 80:388 118: 529

L3 64:306 90:426 118:596 172: 832
OPAL 43:157 60:251 85:360 182: 825

All 12:44 15:60 20:87 33:149

p
s = 205 GeV

Experiment mH= 80 90 100 105 110

ALEPH 41:157 80:369 76:327 119: 504 186: 870
DELPHI 75:356 78:372 97:462 114: 507 283:1296

L3 74:342 142:704 162:817 164: 897 409:2103
OPAL 87:372 149:735 151:719 267:1284 680:3500

All 16:66 25:119 30:125 38:158 72:339
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Figure 13: Minimum luminosity needed per experiment, in pb�1, for a combined 5� discovery

(full line) or a 95% C.L. exclusion (dashed line) as a function of the Higgs boson mass, at the

three center-of-mass energies.
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Table 12: Maximal Higgs boson masses that can be excluded or discovered with a given inte-

grated luminosity Lmin per experiment at the three representative energy values of 175, 192 and

205 GeV, when the four LEP experiments are combined.

Exclusion: Discovery:
p
s (GeV) mH (GeV/c2) Lmin (pb�1) mH (GeV/c2) Lmin (pb�1)

175 83 75 82 150

192 98 150 95 150

205 112 200 108 300

175 (192) (205) GeV. Similar results may be obtained by combining the four experiments for an

integrated luminosity per experiment of about 150 pb�1. For the combined exclusion limits, the
maximum value of mH at

p
s= 175, 192, 205 GeV is reached for a luminosity per experiment of

about 75, 150, 200 pb�1. A further increase in luminosity is not very useful in case of negative
searches. Clearly, energy rather than luminosity is the crucial parameter to improve the range
of masses which can be reached at LEP2.

2.5 The LHC Connection

It has been shown in section 2.4 that LEP2 can cover the SM Higgs mass range up to 82 GeV
at a total energy of

p
s = 175 GeV while the Higgs mass discovery limit increases to � 95 GeV

for a total energy of 192 GeV. Since this mass range contains the lower limit at which the SM
Higgs particle can be searched for at the LHC, the upper limit of the LEP2 energy is quite
crucial for the overlap in the discovery regions of the two accelerators.

Low{mass Higgs particles are produced at the LHC predominantly in gluon{gluon colli-
sions [71, 72] or in Higgs{strahlung processes [73, 74],

pp ! H ! 



pp ! WH;ZH; t�tH ! ` + 

 and `+ b�b

with the Higgs boson emitted from a virtual W boson or from a top quark. In the gluon{fusion
process the Higgs particle is searched for as a resonance in the 

 decay channel which comes

with a branching ratio of order 10�3. Even though large samples of Higgs particles can be

generated in this mass range, the signal{to{background ratio is only a few percent and the

rejection of jet background events which are eight orders of magnitude more frequent, is a very

di�cult experimental task. Excellent energy resolution and particle identi�cation is needed
[75] to tackle this problem. It has been shown in detailed experimental simulations that the
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signi�cance S=
p
B of the Higgs signal is expected to rise in this channel from a value � 2:5 at

mH = 80 GeV to a value � 4:5 at mH = 100 GeV for
R L = 3� 104 pb�1 if ATLAS and CMS

analyses are combined.

In the Higgs{strahlung process, the events can be tagged by leptonic decays of the W=Z

bosons or the t quark to trigger the experiment and to reduce the jet background. In these

subsamples the Higgs boson can be searched for in the b�b decay mode with a branching ratio

close to unity. This method is based on b tagging by micro{vertex detection which is anticipated

to be an excellent tool of the LHC detectors. After suitable cuts in the transverse momenta

of the isolated lepton and the b jets, a peak is looked for in the invariant M(b�b) mass. The

experimental signi�cance S=
p
B of this method is biggest for small Higgs masses. For

R L =

3�104 pb�1 and ATLAS/CMS combined, experimental simulations of the [W ]lb�b sample suggest

that S=
p
B falls from � 8 at mH = 80 GeV down to � 6 at mH = 100 GeV. It is not yet

clear how the search can be extended to higher luminosities where the layers in the micro{

vertex detectors closest to the beams may not survive, thus reducing signi�cantly the b{tagging

performance of the experiments.

Combining the prospective signals from the 

 and the [W ]lb�b analyses, an overall signif-
icance of 7 to 8 may be reached for Higgs masses below 100 GeV, based on a low integrated
luminosity of

RL = 3� 104 pb�1 within three years. Raising the integrated luminosity toRL = 105 pb�1 increases the discovery signi�cance to almost 9 for 80 < mH < 100 GeV [76].
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3 The Higgs Particles in the Minimal Supersymmetric

Standard Model

The Minimal Supersymmetric Standard Model leads to clear and distinct experimental signa-

tures in the Higgs sector. Two Higgs doublets, H1 and H2, must be present, in order to give

masses to the up and down quarks and leptons, and to cancel the gauge anomalies induced

through the Higgs superpartners. In the supersymmetric limit, the Higgs potential is fully

determined as a function of the gauge couplings and the supersymmetric mass parameter �.

The breakdown of supersymmetry is associated with the introduction of soft supersymmetry

breaking parameters, which are essential to yield a proper electroweak symmetry breaking. In

the broken phase, the ratio of the Higgs vacuum expectation values, tan � = v2=v1, appears as

a new parameter, which can be related to the other parameters of the theory by minimizing

the Higgs potential.

The physical Higgs spectrum of the MSSM contains two CP-even and one CP-odd neutral
Higgs bosons, h=H and A, respectively, and a charged Higgs boson pair H� [23]. The tree{level
Higgs spectrum is determined by the weak gauge boson masses, the CP{odd Higgs mass, mA,

and tan�. It is only through radiative corrections that the other parameters of the model a�ect
the Higgs mass spectrum. The dominant radiative corrections to the Higgs masses grow as the
fourth power of the top-quark mass and they are logarithmically dependent on the sparticle
spectrum. The mass of the heavy Higgs doublet is controlled by the CP-odd Higgs mass
and, for large values of mA, the e�ective low energy theory contains only one Higgs doublet,
which couples to fermions in the standard way. In a �rst approximation, the Higgs masses

may be calculated by assuming that all sparticles acquire masses of order of the characteristic
supersymmetry breaking scale MS which, based on naturalness arguments, should be below a
few TeV. The low{energy e�ective theory belowMS is a general two{Higgs doublet model, with
couplings which can be calculated as a function of the other parameters of the theory. Under
these conditions, a general upper bound on the lightest CP-even Higgs boson mass is derived

for values of the CP-odd Higgs mass of order MS. For smaller values of mA, a more stringent
upper bound is obtained. In the following, we shall discuss in detail the di�erent methods to
compute the Higgs spectrum in the MSSM and the bounds which can be derived in each case.

3.1 Higgs Mass Spectrum and Couplings

3.1.1 Tree{level Mass Bounds

The masses of the Higgs bosons at tree level are determined as a function of mA, tan � and the

gauge boson masses as follows,

m2

h;H =
1

2

�
m2

A +m2

Z �
q
(m2

A +m2

Z)
2 � 4m2

Zm
2

A cos
2 2�

�
; (18)
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m2

H� = m2

A +m2

W : (19)

The mass of the lightest MSSM neutral Higgs particle is bounded to be smaller than the Z

mass [24, 25],

mtree

h � mZj cos 2�j; (20)

and it approaches this upper bound for large values of mA. The bound is modi�ed by radiative

corrections, which raise the upper limit on the lightest CP-even Higgs mass to values close to

150 GeV.

3.1.2 Radiative Corrections to the Higgs Masses

The one- and partial two-loop radiative corrections to the Higgs mass spectrum in the MSSM

have been calculated. Computations implying a variety of di�erent approximations, which

may be distinguished according to their level of re�nement, exist. In general, the radiative

corrections to the Higgs masses are large and positive, being dominated by the contributions of
the third-generation quark super�elds. Since the upper bound on mh determines the limit for

the detectability of the Higgs boson at LEP2, it is interesting to discuss the di�erent methods
in some detail.

a) Diagrammatic Approach. Order by order, a precise method of computation of the
radiative corrections to the Higgs masses is the full diagrammatic approach. At the one-loop
level such calculations have been pursued by several authors [24, 26, 80]. Complete expressions,
including all supersymmetric particle contributions are available [81]. The resulting Higgs
masses are de�ned as the location of the pole in the Higgs propagator. In order to obtain
a more accurate estimate of the Higgs spectrum in the diagrammatic approach, the two-loop

e�ects must be evaluated. A �rst step in this direction was performed in Ref.[82] for the case
of large values of the CP-odd Higgs boson mass, large tan�, and degenerate squark masses. It
was shown that these corrections may be quite signi�cant, of order 10{15 GeV, underlining the
need for a careful treatment of the two-loop e�ects on the Higgs mass spectrum.

b) E�ective Potential Methods. The leading corrections to the Higgs mass spectrum in the

MSSM can be computed in a very simple way by means of e�ective potential methods [27, 78]. If

all the contributions from the MSSM particles are included, the results within this scheme di�er

from those of the full diagrammatic approach in that the Higgs masses are evaluated at zero

momentum. In order to simplify the calculations, it is possible to consider only the contributions
of the third-generation quark super�elds, neglecting all weak gauge coupling e�ects in the one-

loop expressions [27]. This treatment of the e�ective potential has the virtue of displaying, in
a compact way, the full dependence of the one-loop radiative corrections on the stop/sbottom

masses and mixing angles. For a given squark spectrum, the numerical results obtained in this
case di�er by only a few GeV from the results obtained within the full one{loop diagrammatic

approach. This re
ects the smallness of the one-loop contributions from super�elds other than
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top and bottom. Moreover, it shows that the one-loop vacuum polarization e�ects relating the

Higgs pole masses to the running masses calculated through the e�ective potential approach

are in general small. The e�ective potential computation can be improved by including the

dependence of the stop and sbottom spectrum on the weak gauge couplings [79]. In the limit

m~t1
, m~t2

, mA � mZ, where m~t1;2
are the two stop mass eigenvalues, the expression of the

lightest Higgs mass takes a simple form,

m2

h = m2

Z cos
2 2� + (�m2

h)1LL + (�m2

h)mix (21)

where
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In eq.(23), ~At = At � � cot � and the functions h and f are given by

h(a; b) =
1

a� b
ln
�
a

b

�
and f(a; b) � 1

(a� b)2

"
2 � a+ b

a� b
ln
�
a

b

�#
(24)

The above expression is particularly interesting since it provides the upper bound on mh for a
given stop spectrum. Including two{loop e�ects remains, however, a necessary further step to
obtain a correct quantitative estimate of the Higgs mass.

c) Renormalization Group Improvement of the Radiatively Corrected Higgs Sector.

The most important two{loop e�ects may be included by performing a renormalization group
improvement of the e�ective potential, while taking into account, in a proper way, the e�ect of
the decoupling of the heavy third{generation squarks. This program can be easily carried out in

the case of a large CP-odd Higgs boson mass and degenerate squarks [77]. Since only one Higgs
doublet survives at low energies, the lightest CP{even Higgs mass may be calculated through
the renormalization group evolution of the e�ective quartic coupling, assuming that the heavy
sparticles decouple at a common scale MS . The one-loop renormalization group evolution of
the quartic couplings includes two-loop e�ects through the resummation of the one-loop result.

The general result is, however, scale dependent but this dependence is reduced by taking into

account the two-loop renormalization group improvement of the one{loop e�ective potential
[84, 85]. The vacuum expectation value of the Higgs �eld and the renormalized Higgs mass
scale (approximately) with the appropriate one{loop anomalous dimension factors within this

approximation. The scale dependence of the Higgs mass is cancelled by adding the one-loop

vacuum polarization e�ects, necessary to de�ne the Higgs pole mass. For the case of small stop
mixing and large values of tan �, the Higgs spectrum evaluated through this method agrees

with the diagrammatic computation at the two{loop level [82, 85].

Analytical Expression for the Lightest CP-even Higgs Mass. The two-loop RG improvement of

the one{loop e�ective potential includes two{loop e�ects in two di�erent ways: through the

386



resummation of one{loop e�ects and through genuine two{loop e�ects. Numerically, the latter

are small compared to the resummation e�ects [83]. Once an appropriate scale of order of

the top-quark mass is adopted, the results of the one{loop RG improvement of the tree{level

e�ective potential including the proper threshold e�ects of squark decoupling, are in excellent

agreement with the pole Higgs masses computed by the two-loop RG improvement of the one-

loop e�ective potential [85, 89]. This holds, for large values of the CP-odd Higgs mass, for any

value of tan � and the squark mixing angles. Based on this result, an analytical approximation

may be obtained [89] which reproduces the dominant two-loop results [85] within an error of

less than 2 GeV. Fig.14 shows the agreement of the one{loop and two{loop results for mh

evaluated at the appropriate scale Mt, and the accuracy of the analytical approximation. In

the MS scheme, the pole top-quark mass Mt must be related to the on-shell running mass

mt � mt(Mt) by taking into account the corresponding one-loop QCD correction factor

mt =
Mt

1 + 4

3�
�s(Mt)

(25)

Top Yukawa e�ects have been neglected in eq.(25), since they are essentially cancelled by the

two{loop QCD e�ects. Observe that eq.(25) gives the correct relation between the running and
the pole top-quark masses only if the leading-log contributions to the running mass, associated
with the decoupling of the heavy sparticles, are properly taken into account and the sparticles
are su�ciently heavy so that the �nite corrections become small [90]. The analytical approxi-
mation to the one-loop renormalization-group improved result, including two-loop leading-log

e�ects, is given by [89]

m2

h = m2

Z cos
2 2�
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where the angle � is de�ned at the scale mA = MS and t = log(M2

S=M
2

t ).
~At is de�ned above

and

~Xt =
2 ~A2

t

M2

S

 
1 �

~A2

t

12M2

S

!
(27)

Furthermore, �s(Mt) = �s(mZ)=
�
1 + b3

4�
�s(mZ) log(M

2

t =m
2

Z)
�
with b3 = 11� 2NF =3 being the

one-loop QCD beta function and NF the number of quark 
avours [NF = 5 at scales below

Mt]. The supersymmetric scale MS is de�ned as MS =
q
(m2

~t1
+m2

~t2
)=2. For simplicity, all

supersymmetric particle masses are assumed to be of order MS. Notice that eq.(26) includes

the leading D-term correction O(m2

Zm
2

t ) [79].

A similar analytical result to eq.(26) has been obtained in Ref.[92]. In this approximation the

two-loop leading-logarithmic contributions to m2

h are incorporated by replacing mt in eq.(21)

by the running top quark mass evaluated at appropriately chosen scales. For m~t1
� m~t2

�MS

the result is:

m2

h = m2

Z cos
2 2� + (�m2

h)1LL(mt(�t)) + (�m2

h)mix(mt(MS)) (28)
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Figure 14: The lightest Higgs mass as a function of the physical top-quark mass, for MS = 1

TeV, evaluated in the limit of large mA, as obtained from the two{loop RG improved e�ective

potential (solid lines), the one{loop improved RG evolution (dashed lines) and the analytical

approximation, eq.(26) (dotted-lines). The four sets of lines correspond to a) tan� = 15 with

maximal squark mixing, b) tan � = 15 with zero-squark mixing, c) the minimal value of tan�

allowed by perturbativity constraints for the given value of Mt (IR �xed point) for maximal

mixing and d) tan � the same as in c) for zero mixing.

Figure 15: The radiatively corrected light CP-even Higgs mass is plotted as a function of the

MSSM parameters. The one-loop leading-log computation is compared with the RG-improved

result which was obtained by numerical analysis and by using the simple analytic result given

in eq.(28).
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where �t �
p
MtMS; the running top-quark mass is given by

mt(�) = mt

"
1�

�
�s

�
� 3�t

16�

�
ln

 
�2

M2
t

!#
(29)

with �t = h2t=4�. All couplings on the right hand side of eq.(29) are evaluated at Mt. The

requirement that the two stop mass eigenstates be close to each other allows an expansion of

the functions h and f , eq.(24), in powers of mt
~At=M

2

S . The resulting expression for the Higgs

mass is equivalent to the one obtained by performing an expansion of the e�ective potential in

powers of the Higgs �eld �. Keeping only operators up to order four in the e�ective potential,

eq.(28) reproduces the expression of eq.(26). This comparison holds up to small di�erences

associated with the treatment of the e�ects due to the weak gauge couplings in the one-loop

e�ective potential, and with the inclusion of the top Yukawa e�ects in the relation between the

pole and running top-quark mass [89, 92]. A more detailed treatment of the dependence of the

Higgs mass on the weak gauge couplings may be also found in Ref.[91].

Fig.15 shows the comparison between the results of the analytical approximation, eq.(29),

and the one-loop RG improvement to the full one{loop leading{log diagrammatic calculation.
In general, the prescription given in eq.(29) reproduces the full one-loop RG-improved Higgs
masses to within 2 GeV for top-squark masses of 2 TeV or below. The dashed line in the
�gure shows the result that would be obtained by ignoring the RG-improvement; it re
ects the
relevance of the two-loop e�ects in the evaluation of the Higgs mass.

The Case mA
<
� MS . A similar RG improvement of the e�ective potential method to the one

already discussed can be applied to calculate all the masses and couplings in the more general
case of a light CP-odd Higgs boson mA

<
� MS . As above, the �nite one-loop threshold corrections

to the quartic couplings at the scaleMS at which the heavy squarks decouple [87] are also taken
into account. The e�ective theory below the scale MS [86, 87] is a two-Higgs doublet model
where the tree{level quartic couplings can be written in terms of dimensionless parameters
�i, i = 1; : : : ; 7, whose tree{level values are functions of the gauge couplings. The one-loop
threshold corrections ��i, i = 1; : : : ; 7, are expressed as functions of the supersymmetric Higgs

mass � and the soft supersymmetry breaking parameters At, Ab and MS [87]. An analytical

approximation, which reproduces the previous one{loop RG improved results for all values of
tan � and mA, can also be derived. For example, generalizations of Eq. (21) can be found in
Refs.[89, 92]. The CP-even light and heavy Higgs masses and the charged Higgs mass are given

as functions of tan �, MS , At, Ab, �, the CP-odd Higgs mass mA and the physical top-quark

mass Mt related to the on-shell running mass mt through eq.(25). The analytical expressions
for the masses and mixing angle of the Higgs sector as a function of the parameters �i are

presented in Appendix 5.2. These expressions are the analogue of eq.(26) for the case in which
two-Higgs doublets survive at low energies. E�ects of the bottom Yukawa coupling, which may

become large for values tan� ' mt=mb (mb being the running bottom mass at the scale Mt),

are also included. A subroutine implementing this method is available [93].
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Table 13: MSSM Higgs couplings relevant at LEP2.

Vertex Coupling

fh;HgW�W� i2(GF

p
2)1=2m2

W g��fsin(� � �); cos(� � �)g

fh;HgZ�Z� i2(GF

p
2)1=2

m2

W

cos2 �W
g��fsin(� � �); cos(�� �)g

fh;H;Aguu �i(
p
2GF )

1=2mu

sin �
fcos�; sin�;�i
5 cos �g

fh;H;Agdd �i(
p
2GF )

1=2md

cos�
f� sin�; cos�;�i
5 sin �g

fh;HgAZ� �(
p
2GF )

1=2mZ(p+ k)�fcos(� � �);� sin(� � �)g

Couplings. Notice that the radiatively corrected quartic couplings �i, i = 1; : : : ; 7, and hence

the corresponding value of the Higgs mixing angle � as given in Appendix 5.2, permit us to
evaluate all radiatively corrected Higgs couplings. For instance, the Yukawa and gauge Higgs
couplings relevant for LEP2 energies are listed in Table 13 [p� (k�) is the incoming (outgoing)
CP-odd (CP-even) Higgs momentum]. The size of the couplings of the two scalar Higgs bosons
to fermions and a gauge boson are shown in Fig.16 [95]. For fermions the charged Higgs

particles couple to mixtures of scalar and pseudoscalar currents, with components proportional
to mu cot � and md tan � for the two � chiralities. The couplings to left(right)-handed ingoing
u quarks are given by gH+ �duL(R)

= [
p
2GF ]

1=2mu cot� (md tan �). For large tan � the down{type
mass de�nes the size of the coupling; for small to moderate tan � it is de�ned by the up{type
mass. Furthermore, the trilinear Higgs couplings can be explicitly written as functions of �i, �

and � [87, 88].

d) Renormalization Group Improvement of the E�ective Potential: General Third{

Generation Squark Mass Parameters. The above one{loop RG improved treatment of the

e�ective potential relies on the de�nition of an e�ective supersymmetric threshold scale, M2

S =

(m2

~t1
+ m2

~t2
)=2. Its validity is therefore restricted to the case of small di�erences between the

squark mass eigenvalues. Quantitatively, the method is valid if (m2

~t1
�m2

~t2
)=(m2

~t1
+m2

~t2
) � 0:5.

Furthermore, all the RG Higgs analyses performed in the literature, besides Ref.[91], rely on
the expansion of the e�ective potential up to operators of dimension four. However, to safely

neglect higher dimensional operators, the conditions 2jMtAtj �M2

S and 2jMt�j �M2

S must be

ful�lled.
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Figure 16: MSSM Higgs couplings normalized to the SM couplings gSMHff = [
p
2GF ]

1=2mf and

gSMHV V = 2[
p
2GF ]

1=2m2

V .
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The case of large splitting in the stop sector is particularly interesting in the light of recent

measurements of Rb � �(Z ! b�b)=�(Z ! hadrons), whose discrepancy of more than 3 standard

deviations with the SM prediction can be ameliorated in the presence of a light higgsino together

with a light right{handed stop (see the discussion in the chapter on New Particles) [101]-[104].

The left{handed stop must instead remain reasonably heavy to avoid undesirable contributions

to the W mass and the Z leptonic width. It is hence important to generalize the results

previously obtained by using the renormalization group improved one-loop e�ective potential,

to the case of general values of the left{ and right{handed squark masses and mixing parameters,

mQ, mU , mD, At and Ab, respectively. In this case the contribution of higher dimensional

operators to the e�ective potential must be properly taken into account; hence, the naive

treatment in terms of quartic couplings is no longer appropriate.

In Ref.[91], a method has been developed for the neutral Higgs sector of the theory, in

which each stop and sbottom particle is decoupled at its corresponding mass scale. Threshold

e�ects, associated with the decoupling of the heavy sparticles, are frozen at the decoupling

scales; they evolve, in the squared mass matrix, with the anomalous dimensions of the Higgs

�elds. The threshold e�ects achieve a complete matching of the e�ective potential for scales
above and below the decoupling scales, and include all higher order (non{renormalizable) terms
arising from the whole MSSM e�ective potential. The dominant leading{log contributions
in the expressions of the renormalized Higgs quartic couplings involve the scale dependent
contributions to the e�ective potential and are treated in the same way as in the RG improved

approach described above. The way to proceed in evaluating the CP-even Higgs mass values
and mixing angle � is explained in detail in Ref.[91]. A subroutine implementing the method is
available [94]. This approach makes contact with the computation of the Higgs masses by means
of the e�ective potential performed in Ref.[27]. Moreover, it reproduces the results of Ref.[89]
for small mass splitting of the squark masses. This comparison holds up to a tiny di�erence

coming from the inclusion of the small dependence of the one-loop radiative corrections on the
weak couplings and the vacuum polarization e�ects. Indeed, in Ref.[91] the de�nition of pole
Higgs masses is introduced by including the most relevant vacuum polarization e�ects. The
gaugino corrections, which are relatively small, have been also included by incorporating (only)
the one-loop leading logarithmic contributions.

3.1.3 Results

The lightest CP{even Higgs mass is a monotonically increasing function of mA, which in the

low tan� regime converges to its maximal value for mA
>
� 300 GeV. In Fig.17 the upper limits

on the lightest CP-even Higgs mass mh [realized in the large mA limit] are shown as a function

of tan �. Since the radiative corrections to the Higgs mass depend on the fourth power of the
top mass, the maximal top-quark mass compatible with perturbation theory up to the GUT
scale has been adopted for each value of tan �. Apart from the natural choice of the mixing

mass{parameters and the scaleMS , this result is the most general upper limit on mh for a given

value of tan � in the MSSM. The variation of the upper bound on mh as a function of Mt is
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shown by the solid line (a) of Fig.14. In Fig.18 the mass mh is plotted for di�erent values of the

mixing parameters A = At and �. In fact, A ' j�j � MS yields the case of negligible squark

mixing, while A =
p
6MS , j�j � MS characterizes the case of large mixing [i.e. the impact of

stop mixing in the radiative corrections is maximized]; A = �� =MS yields moderate mixing

for large tan � while the mixing e�ect is close to maximal for low tan �. In Fig.19 we show the

masses of the two CP{even Higgs bosons and of the charged Higgs boson as a function of mA

for the case A = �� =MS = 1 TeV,Mt = 175 GeV and di�erent values of tan �. The peculiar

behavior of mh and mH for large tan � will be explained in the following.

In general, for very large values of tan� and values of �, At and Ab of order or smaller than

MS, the mixing in the Higgs sector is negligible and the CP-even Higgs mass eigenstates are

approximately given byH1 and H2. As a result, the properties of h and H mainly depend on the

value of mA. For m
2

A > 2v2�2 � m2

Z + rad:corr:, one approaches the decoupling limit and the

relations sin � ' � cos � and cos� ' sin � hold. Hence, the CP-even Higgs mass eigenstates

are given by h ' sin �H2 + cos �H1 ' H2 and H ' sin �H1 � cos �H2 ' H1. In this case the

lightest CP-even Higgs couples to up (down) fermions as

hu�u! hu sin � and hd �d! hd cos � (30)

where hu sin � (hd cos �) is the SM coupling hSMu (hSMd ) [Observe that hSMf = gSMHff

p
2, with

f = u; d]. The heaviest CP-even Higgs boson, instead, couples in highly non-standard way to
fermions,

Hu�u! hu cos � = hSMu cot� and Hd �d! hd sin � = hSMd tan � (31)

so that the coupling to up (down) quarks is highly suppressed (enhanced) with respect to the
coupling in the Standard Model. For m2

A < 2v2�2 instead, sin� ' � sin � and cos� ' cos �.

Hence, the CP-even Higgs mass eigenstates are given by h ' cos �H2 + sin �H1 ' H1 and
H ' � sin �H2 + cos�H1 ' �H2. In this case the situation is interchanged; h has the non-
standard type of couplings to fermions, eq.(31), and H has the SM couplings, eq.(30).

The values of the CP-even Higgs masses depend on the size of the H2 or H1 component.
When the Higgs is predominantly H2, its mass is given by eq.(26) for j cos 2�j = 1, neglecting
the small bottom{quark Yukawa e�ects. When the Higgs is predominantly H1, instead, its
mass is given by mA. Hence, the mass of the lightest Higgs boson is given by m2

h ' m2

A (and
non-standard couplings to fermions) if m2

A � 2v2�2, and it is given by eq.(26) for larger mA,

for which the couplings to fermions are SM-like. The complementary situation occurs for H

and this can clearly be observed in Fig.19.

The e�ects of the bottom quark are only relevant in the limit of large � parameters. For

values of � larger thanMS relevant corrections, which are dependent on the bottom mass, enter
the Higgs mass formulae. This can be easily understood in the case mQ = mU = mD = MS,

by studying the dependence of �2 on the supersymmetric Yukawa coupling hb [see appendix
5.2]. For values of hb of order of ht, or equivalently for tan� ' mt=mb, �2 depends signi�cantly

on the fourth power of the � parameter. These radiative corrections are negative, lowering the

mass of the CP-even Higgs associated with the H2 doublet. Fig.20 shows the case of large mA.

393



Figure 17: Upper limit on the mass of the lightest neutral Higgs boson mass mh as a function

of tan � for zero mixing (dashed line) and for the maximal impact of mixing in the stop sector

(solid line); MS = 1 TeV.

Figure 18: Lightest neutral Higgs boson h in the MSSM as a function of mA for zero mixing

(dashed line), for intermediate mixing (dotted line) and for the maximal impact of mixing in

the stop sector (solid line); for two values of tan � = 1.6 (lower set), 15 (upper set): MS = 1

TeV and Mt = 175 GeV.
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Figure 19: Lightest CP{even Higgs boson mass (dashed line), heaviest CP{even Higgs mass

(solid) and charged Higgs mass (dotted line) in the MSSM as a function of mA for A = �� =
MS = 1 TeV, Mt = 175 GeV and di�erent values of tan�

Figure 20: Plot of the pole Higgs mass Mh as a function of mD, for Mt = 175 GeV, tan� =

60, Ab = 0, mU = mQ = 1 TeV, At =0. 1.5, 2.4 TeV (from bottom to top) and � = 1 TeV

(solid curves), � = 2 TeV (dashed curves).
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For large values of � and small values of mA, the charged Higgs mass also receives large

negative radiative corrections, which grow as the fourth power of the � parameter. Hence,

large negative corrections to the charged Higgs mass may be obtained. Such large values of �,

however, may be in con
ict with the stability of the ordinary vacuum state.

3.1.4 Additional Constraints: b-� Uni�cation and Infrared Fixed Point Structure

The MSSM can be derived as an e�ective theory in the framework of supersymmetric grand

uni�ed theories. In addition to the uni�cation of gauge couplings, the uni�cation of the b and �

Yukawa couplings, hb(MGUT ) = h�(MGUT ), appears naturally in most grand uni�ed scenarios.

Given this additional constraint, the experimental values of the b and � masses at low energies

determine the value ofMt as a function of tan � [18, 29, 30]. In fact, for the present experimental

range of the top-quark mass Mt = 180 � 12 GeV [33], the condition of b-� uni�cation implies

either low values of tan �, 1 � tan� � 3, or very large values of tan � = O(mt=mb) ' 50 [18, 29]-

[32]. To accommodate b-� uni�cation, large values of the top Yukawa coupling are necessary in

order to compensate for the e�ects of the renormalization by strong interactions in the running
of the bottom Yukawa coupling. Large values of h2t (MGUT )=4� ' 0.1{1 ensure the attraction
towards the infrared (IR) �xed point solution for the top quark mass [34]. The strength of the
strong gauge coupling as well as the experimentally allowed range of the bottom mass play a
decisive role in this behavior [30]-[32]. In the low tan � case, for the presently allowed values

of the electroweak parameters and of the bottom mass and for values of �s(mZ) >
� 0:115, b-�

uni�cation implies that the top-quark mass must be within ten percent of its infrared �xed point
values. A mild relaxation of exact uni�cation [0.85-0.9 � hb=h� jMGUT

� 1.15] still preserves this
feature, especially for values of Mb � 4:95 GeV. In the large tan� region, hb is O(ht) and the
infrared �xed point attraction, within the context of b-� Yukawa coupling uni�cation, is much
weaker.

The top-quark mass is also predicted to be close to its infrared-�xed point value in string
scenarios, in which the top-quark Yukawa coupling is determined by minimizing the e�ective
potential with respect to moduli �elds [99]. Quite generally, the �xed point solution, ht = hIRt ,

is obtained for large values of the top Yukawa coupling at high energy scales, which however
remain in the perturbative regime. Within the framework of grand uni�cation, one obtains
(hIRt )2=4� ' (8=9)�s(mZ) for MGUT ' 1016 GeV, and the running top-quark mass tends to its

infrared �xed point value mIR
t = hIRt v sin �. Hence, relating the running top-quark mass mt

with the pole top-quark mass Mt by taking into account the appropriate QCD corrections we

arrive in the low tan � regime at [100],

M IR
t ' sin � [1 + 2 (�s(mZ)� 0:12)]

"
1 +

4�s(mZ)

3�
+O(�2s)

#
� 196 GeV (32)

The strong Mt{tan � correlation associates with each value of Mt at the infrared �xed point

the lowest value of tan� consistent with the validity of perturbation theory up to scales of

order MGUT . If the physical top-quark mass is in the range 160{190 GeV, the values of tan�
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are restricted to the interval between 1 and 3. This is in agreement with the results from b-�

Yukawa uni�cation.

The infrared �xed point solution can also be analysed in the large tan� case, where the

e�ects of the bottom Yukawa coupling need to be taken into account in the RG evolution as

well. For instance, if the values of the supersymmetric Yukawa couplings of the bottom and top

quarks are very close to each other, mt(Mt) ' mb(Mt) tan �, the infrared �xed point prediction

for the top-quark mass is reduced by a factor
q
6=7 with respect to eq.(32) [98, 105]. Still, the

values of Mt predicted in this regime are about 190 GeV.

After the above general discussions we shall describe their consequences for the Higgs sector:

(i) The infrared �xed point structure in the low tan � region have far-reaching consequences

for the lightest CP-even Higgs mass in the MSSM [96]-[98]. Indeed, for tan � larger than

one, the lowest tree{level Higgs mass is obtained at the lowest value of tan �. Hence, in any

theory consistent with perturbative uni�cation, the �xed point solution is associated with the
lowest value of the tree{level mass consistent with the theory. Even after including radiative
corrections, the upper bound on the Higgs mass is considerably reduced at the �xed point

solution: for a top mass of 175 GeV, the upper limit of the Higgs mass is less than 100 GeV,
while for Mt = 160 GeV, it is even less than 80 GeV (see Fig.14). Hence, if the infrared �xed
point solution for the top-quark with Mt

<
� 175 GeV is realized in nature, the lightest CP-even

Higgs mass must be accessible at LEP2 for
p
s = 192 GeV [37, 89]. Fig.14 shows also that for

Mt= 175 GeV the upper bound on the lightest Higgs mass in the case of b-� Yukawa coupling

uni�cation is nearly 25 GeV smaller than the unrestricted MSSM limit.

The present data indicate that the value of Rb = �b=�h is more than 3� above the SM
prediction for this quantity. Large positive radiative corrections to Rb are always associated

with large values of the Yukawa couplings; they are therefore maximized at the infrared �xed
point solution [102, 100]. Moreover, presicion measurements also provide information about
the structure of the soft supersymmetry breaking terms: Low values of the right{handed SUSY
breaking stop mass mU and of the SUSY mass parameter � are preferred, while the left{handed
stop mass parameter mQ must be larger than mU . For a �xed large value of mQ, the upper

bound on the Higgs mass is signi�cantly lower in the casemU � mQ than in the casemU ' mQ.

Fig21 shows the Higgs mass as a function of mQ for mU = 100 GeV, mA = 300 GeV and tan�
consistent with the �xed point solution for Mt = 175 GeV, for di�erent values of the mixing
mass parameter At. Even for the largest value of At physically acceptable [i.e. m~t above the

experimental lower bound], the Higgs mass remains below 85 GeV. Hence, for the values of the

supersymmetry breaking mass terms preferred by the precision electroweak data, associated
with a light right-handed stop, lower values of mh than na��vely expected are obtained.

Furthermore, the most general upper bounds on mh at the infrared �xed point are valid for

very large values of the mixing parameters in the squark sector [At, Ab and �] which in general

are hard to realize. Requiring radiative breaking of the electroweak symmetry [yet no colour
breaking], and imposing the boundary conditions from experimental SUSY mass limits, the
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Figure 21: Plot of the pole Higgs mass Mh as a function of mQ, for Mt = 175 GeV, tan � =

1.6, � = Ab = 0, mU = mD = 1 TeV and mA = 300 GeV . The lines denote di�erent values

of the At parameter. Starting from below at mQ = 1 TeV, At = 0, 0.2, 0.4, 0.6, 0.8, 1 TeV,

respectively.

range of upper values of mh is reduced further [100]. In the general framework of supergravity
models, various analyses have been performed in the literature to study the spectrum of a

constrained MSSM at di�erent levels of re�nement [106].

(ii) The condition of b-� Yukawa coupling uni�cation is also consistent with the values of the
top-quark mass measured at the Tevatron for very large values of tan� ' mt=mb. There are,

however, large uncertainties in this sector associated with one{loop supersymmetric corrections
to the bottom mass. These radiative corrections are strongly dependent on the structure of the
supersymmetric spectrum and induce strong variations in the predictions for the top-quark mass
and tan �, once the uni�cation of the b and � Yukawa couplings is implemented. Nevertheless,
the large tan � regime with uni�cation of the b-� Yukawa couplings, although more model

dependent, provides an interesting framework for Higgs particle searches at LEP2.

Large positive radiative corrections to Rb can also be obtained for large values of tan�, since

the supersymmetric bottom{quark Yukawa coupling is enhanced in this regime. Indeed, the

value of Rb can be signi�cantly increased if the CP-odd Higgs mass is below 70 GeV [101]-[103].
This is a result of the large positive one-loop corrections associated with the neutral CP-odd
Higgs scalar sector of the theory. Low values of the CP-odd Higgs mass, mA ' mZ, imply

that both the lightest CP-even and the CP-odd Higgs masses would be at the reach of LEP2.

The charged Higgs mass is approximately determined through the CP-odd Higgs mass value,

m2

H� ' m2

A +m2

W , and hence, strong constraints on mA are obtained from the charged Higgs

contributions to BR(b! s
). Even conservatively taking into account the QCD uncertainties
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associated with the branching ratio BR(b ! s
) [i.e. assuming e.g. 40% QCD uncertainties],

the b! s
 decay rate becomes larger than the presently allowed experimental values [107] for

mH�
<
� 130 GeV, unless the supersymmetric particle contributions suppress the charged Higgs

enhancement of the decay rate. The most important supersymmetric contributions to this rare

bottom decay come from the chargino-stop one-loop diagram [108]. The chargino contribution

to the b ! s
 decay amplitude depends on the soft supersymmetry breaking mass parameter

At and on the supersymmetric mass parameter �. For very large values of tan �, it is given by

A~�+ '
m2

t

m2

~t

At�

m2

~t

tan � G

 
m2

~t

�2

!
(33)

where G(x) is a function with values of order unity when the characteristic stop mass m~t is

of order �, and it grows as � decreases. For positive (negative) values of At � � the chargino

contributions are of the same (opposite) sign as the charged{Higgs contributions. Hence, to

partially cancel the light charged{Higgs contributions and render the b ! s
 decay rate ac-

ceptable, negative values for At � � are required. This requirement has direct implications on
the corrections to the bottom mass mentioned above and puts strong constraints on models
with uni�cation of the Yukawa couplings [36, 109].

3.1.5 MSSM Parameters

In the experimental simulations, we have chosen as the two basic parameters of the Higgs sector
the mass mA of the pseudoscalar Higgs boson within the limits 40 GeV � mA � 400 GeV, and
the angle � within the bounds 1 � tan � � mt(Mt)=mb(Mt) ' 60. The upper limit on mA is
introduced merely for convenience, since the variation of mh with mA becomes negligible for
values of mA � 200{250 GeV. The upper value of tan � is chosen such that the bottom Yukawa
coupling remains in the perturbative regime for scales below the grand uni�cation scale. A given

value of tan � implies an upper limit on the top mass for which the theory can be extended
perturbatively up to the GUT scale. For tan � = 1 this upper limit is already close to 150 GeV
so that lower values of tan� would be inconsistent with values of the top quark mass in the
experimental range. In the examples we shall discuss, we have chosen:

(i) Top mass, Mt = 175 � 25 GeV;

(ii) SUSY scale, MS = 103 GeV;

(iii) SUSY Higgs mass parameter � and soft SUSY breaking parameter At = Ab = A:

A = 0 and j�j �MS [no mixing];
A =

p
6MS and j�j �MS [maximal mixing];

A =MS = �� [\typical" mixing].
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We have taken MS of order 1 TeV to include the e�ects of possibly large radiative corrections

to the lightest CP-even Higgs mass. In the same way the choice of the soft SUSY breaking

parameter A and of the SUSY mass parameter � is motivated. The central top mass value

is close to the central value measured at the Tevatron [33]. The upper and lower bounds are

extreme, roughly corresponding to the �2� limits of the CDF measurement. Although the

central value for Mt extracted from the LEP precision measurements in the MSSM for large

masses of the SUSY particles would be somewhat lower than the central value observed in the

Tevatron events, the lower values are still consistent at the 2� level.

3.2 Production and Decay Modes of MSSM Higgs Particles

3.2.1 Higgs Production

The main production mechanisms of the neutral Higgs bosons h and A in the MSSM at LEP2
energies are through the following processes [110]:

Higgs{strahlung: e+e� ! Z h

Associated pair production: e+e� ! Ah
(34)

The fusion processes, similar to the Standard Model, play only a marginal role at the kinematical

limit of the Higgs-strahlung process for the production of the CP-even Higgs boson h. The CP-
odd Higgs boson A cannot be produced in Higgs-strahlung and in fusion processes to leading
order.

The production of the heavy CP-even Higgs particle H is very di�cult at LEP energies. In
the tiny corner of parameter space, for moderate to large tan�, where associated AH produc-
tion would be allowed kinematically, the production cross section is suppressed by the small
coe�cient sin2(� � �), due to the ZAH coupling discussed earlier, and the threshold P-wave
factor. For tan � = 3 (50), mA = 60 GeV, mH = 123 (117) GeV, it is 4 (0:001) fb.

The cross sections (34) may be expressed in terms of the cross section �SM for Higgs-
strahlung in the Standard Model in the following way [110, 41]:

�(e+e� ! Z h) = sin2(� � �)�SM (35)

�(e+e� ! Ah) = cos2(� � �) �� �SM (36)

The factor �� = �
3=2
Ah =f�

1=2
Zh [12m

2

Z=s + �Zh]g accounts for the correct suppression of the P-wave

cross section near the thresholds. [�ij = (1 � (mi + mj)
2=s)(1 � (mi � mj)

2=s) is the usual

momentum factor of the two particle phase space.] The cross section for WW fusion of h is
reduced by the same factor sin2(� � �) as is the cross section for Higgs{strahlung.

The cross sections for Higgs{strahlung Zh and associated pair production Ah are comple-

mentary to each other, coming either with the coe�cient sin2(���) or cos2(���). The cross
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sections are shown for two representative values of tan� = 1:6 and 50 in Fig.22. The top-quark

mass is varied, as usual, between 175� 25 GeV. Since the upper limit on mh depends strongly

on Mt for small values of tan� where the tree-level mass is small, the endpoints of the curves

are shifted upwards signi�cantly with increasing top mass. For large values of tan �, on the

other hand, the dependence of the upper bound of mh on the radiative corrections is weaker for

rising top mass due to the large value of mh at the tree level. The supersymmetric coe�cient

cos2(� � �) is nearly independent of the top mass and it is very close to unity, so that the

spread between the curves is negligible; the coe�cient sin2(� ��) is correspondingly small. In

this large tan � case, the curves terminate at the kinematical limit before mmax

h can be reached,

in contrast to the small tan � case. For large tan � the non-zero widths of the particles are

taken into account.

For small tan�, Higgs{strahlung Zh provides the largest production cross section while the

cross section for Ah associated pair production is much smaller. With �Zh � O(0:5 pb) atp
s = 192 GeV, this mechanism gives rise to a large sample of Higgs particles. For large tan �,

associated Ah production is the dominant mechanism with rates similar to the previous case.

The predictions for the cross sections e+e� ! Zh and Ah presented above have been based
on the improved e�ective potential approximation which takes into account heavy (s)quark
e�ects on Higgs masses, mixings and couplings. It turns out a posteriori that this scheme

is quite accurate. Indeed, the box contributions to the cross sections are fairly small [111].
This is demonstrated in Fig.23 where the box contributions are compared with the Born term,
de�ned for the e�ective value tan 2� = �(m2

Z+m2

A) tan �=(m
2

Z+m2

A tan
2 ��m2

h= cos
2 �). The

leading part of the box contributions is generated by the two-Higgs doublet diagrams while the
contributions of the genuine SUSY particles are very small.

The angular distributions are of the standard form [47] for Higgs{strahlung and spin{zero
pair production,

d�

d cos �
�

(
� sin2 � + 8m2

Z=s for e+e� ! Zh

sin2 � for e+e� ! Ah
(37)

Since the main decay mode of scalar and pseudoscalar Higgs particles are b�b decays in the
MSSM, it is interesting to study the 4{fermion process e+e� ! b�bb�b in greater detail. The
�nal state includes the signal Zh ! (b�b)Z(b�b)h in the Higgs{strahlung process, and the signal

Ah ! (b�b)A(b�b)h for associated pair production. The main component of the background is

e+e� ! Z�Z� production followed by Z�! b�b decays. These cross sections have been evaluated

for a cut on the invariant b�b mass of m(b�b) > 20 GeV. The results are shown for a variety of
combinations (mA, tan �) in Table 14 for

p
s = 192 GeV.

The cross section for the production of charged Higgs bosons

e+e� ! H+H� (38)

is built up by s-channel 
 and Z exchanges [41, 112]. It depends only on the charged Higgs
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Figure 22: The cross sections for Higgs-strahlung Zh and associated pair production Ah in the

MSSM for two values of tan� = 1:6 and 50 and the top mass Mt = 175 � 25 GeV.
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Figure 23: The box contributions to the cross sections for Higgs-strahlung Zh and associated

pair production Ah for
p
s = 192 GeV; mA = 90 GeV and a slepton mass m~̀= 100 GeV.

mass and no extra parameter,

�(e+e� ! H+H�) =
2G2

Fm
4

W s
4

W

3�s

"
1 +

2v̂ev̂H

1 �m2

Z=s
+

(â2e + v̂2e) v̂
2

H

(1�m2

Z=s)
2

#
�3H (39)

where the rescaled Z charges are de�ned by âe = �1=4cW sW and v̂e = (�1 + 4s2W )=4cW sW
and v̂H = (�1 + 2s2W )=2cW sW [note that s2W = sin2 �W ]; �H = (1 � 4m2

H�=s)
1=2 is the velocity

of the Higgs particles. The cross section is shown in Fig.24 as a function of the charged Higgs
mass for the three representative LEP2 energy values

p
s = 175, 192 and 205 GeV. Within the

MSSM the present lower limit of the charged Higgs boson mass is about 85 GeV so that only

a small window is left for LEP2. Even though the cross section is not particularly small for

Table 14: The process e+e� ! b�bb�b at
p
s = 192 GeV. Cross sections in fb.

(mA [GeV], tan �) (75,30) (400,30) (75,1.75) (400,1.75) 1

no EXCALIBUR | | | | 25.933(10)

ISR HZHA/PYTHIA 135.17(61) 23.286(58) 163.36(75) 74.04(31) 22.816(50)

with EXCALIBUR | | | | 23.045(23)

ISR HZHA/PYTHIA 118.60(58) 18.761(87) 151.75(75) 57.74(28) 18.384(80)
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Figure 24: The cross section for charged Higgs boson production.

mH� � 80 to 90 GeV, the signal is very hard to extract from the overwhelming background of
WW pair production in this mass range. The analysis of cascade decays H� ! W �h;W �A [95]
can ameliorate the prospects of detecting the charged Higgs boson in this mass range for small

tan �.

3.2.2 Decay Modes of the MSSM Higgs Particles

Decays to SM particles. For tan � > 1 the lightest CP-even neutral Higgs boson h decays almost
exclusively to fermion pairs if the mass mh is less than 100 GeV. Near the upper limit of mh

for a given tan�, i.e. in the decoupling region, the decay pattern becomes SM{like. Fermion
pairs are also the dominant decay mode of the pseudoscalar Higgs boson A. The partial decay
widths of all the neutral Higgs bosons � into fermions are given by

�(�! f �f) = Nc

GFm
2

f

4
p
2�

g2
�ffm�

�
1 +

17

3

�s

�

�
(40)

in the limit m2

�
� m2

f . The couplings g�ff have been de�ned in Table 13. The small additional

O(�2s) contributions have been summarized in Ref.[12]. As anticipated from chirality arguments,

the widths, including the QCD radiative corrections, do not depend on the parity of the state

apart from the overall coupling g�ff in the limit of large Higgs masses. For quark decays,
mf has to be chosen as the running quark mass evaluated at the scale m�. The electroweak

corrections are incorporated at a su�cient level of accuracy by adopting the e�ective potential
approximation for the couplings [113].
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The partial width for charged Higgs decays to quark pairs is obtained from

�(H� ! U �D) =
3GFmH�

4
p
2�

jVUDj2
h
cot2 �m2

U + tan2 � m2

D

i �
1 +

17

3

�s

�

�
(41)

This formula is valid if either the �rst or the second term is dominant. The up and down quark

masses mU;D are de�ned again at the mass scale of the charged Higgs boson.

Since the b quark couplings to the Higgs bosons are in general strongly enhanced and the

t quark couplings suppressed in the MSSM [cf. Fig.16], b loops may contribute signi�cantly to

the gg coupling so that the approximation m2

Q � m2

�
cannot be applied any more in general.

Nevertheless, it turns out a posteriori that this remains an excellent approximation for the

QCD corrections. The CP-even and CP-odd Higgs decays to gluons and light quarks [12] are

given by the expressions

�(�! gg(g); q�qg) =
GF�

2

sm
3

�

16
p
2�3

���X
t;b

A�

Q

���2 �1 + �
95

4

�
97

4

�
� 7

6
NF

�
�s

�

�
(42)

where the parentheses refer to the pseudoscalar particle. The form factors are de�ned by

A
h;A
Q = g

h;A
Q � � [1 + (1� � ) f(� )] and AA

Q = gAQ�f(� ) (43)

with f(� ) = arcsin2(1=
p
� ) for � � 1 and �1

4
[log(1 +

p
1 � �)=(1 �

p
1 � �) � i�]2 for � < 1.

The parameter � = 4m2

Q=m
2

�
is de�ned by the pole mass of the heavy loop quark Q. In the

same way as �s(m�), the coe�cient of the QCD corrections must be evaluated for NF = 3 if
gluons and only light quarks are considered in the �nal state [cf. the SM section for details].

At the edge of the mass range accessible at LEP2, the CP-even Higgs boson h can decay
into virtual gauge boson pairs W �W=Z�Z. The widths are the same as in the Standard Model,
yet suppressed by the MSSM coe�cient sin2(� � �).

(ii) Cascade decays. A variety of cascade decays could in principle play a role in some ranges
of the MSSM parameter space accessible at LEP2, if su�ciently large samples of heavy Higgs
bosons were generated. However, for the typical set of parameters discussed in this report,
these decay modes are not very important in general and details may be traced back from
[95, 114]. The only exception are the cascade decays of the charged Higgs bosons [95] for small
to moderate tan �,

�(H+ ! hW+� ! hf �f 0) =
9G2

Fm
4

W

8�3
cos2(� � �)mH�GhW (44)

�(H+ ! AW+� ! Af �f 0) =
9G2

Fm
4

W

8�3
mH�GAW (45)

The coe�cients G depend on the mass ratios of the particles involved,

Gij =
1

4

8<
:2(�1 + �j � �i)

q
�ij

2
4�
2
+ arctan

0
@�j(1� �j + �i)� �ij

(1� �i)
q
�ij

1
A
3
5

+(�ij � 2�i) log(�i) +
1

3
(1� �i)

"
5(1 + �i) � 4�j �

2

�j
�ij

#)
(46)
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with �i = m2

i =m
2

H� and �ij = �1 + 2�i + 2�j � (�i � �j)
2. These decay modes are important

for su�ciently light h=A Higgs bosons. If they are allowed, in particular H� ! AW �, they

reduce the ��� branching ratio considerably, and they overrule cs decays as the second most

important decay channel of the charged Higgs bosons.

Summary of the branching ratios. The branching ratios for the standard quark/lepton/gauge

boson and the cascade decay modes discussed above, are shown for \typical mixing" and two

representative values tan � = 1:6 and 50 in Fig.25. Unless otherwise speci�ed the top mass in

Fig.25 has been �xed to Mt = 176 GeV. Increasing the top mass shifts the upper end of the b

and � curves upwards while the cc and gg curves are transferred nearly parallel, a consequence

of the larger Higgs mass values. The e�ect of varying �s = 0:118 � 0:006 is indicated by the

hatched bands. The curves labeled bb and cc correspond to all mechanisms generating inclusive

b; c quarks in the �nal states, while the curve labeled gg includes gluons and light quarks.

At tan� = 1:6, interesting cascade decays are predicted for moderately small charged Higgs

masses, H� ! AW � and hW �; they a�ect the experimental search techniques also in the ���
channel by reducing this important decay branching ratio. For large tan �, bb and �+�� decays

are overwhelming except in the decoupling regime near the upper limit of the h mass.

Predictions for decays of the heavy CP{even Higgs boson H are discussed in great detail in
Ref.[12].

Neutralino decays. For h, A Higgs masses up to � 120 GeV, there are still windows open for
decays into pairs of light neutralinos [41, 115]. These windows have been left by LEP1 and
they cannot be closed by LEP1.5 either. The decay channels of interest are

h; A! �0
1
�0
1

(47)

for small to moderate tan �.

Masses and couplings of the states �i depend on tan �, the SU2 gaugino mass parameter
M2, and the Higgs mass parameter �. [We assume the relation M1 = 5

3
tan2 �WM2 ' 1

2
M2.]

For large M2 and small (positive) � values, the lightest neutralino �0
1
is predominantly built

up by the higgsino component while for large values of � the light �0
1
state is predominantly

gaugino-like. The couplings of �0
1
to h and A are given in terms of the neutralino mixing matrix

Z by

�h = (Z12 � tan �WZ11) (sin�Z13 + cos�Z14)

�A = (Z12 � tan �WZ11) (� sin � Z13 + cos� Z14)

[see e.g. [116]]. Since Z11=Z12 correspond to the gaugino components of �0
1
while Z13=Z14

correspond to the higgsino components, the couplings h�0
1
�0
1
and A�0

1
�0
1
can only be non-

negligible if the state �0
1
incorporates both components at a signi�cant level. Moderate values

of M2, � are therefore the favorable domain for LSP decays. The widths for the h, A decays

into �0
1
�0
1
pairs can be written as
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Figure 25: Decay branching ratios of the MSSM Higgs bosons h;A;H� into SM particles and

cascade decays. The bands characterize the uncertainties in the predictions, except those due to

the top mass, which are indicated by bars.
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MSSM: BR(H±)
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Figure 25: (cont'd).

Figure 26: Branching ratios for h;A decays into pairs of the lightest neutralino for a set of SU2

gaugino and higgsino mass parameters not excluded by LEP1/1.5. If �0
1
is the LSP and if R

parity is unbroken, these decays lead to invisible �nal states.
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�(h! �0
1
�0
1
) =

GFm
2

W

2
p
2�

�2hmh�
3

� (48)

�(A! �0
1
�0
1
) =

GFm
2

W

2
p
2�

�2AmA�� (49)

These decays of the Higgs particles are invisible if �0
1
is stable. The Higgs particle h can still

be observed in the Higgs-strahlung process through the recoiling Z at small to moderate tan�

where this production channel is dominant. However, the pseudoscalar Higgs boson A cannot

be detected if, produced in associated Ah production, both particles decay into invisible �0
1
�0
1

channels for small to moderate values of tan�.

Since for large tan � the b�b decays of the h and A Higgs bosons are overwhelming, tan�

needs to be small to moderate for �0
1
decays to be relevant. Typical examples of large branching

ratios for h;A Higgs decays to LSP pairs are shown in Fig.26 for a set of SU2 gaugino and
higgsino mass parameters M2 and �. The LSP masses can be read o� the threshold values.

The branching ratios are large whenever the LSP decay channels are open for � > 0. For � < 0
the LSP decays play a less prominent role; only in a small window close to � � �M2=2 are the
couplings large enough to allow for invisible h and A decays [115].

409



3.3 The Experimental Search for the Neutral Higgs Bosons

3.3.1 Searches in the Higgs-strahlung Process

For the e+e� ! hZ process, as well as for e+e� ! HZ when kinematically allowed, all the

analyses [58] developed for the standard model Higgs boson and presented in Section 2.3 can

be used with no modi�cations and with a similar e�ciency, provided that the Higgs boson

decays into supersymmetric particles, such as charginos and neutralinos, are not open. As soon

as the decay into a pair of LSPs (Lightest Supersymmetric Particle) h! �� is allowed, it may

even become dominant therefore rendering the existing analyses ine�ective.

Two new selection algorithms were developed by ALEPH to take care of this particular

situation where the Higgs boson would decay invisibly, for the following events topologies:

(i) the acoplanar lepton pair topology, (Z! e+e�; �+��) (h! ��);

(ii) the acoplanar jet topology, (Z! q�q) (h! ��).

Only minor modi�cations to the selection procedure would be needed to extend the validity of

these analyses to \almost invisible" Higgs boson decays, such as h ! �0� or �+�� when the
mass di�erence between the LSP and the next-to-LSP is small.

a) Search in the Acoplanar Lepton Pair Topology

The acoplanar lepton pair topology arises when the Z de-

cays into a pair of leptons and the Higgs boson h decays
invisibly into a pair of neutralinos. Events can be selected
by requiring a high mass e+e� or �+�� pair, compati-
ble with the Z hypothesis and with large missing energy
and missing mass. Events from e+e� ! `+`�(
), Ze+e�

or 

 ! `+`� are characterized by a large missing mo-

mentum along the beam direction and a small acopla-

narity angle, and can therefore easily be rejected. The
only irreducible background sources are e+e� ! WW !
e�e�; ����, e+e� !ZZ! e+e����; �+�����, and to a lesser

extent e+e� ! Z���.

An e�ciency of 45 to 50% was achieved independently of mh. The lepton momenta were
subsequently �tted to the Z mass hypothesis, and the missing mass calculated from the energy-

momentum conservation as recoiling against the lepton pair, with a typical resolution of

2 GeV/c2. Shown in Fig.27 are the mass distributions obtained with 500 pb�1 at 175 and
192 GeV, for several Higgs boson masses. At 192 GeV, and for mh = 90 GeV=c2, the numbers

of signal and background events expected in a window of �2� around the reconstructed Higgs
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boson mass are 6.2 and 6.1 respectively, assuming a 100% branching fraction into invisible �nal

states.

b) Search in the Acoplanar Jet Topology

In order to add to the numbers of signal events expected from

the acoplanar lepton pair topology, the hadronic decays of the

Z were also investigated. A very similar selection procedure as

in Section 3.3.1a) was developed, in which the two hadronic jets

played the role of the leptons. A similar selection e�ciency was

achieved, but with a much higher background from e+e� !WW

and (e)�W in particular, due to the much worse jet-jet invariant

mass resolution. A b-tagging requirement may or may not be

applied to reduce the background (at the expense of a 80% loss

of e�ciency), with almost no consequences on the minimum

luminosity needed for the discovery or the exclusion.

Shown in Fig.28 are the mass distributions obtained in the same con�gurations as in Fig.27,
when a tight b-tagging criterion is applied. At 192 GeV, and for mh = 90 GeV=c2, the num-
bers of signal and background events expected are 7.7 and 4.9 respectively, assuming a 100%
branching fraction into invisible �nal states.

3.3.2 Search in Associated Pair-production e+e� ! Ah

The e+e� ! hA associated production leads to two main �nal states, b�bb�b in 83% of the cases

and �+��q�q in 16% of the cases, if supersymmetric decays are absent.

a) The b�bb�b Topology

This four-jet �nal state is similar to the four-jet topology arising from the Higgs-strahlung
process, and a similar selection procedure can therefore be applied. Here, the Z mass constraint

cannot be used, and the requirement of incompatibility with a WW �nal state must be removed
to retain a sizeable e�ciency for the case mh = mA � 80 GeV=c2. However, since the b-quark
content is much higher in this four-b-jet topology than in the Higgs-strahlung process, a much

tighter b-tagging criterion can be applied. In terms of background rejection, this may even

over-compensate the removal of the two previous requirements while keeping a high e�ciency,
varying between 10 and 35%.

The four-jet energies and directions can then be �tted to satisfy the total energy-momentum

conservation constraint in order to achieve a good mass resolution. Shown in Fig.29a are the

distributions of the sum of the �ttedmh and mA values as obtained in the ALEPH detector with
an integrated luminosity of 500 pb�1 at 175 GeV, for tan � = 10 and mA = 65 and 75 GeV/c2.
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Figure 27: Distribution of the missing mass recoiling against the e+e� or �+�� pair, in the

acoplanar lepton pair topology, as obtained from the ALEPH simulation at 175 GeV (left)

and 192 GeV (right), with an integrated luminosity of 500 pb�1. The signal (in white) is

shown on top of the background (shaded histogram), with Higgs boson masses of 60 (dashed),

70 (dotted) and 80 (dash-dotted) GeV/c2 at 175 GeV, and 70 (dashed), 80 (dotted) and 90

(dash-dotted) GeV/c2 at 192 GeV.

Figure 28: Same as in Fig.27, for the acoplanar jet topology, after a tight b-tagging (optional)

requirement is applied.
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The same distributions as seen by OPAL are shown in Fig.29b with 500 pb�1 taken at 192 GeV,

for mh = mA = 70 GeV=c2. Since for large tan � values the h and A masses are expected to be

close to each other, the mass resolution is expected to improve by imposing this mass equality

in the �t procedure. This was done by DELPHI for mh = mA = 79 GeV=c2 at 192 GeV, and

the result is shown in Fig.30a for an integrated luminosity of 300 pb�1. Finally, the distribution

of mh vs mA that would be obtained in L3 in the mass con�guration (60 GeV/c2, 80 GeV/c2) if

the signal cross-section amounted to 0.5 pb is shown in Fig.30b at 190 GeV, for an integrated

luminosity of 1 fb�1.
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Figure 29: Mass distributions obtained in the hA ! b�bb�b topology. (a) mh+mA from ALEPH

(175 GeV, 500 pb�1); and (b) mh +mA from OPAL (192 GeV, 500 pb�1).

b) The �+��b�b Topology

For this topology, the same analysis as for the Higgs-strahlung process was used by ALEPH and
DELPHI (with the exception that the very last �t intended to improve the �+�� and hadronic

mass resolution with the mZ constraint does not apply). The background level is already very
low, except when mh and mA are close to mZ in which case the ZZ background can be reduced

by tagging b-quarks. In this con�guration, however, the signal is expected to have a very low
cross-section except at the highest possible center-of-mass energy,

p
s = 205 GeV. Altogether,

when added to the preceding one, this analysis increases the selection e�ciency of the hA

channel by about 20%.

c) The Case h or A! ��

If either h or A decays predominantly into ��, the relevant topology becomes that of an

acoplanar jet pair, as already described in Section 3.3.1b). However, the pair of jets is actually
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(a) (b)

Figure 30: Mass distribution obtained in the hA ! b�bb�b topology, (a) mh = mA from DELPHI

(192 GeV, 300 pb�1); and (b) mh vs mA from L3, assuming a signal-cross-section of 0.5 pb

(190 GeV, 1 fb�1).

a pair of b-quarks in that case, therefore improving the selection e�ciency of a b-tagging
criterion with respect to the e+e� ! hZ con�guration.

In the unfortunate situation where both h and A predominantly decay into a pair of LSPs,
the resulting �nal state becomes totally invisible and cannot be found at LEP2. However, in
that case, there is a fair chance to discover the lightest supersymmetric particle via a direct
neutralino search.

3.4 Discovery and Exclusion Limits

Using the de�nitions of Appendix 5.3, a minimum signal cross-section was inferred for the
e+e� ! hA process from the expected number of background events, both for the discovery

and the exclusion. Since the background mass distribution is mostly uniform over the (mh,mA)

plane, it turns out that this minimum signal cross-section does not depend on mh and mA. For

instance, at 192 GeV and with an integrated luminosity of 150 pb�1, a cross-section in excess

of 65 (30) fb can be discovered (excluded) in the e+e� ! hA channel when supersymmetric
decays are closed.

For the Higgs-strahlung process, the total cross-section is reduced with respect to the stan-
dard model expectation by a factor denoted sin2(� � �) in the MSSM. The number of events

expected is also directly a�ected by the branching ratio of the h decay into b�b. For each mh,
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a minimum value for R2 � sin2(� � �) �BR(h ! b�b) was inferred for the discovery and the

exclusion. The result, which is model-independent, is shown in Fig.31 for the three center-of-

mass energies 175, 192 and 205 GeV, with integrated luminosities of 150, 150 and 300 pb�1,

respectively [58]. The interpretation of the negative searches at LEP1 (from Ref.[117]) is also

shown in this plot.

Since this limit becomes irrelevant when supersymmetric decays are dominant, it is supple-

mented by the 95% C.L. upper limit on R2 � sin2(� � �) � BR(h ! invisible �nal states),

as shown in Fig.32.2 At LEP2, this limit is worse by about a factor of two than in the case

where h predominantly decays into b�b, while it was better at LEP1. In order to make easier

the use of these curves to test other models, such as non-minimal supersymmetric extensions of

the standard model, the exclusion and discovery limits on R2 = sin2(���)�BR(h! b�b) are

presented in Table 15, for the three center-of-mass energies, and when combining the results at

175 and 192 GeV, on the one hand, and with the 205 GeV results in addition, on the other.

To interpret these results in the MSSM framework, both the e+e� ! hA cross-section and

the sin2(���) value were computed and compared to the above minimum values in a systematic
scan of the (mA, tan �) plane, forMt = 175�25 GeV=c2 and for the three di�erent stop mixing
con�gurations, (i) No mixing: At = 0 and j�j � MS; (ii) Typical mixing: At = MS and
� = �MS (these values of At and � give a moderate impact of the stop mixing for large tan�

but a mixing e�ect close to maximal if tan � is small); and (iii) Maximal mixing: At =
p
6MS

and j�j �MS , with MS = 1 TeV.

The results of the above analysis are summarized in a series of �gures (Figs.33 and 34),

which display the areas in the (mA; tan �) and (mh; tan �) planes that can be covered for a
given energy of LEP2,

p
s = 175; 192 and 205 GeV at the integrated luminosities 150, 150

and 300 pb�1, respectively. The top-quark mass and the stop mixing parameters are varied as
speci�ed above. The �gures are obtained by combining the four LEP experiments. At

p
s= 175

GeV, an increase in luminosity beyond 150 pb�1 does not improve the potential of the machine

for the discovery of the light Higgs boson in any relevant way. The analogous conclusion was
reached in the standard model case. At

p
s= 192 GeV, still 150 pb�1 of integrated luminosity

per experiment are su�cient to make proper use of the discovery potential of the machine, and
a larger luminosity of ' 300 pb�1 gives only a slight improvement in the upper bound on the
Higgs boson mass which can be discovered or excluded. Although for any center-of-mass energy

the variation from 150{200 pb�1 to 300{400 pb�1 of integrated luminosity yields a gain of at

most 2 to 3 GeV/c2 in the maximal Higgs boson mass that can be reached, at
p
s = 205 GeV

the results are presented for 300 pb�1 since for this energy value the increase in luminosity
translates into a quite impressive coverage of tan �.

Comparing the experimental limits for the center-of-mass energies 175 GeV and 192 GeV,

Fig.33 a/b and c/d, it is clear that the higher energy value allows a remarkably larger part of

the parameter space to be covered. For Mt = 175 GeV/c2 and in particular for
p
s = 175 GeV,

2Since this analysis was done in ALEPH only, it was assumed that the other experiments would contribute
in the same proportions as for the visible decays to perform the combination.
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Figure 31: 95% C.L. upper limits on R2, as a function of mh for a visible Higgs boson, for the

three center-of-mass energies: R2 = sin2(���)�BR(h! any visible �nal state) for the LEP1

part of the curve and R2 = sin2(� � �) �BR(h! b�b) for the LEP2 part of the curve.

Figure 32: 95% C.L. upper limits on R2, as a function of mh for an invisible Higgs boson, for

the three center-of-mass energies: R2 = sin2(� � �) �BR(h! any invisible �nal state).

416



Table 15: Minimum value for R2 = sin2(� � �) � BR(h ! b�b) at the three center-of-mass

energies, with integrated luminosities of 150, 150 and 300 pb�1, respectively, and for various

Higgs boson masses. Also shown is the combination of the 175 GeV and 192 GeV results, with

an integrated luminosity of 150 pb�1 taken at each energy, and the overall combination of the

175, 192 and 205 GeV results, assuming 300 pb�1 at 205 GeV. The combination of several

center-of-mass energies have not been used in Fig.33 and 34.

p
s = 175 GeV

mH(GeV/c
2) 40 50 60 70 75 80 82 83 84

Exclusion 0.055 0.066 0.085 0.120 0.153 0.252 0.369 0.525 0.842

Discovery 0.136 0.164 0.207 0.303 0.381 0.620 0.963 | |

p
s = 192 GeV

mH(GeV/c
2) 40 50 60 70 80 90 95 97 98

Exclusion 0.057 0.067 0.080 0.103 0.154 0.242 0.316 0.387 0.447
Discovery 0.142 0.163 0.197 0.249 0.385 0.584 0.781 | |

Combination of 175 and 192 GeV

mH(GeV/c
2) 40 50 60 70 80 90 95 97 98

Exclusion 0.038 0.045 0.056 0.076 0.129 0.242 0.316 0.387 0.447
Discovery 0.095 0.113 0.139 0.190 0.317 0.584 0.781 | |

p
s = 205 GeV

mH(GeV/c
2) 60 70 80 90 100 105 110 111 112

Exclusion 0.109 0.127 0.162 0.196 0.207 0.222 0.315 0.375 0.481
Discovery 0.270 0.315 0.404 0.490 0.510 0.539 0.785 | |

Combination of 175, 192 and 205 GeV

mH(GeV/c
2) 50 60 70 80 90 100 105 110 112

Exclusion 0.044 0.053 0.068 0.101 0.155 0.207 0.222 0.315 0.481
Discovery 0.111 0.132 0.168 0.252 0.370 0.510 0.539 0.785 |
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(a)

(b)

Figure 33: Exclusion and discovery limits in the [mA; tan �] plane for each of the center-of-mass
energies, varying the values of the stop mixing parameters as speci�ed in the text (a, c and e)

and varying the values of Mt= 150, 175, 200 GeV/c2 for A = �� =MS = 1 TeV (b, d and f).
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(c)

(d)

Figure 33: (cont'd)
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(e)

(f)

Figure 33: (cont'd)
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(a)

(b)

Figure 34: Exclusion and discovery limits in the [mh; tan�] plane, for Mt = 175 GeV and

A = �� = MS = 1 TeV for each of the center-of-mass energies. The dark shaded areas are

excluded theoretically.
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(c)

Figure 34: (cont'd)

the potential of LEP2 is rather limited at large mA, while for 192 GeV it is possible to cover the
moderate and large mA for small tan�, tan � � 2�3 (which is a di�cult region for LHC). This
is especially obvious if non-negligible mixing in the stop sector is considered. For large values of
mA, the limit of the standard model Higgs boson is approached (light gaugino channels are not
considered to be open) and the lightest CP-even Higgs boson acquires its maximal value. Since
the maximal value of mh increases with tan�, the range in tan � covered by LEP2 directly

re
ects the range of standard model Higgs boson masses accessible to the experiments.

It is interesting to compare the upper limits on mh which can be reached experimentally,
Table 16 and Fig.34, with the maximal h masses expected in the MSSM. In particular, if the

experimental limits are compared to the h mass range preferred by gauge and b-� Yukawa

coupling uni�cation, for Mt ' 175 GeV/c2 it can be seen that a large part of the SUSY Higgs
mass range is covered in the 192 GeV version of LEP2, in contrast to the lower energy of
175 GeV. In fact, the infrared �xed point solution can be excluded at the 95 % C. L. at

p
s =

192 GeV if Mt � 175 GeV/c2. (For Mt ' 185 GeV/c2 the infrared �xed point solution can be

excluded only at
p
s =205 GeV.)

3.5 MSSM vs. SM

No precise experimental analyses have yet been developed to cope with the situation in which

a Higgs boson would be discovered and thus would need to be studied in detail. This can be
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Table 16: Maximal mh (hZ and hA combined) and mA (hA only), in GeV/c2, that can be

directly discovered and excluded in the MSSM for Mt = 175 GeV/c2 and typical mixing at

various LEP2 energies for two representative values of tan � (* These values of mh are already

excluded theoretically in the MSSM for typical mixing, MS = 1 TeV and for the values of Mt

and tan� considered here).

p
s Lmin tan � = 2 tan � = 30 tan � = 2 tan� = 30

(GeV)

175

192

205

(pb�1)

150

150

300

mh
disc: mA

disc:

80 75

95 78

108� 80

mh
disc: mA

disc:

77 77

82 82

88 88

mh
excl: mA

excl:

84 82

98 87

113� 93

mh
excl: mA

excl:

83 83

88 88

95 95

partly explained by the relatively low luminosity currently expected at LEP2 which will not

allow any accurate measurements to be performed in this �eld. It could however be imagined
that if a new particle were discovered, a substantial extension of the LEP2 project could be
decided upon with the purpose of identifying this particle.

The angular distribution of the Higgs boson produced in the Higgs-strahlung process is
expected to be quite uniform at the LEP2 center-of-mass energies, and so is the angular dis-
tribution of the decay products in the Higgs boson rest frame. Even in the most di�cult case
mh � mZ, the numbers of events collected by the four experiments with 1 fb

�1 taken at 192 GeV
(323 events from the signal and 255 from the backgrounds, see Table 9) su�ce to exhibit the


atness of these distributions, and to characterize unambiguously a JP = 0+ particle.

Such an excess of events after a b-tagging requirement is also su�cient to claim that this
object often decays into b�b, which also characterizes a Higgs particle. However, a precise

measurement of the b�b branching fraction can only be done with a channel in which the
evidence for a signal can be claimed without b-tagging, i.e. the H`+`� topology. This situation
is particularly favourable if the Higgs boson mass is not degenerate with the Z mass, in which
case the background is much reduced thanks to the excellent recoil mass resolution.

For instance, the cross-section for a 80 GeV/c2 Higgs boson at
p
s = 192 GeV in the H`+`�

topology is 47 fb (after selection cuts, but with no b-tagging requirement), to be compared to

14 fb for the background. This already allows a measurement of the b�b branching fraction (if

close to 100%) with a � 20% statistical accuracy, if a luminosity of 1 fb�1 is given to each

experiment. Similarly, the quantity �(e+e� !hZ)� BR(h! b�b) can be determined with the
same luminosity from the events collected in all the topologies with a statistical accuracy of
� 5% (resp. 10%) for a 80 GeV/c2(resp. 90 GeV/c2) Higgs boson.

Unfortunately, even if the systematics uncertainties were negligible (e.g. the errors related

423



to the b-tagging e�ciency determination) this is not su�cient to distinguish the standard

model and the MSSM in the region where only the Higgs-strahlung process plays a role. In

this region, a statistical accuracy better than 1 or 2% is indeed required [118] to achieve this

goal. The extension of the standard model would be manifested in this parameter range only

if non-standard Higgs boson decays were observed. It is otherwise only in the region where the

e+e� ! hA process or, less likely, charged Higgs bosons (see Section 3.6) can be discovered,

that this distinction is possible at LEP2.

3.6 Search for Charged Higgs Bosons

In the MSSM the mass of the charged Higgs bosons H� is expected to be larger than mW. In

general, for non-extreme stop mixing con�guration, it is of the order of m
H
�
2 = mA

2 + mW
2,

i.e. larger than � 90 GeV=c2 within a few GeV=c2, rendering rather di�cult the discovery of

such heavy objects at LEP2. However, this does not hold necessarily in other, e.g. non-minimal

supersymmetric extensions of the Standard Model where light charged Higgs bosons { although
heavier than 44 GeV/c2 as shown by LEP1 data { cannot be ruled out. Their discovery would
unambiguously signal the existence of an extended Higgs sector.

3.6.1 Production and Decays

Charged Higgs bosons are produced in pairs in the process e+e� ! H+H� with a rate depending

only on mH
� in the general two-doublet model. About 100 such events are expected to be

produced with an integrated luminosity of 500 pb�1 for mH
� � 70 GeV=c2, irrespective of the

center-of-mass energy from 175 to 205 GeV, and this rate decreases rapidly with increasing
mass due to the �3 kinematic suppression factor.

Furthermore, if it is assumed that the cascade decay modes [95] like H+ ! W+�h are
kinematically suppressed, the charged Higgs bosons are expected to decay predominantly into
the heaviest kinematically accessible fermion pair provided it is not suppressed by a small CKM
matrix element, i.e. H+ ! �+�� or c�s. Therefore the expected �nal states are �

+���
���� , c�s�

����
and c�s�cs, thus leading to an important irreducible background from e+e� !W+W� in addition

to the low expected signal rate. This renders almost hopeless the discovery of charged Higgs
bosons with mass around and above the W mass.

Searches for these �nal states have been developed by L3 [119] and DELPHI [64], using full

detector simulation of signal and background processes for an integrated luminosity of 500 pb�1.
A search for the four-jet �nal state c�s�cs has so far been developed by L3.

a) The e+e� ! H+H� ! c�s�cs Channel

The process e+e� ! H+H� ! c�s�cs leads to four-jet hadronic events. In order to distinguish a

Higgs signal from the main background of e+e� ! q�q and W+W�, use is made of the di�erent
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topological properties. The simulated hadronic energy deposits are clustered into four jets.

For example at
p
s = 175 GeV, for 60 and 70 GeV/c2 Higgs signals, 75% and 69% selection

e�ciencies are expected respectively. The numbers of expected background events are: 3140

q�q, 4664 WW, and 90 ZZ for 500 pb�1.

The four jets can be combined into two jet-pairs in three possible ways, and their ener-

gies and directions are �tted to the energy-momentum conservation and to the m
H
+ = m

H
�

constraint. The combination with the smallest �2 is chosen, provided that the measured mass

di�erence between the two jet-pairs is smaller than 5 GeV/c2, and a mass resolution of about

1 GeV/c2 is achieved. Unlike the hA ! b�bb�b channel, no b-tagging requirement can be ap-

plied to reject the WW ! four-jet background, but the signal-to-noise ratio is improved by

removing events where one jet pair combination is consistent with a W pair, at the expense of

a suppression of the signal e�ciency when m
H
� ' mW.

For m
H
� � 60 GeV=c2, the expected signal e�ciency is about 7% and the number of

background events is about 2 q�q and 3 WW events, for an integrated luminosity of 500 pb�1

at
p
s = 175 GeV.

b) The e+e� ! H+H� ! c�s����� Channel

The signature of an e+e� ! H+H� ! c�s����� signal is one isolated slim jet with missing energy
coming from the � decay recoiling against a hadronic system. In the DELPHI analysis, a
preselection of hadronic �nal states is performed, and the events are clustered into three jets.

The lowest multiplicity jet, i.e. the � candidate, is required to have at most three charged
particle tracks. Further cuts on the mass and on the angle between the two most energetic
jets are applied to reject events without a clear 3-jet topology. A kinematic �t of the neutrino
direction and the � momentum (four unknowns) is performed by constraining the �� and cs
systems to have the same invariant mass and the total energy-momentum to be conserved (�ve

equations). A �2 cut is applied to improve the signal-to-noise ratio. This retains from 16% to
29% of the signal events, depending on the H� mass and approximately 38 background events
remain for 500 pb�1 at 175 GeV.

In the L3 analysis, the kinematic �t is replaced by the following approximate method:

(i) the missing momentum, ~pmiss, the missing energy, Emiss, and the invariant mass of the

two most energetic jets,Mcs, are calculated. In order to improve the mass resolution, this

mass is rescaled by the factor Ebeam=(Ejet1 + Ejet2);

(ii) for the other hemisphere, the invariant mass M2

�� = (Emiss + E� )
2 � (~pmiss + ~p� )

2 is

calculated, where ~p� is the visible � momentum.

The reconstructed masses of Mcs and M�� are shown in Fig.35. Cuts as given in the �gure are
applied. The expected signal e�ciencies are about 5.6% and about 2 WW background events

are expected for 500 pb�1 at 175 GeV.
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Figure 35: Left: Schematic reconstruction of both invariant masses Mcs and M�� in the cs��

channel. For details see text. Right: Reconstructed invariant masses of Mcs and M�� in the L3

analysis for a 60 GeV/c2 Higgs signal and background events in the cs�� channel for 500 pb�1

at 175 GeV.

c) The e+e� ! H+H� ! �+���
���� Channel

The e+e� ! H+H� ! �+���
���� events are characterized by a low particle multiplicity and

large missing energy. The background processes e+e� ! �+��(
), q�q, WW and 

 ! f�f are

relevant in this channel.

After applying selection criteria based on the acoplanarity, the total energy and the event
thrust axis angle, the main remaining background comes from leptonic WW decays. Unlike

the two other channels, a reconstruction of the Higgs boson masses is not possible because of
too many unknowns due to the numerous missing energy sources. However, the energies of the
decay products of the two taus can be measured, and part of the W decays into e�e and ���
can be removed by a cut on these two energies, which are expected to be larger in that case

than for ��� �nal states due to the additional neutrinos from the � decay.

The expected signal e�ciencies are about 12% and about 1 WW background event is ex-

pected in the L3 analysis for 500 pb�1 at 175 GeV. For DELPHI, a 23% signal e�ciency is
achieved, for a total of 85 background events expected.

3.6.2 Results

In the framework of a general two Higgs doublet model, the results of this analysis can be

expressed as a function of Br(H+ ! �+��) (if it is assumed that o�-shell decay modes are
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Figure 36: 3� sensitivity regions as a function of the charged Higgs boson mass and its leptonic

branching ratio at 175 GeV and for a total luminosity of 100, 200, and 500 pb�1. The upper

solid lines indicate the sensitivity limits from the ���� channel, the dashed lines come from the

cs�� channel, and the lower solid lines come from the cscs channel. (For simplicity, combined

contour lines in overlapping sensitivity regions are not shown.)

suppressed) and of m
H
�. Combining the studies in the c�s�cs, c�s����� , and �+���

���� channels

described in the previous sections, the regions which can be explored with
p
s = 175 GeV are

shown in Fig.36 for luminosities of 100, 200, and 500 pb�1 taken by one experiment. (These
numbers would be roughly divided by four if the four LEP experiments were combined.)

Except for branching ratios into ��� near 0 or 1, all three channels contribute simultaneously
which extends the sensitivity range by few GeV/c2. Charged Higgs bosons with masses up to

about 70 GeV/c2 should be detectable independently of their decay branching ratios assuming
a total luminosity of 500 pb�1 at 175 GeV. The region where a 99.73% CL (3�) e�ect due
to H+H� production can be detected is strongly dependent on the assumed luminosity. The

boundary lines also depend strongly on the detection sensitivities due to the small change of

the charged Higgs boson production cross-section with di�erent mH
�. The expected variations

of the number of background events for di�erent Higgs masses is taken into account in the

�gure. The e�ect of increasing the center-of-mass energy to about 200 GeV is small since only
a small change of the production cross section is expected.

The background at LEP2 from WW production with identical decay modes as for the
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charged Higgs bosons can be controlled. Irreducible background only occurs if m
H
� � mW.

For leptonically decaying Higgs bosons, masses can however be explored up to about mW due

to the small branching fraction of the W boson into ��� .

To summarize, LEP2 has a good potential for a charged Higgs boson discovery already in

its �rst phase at 175 GeV [well beyond the current mass limit of LEP1 of 44 GeV/c2] as soon

as a su�cient luminosity of about 200 pb�1 is collected. Even with an increase of the machine

energy to around 200 GeV, it is extremely di�cult to explore the kinematic region around

and above mW because of the large irreducible background from WW production and the low

production cross section.

3.7 Complementarity between LEP2 and LHC

As with the SM Higgs boson, it is an important task to compare the Higgs discovery potential of

LEP2 with the potential of LHC for the minimal supersymmetric standard model MSSM [120].
The comparison will be based again on the LEP energy

p
s = 192 GeV with an integrated

luminosity of
RL = 150 pb�1 per experiment [yet all four experiments combined] and the

presumably ultimate integrated luminosity
RL = 3�105 pb�1 of LHC, with the results from

ATLAS and CMS combined.

The lightest of the neutral scalar Higgs bosons h can be produced at the LHC in gluon{
gluon fusion [56, 72], and through Higgs{strahlung o� W bosons [74] and top quarks [121].
This Higgs particle will be searched for in the 

 and b�b decay channels. Tagging leptonic W=Z

and t decays provides an experimental trigger for the b�b search, but also reduces considerably
the huge backgrounds from non{b jets. The area of the [mA; tan�] parameter plane in which
the light scalar Higgs boson h can be discovered in this way at the LHC is shown in Fig.37 by

the shaded regions [122]. The boundary of the LEP2 discovery range is indicated by the full
line. No method has yet been found which allows the discovery of h in the parameter range of
large tan� > 5 and mA between � 90 and � 170 GeV at either of the two machines.

While the area in which the pseudoscalar Higgs boson A can be discovered at LEP is
rather modest, a large domain is accessible at LHC, Fig.38. A clean signal of A comes from

�+�� decays; in addition, cascade decays A! Zh with subsequent leptonic Z decays provide
promising search channels. The search for A in t�t decays requires the theoretical control of
the top background production at a level between 10 and 2% which is an extremely di�cult

problem. A similar picture applies to the search for the heavy scalar Higgs particle H at the

LHC, cf. Fig.38. In particular, the classical four{lepton decay of H via ZZ intermediate states
can be exploited. At LEP2 the heavy Higgs H might be produced only in a small region of the

MSSM parameter range. The search for charged MSSM Higgs particles is frustrated in either
machine. While the LEP2 energy is not su�cient to produce these particles pairwise outside

a tiny domain of the MSSM parameter space, the search technique at the LHC is restricted so

far to t! bH+ decays with a rather limited range in the charged Higgs mass.
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Figure 37: The regions in the [mA; tan�] parameter space in which the lightest CP-even Higgs

boson h can be covered at LEP2 (Higgs{strahlung and associated production for 150 pb�1 atp
s = 192 GeV) and at LHC (

 decay channel in direct production and associated Wh; t�th

production for 3� 104pb�1 and 3� 105pb�1, b�b decay channel in associated Wh; t�th production

for 3 � 104pb�1, and H ! hh! b�b

 decay channel for 3 � 105pb�1). Parameters: Mt = 175

GeV, A = 0, j�j � MS = 1 TeV, but the masses of all supersymmetric particles are set to

1 TeV. (Courtesy of D. Froidevaux and E. Richter-Was)

The predictions for the LHC have to be considered with some caution. The computation
of the Higgs spectrum and couplings have been treated in analogy to the LEP2 simulations;
however, the masses of all SUSY particles have been assumed heavy. Since the couplings in
the gg fusion cross sections as well as in the 

 branching ratios for h decays are generated

by loops, this channel could be a�ected strongly by light charginos and stop particles [123].

Depending on the point considered in the SUSY parameter space, the variation of ��BR through
SUSY-loop e�ects can go either way, enhancing or spoiling the Higgs signal. The problem of

SUSY loop corrections is much less severe in search channels which are based on reactions
realized already at the Born level, as Wh at the LHC, and all the search channels in e+e�

collisions. A problem of pp collisions are the QCD corrections. They are known for the signal

in gg fusion [72], but not for all background processes; the assumption that signi�cances are
estimated in a conservative way by setting K factors to unity is expected to be ful�lled in large
parts of the SUSY parameter space, but this is not guaranteed yet for large tan �. Moreover,
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Figure 38: The regions in the [mA; tan �] parameter space which can be covered at LHC in

all possible channels associated with the heavy scalar, the pseudoscalar and the charged Higgs

bosons (parameters as in previous �gure). (Courtesy of D. Froidevaux and E. Richter-Was)

if the Higgs bosons do not only decay to SM particles but instead to invisible LSP and other
neutralino/chargino states with potentially large branching ratios [41, 115], the analysis must
be modi�ed and the conclusions would eventually be altered rather dramatically.

Combining the discovery potentials of LEP2 at
p
s = 192 GeV and of LHC by summing up

all Higgs production channels, the entire [mA; tan�] parameter plane of the MSSM is predicted
to be covered within the standard framework of non{SUSY Higgs decays [based on the param-

eter set Mt = 175 GeV, MS = 1 TeV and A;��MS]. The discovery potential of LEP (LHC)

in the search for h increases for smaller (larger) values ofMt, A, � andMS which are associated
with smaller (larger) values of mh. In the region of mA values less than about 150 GeV, the
search for h can be performed by LEP2 while the other heavy Higgs particles, H, A and H�,

can be searched for at the LHC. As discussed before, the observation of at least two di�erent

Higgs states, at LEP2 or LHC, is a crucial step in disentangling the supersymmetric theory
from the Standard Model. Moreover, the channels exploited in the search for h are di�erent

at LEP2 and LHC. This implies that the couplings involved will be di�erent and hence the
physics tested in both cases will be complementary.
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4 Non{Minimal Extensions

4.1 The Next{to{Minimal Supersymmetric Standard Model

In this section we shall augment the MSSM by introducing a single gauge singlet super�eld N

leading to a model which is referred to as the NMSSM[124].

The classic motivation for singlets is that they can solve the so-called �-problem of the

MSSM [125] by eliminating the �-term and replacing its e�ect by the vacuum expectation

value (vev) < N >= x, which may be naturally related to the usual Higgs vev's < Hi >= vi.

However such models in which the superpotential contains only trilinear terms, possess a ZZ3
symmetry which is spontaneously broken at the electroweak breaking scale. This results in

cosmologically stable domain walls [126] which make the energy density of the universe too large.

This cosmological catastrophe can be avoided by allowing explicit and non-renormalizable ZZ3
breaking terms suppressed by powers of the Planck mass which will ultimately dominate the

wall evolution [127] without a�ecting the phenomenology of the model. However such terms
induce a destabilisation of the gauge hierarchy [128] due to tadpole contributions to the N mass
in supergravity models with supersymmetry breaking in the hidden sector.

Where does all this leave the NMSSM? This depends on one's point of view. If there might
be some [yet unknown] solution to the domain wall problem, then one can consider models with
ZZ3 symmetry which is broken spontaneously. Another approach is to avoid the domain wall

problem by considering more general NMSSM models without a ZZ3 symmetry. Note that ZZ3
violating terms, such as a � term, large enough to avoid the domain wall problem, can still be
su�ciently small as to have no impact on collider phenomenology. These more general models
allow arbitrary renormalizable mass terms in the superpotential including the � parameter, and
linear and quadratic terms in N . The question of Planck scale tadpole contributions arises in

this case. However, such contributions depend on supersymmetry breaking in a hidden sector
of a supergravity theory, and are hence model dependent.

According to this discussion we shall consider two quite di�erent versions of the NMSSM:

(i) The \General NMSSM" is de�ned by the following superpotential:

W = ��H1H2 + �NH1H2 �
k

3
N3 +

1

2
�0N2 + �00N + : : : (50)

This version of the model is essentially a generalization of the MSSM, and provides a more gen-

eral realization of low-energy SUSY which is equally consistent with gauge coupling uni�cation
and high precision measurements. It reduces to the MSSM in the limit in which the N �eld is
removed, and since it does not have a ZZ3 symmetry there is no domain wall problem.

(ii) The \Constrained NMSSM" is de�ned by the trilinear terms in eq.(50), i.e. � = �0 = �00 = 0,
plus the constraints of gauge coupling uni�cation and universal soft SUSY-breaking parameters

imposed at the uni�cation scale MGUT � 1016 GeV [129, 130].
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4.1.1 The General NMSSM

a) Masses and Couplings

The super�eld N contains a singlet Majorana fermion, plus a singlet complex scalar. The real

part of the complex scalar will be assumed to develop a vacuum expectation value. The singlet

yields one additional CP-even state and one additional CP-odd state which are gauge singlets

but can mix with the corresponding neutral Higgs states of the MSSM, leading to three CP-

even Higgs bosons h1; h2; h3 and two CP-odd Higgs bosons A1; A2. Although there are more

neutral Higgs bosons than in the MSSM, they will have diluted couplings due to their singlet

components, making their production cross-sections smaller.

The tree-level CP-odd mass matrix, after rotating away the Goldstone mode as usual,

reduces to the 2 � 2 matrix in the basis (A;N) where A is the MSSM CP-odd �eld,

M2

A =

 
m2

A :

: :

!
(51)

The entries represented by dots are complicated singlet terms. Unlike the MSSM, the parameter
m2

A here is not a mass eigenvalue due to singlet mixing. The CP-odd matrix is diagonalized by
rotating through an angle 
, leading to two CP-odd eigenstates A1; A2 of mass mA1

� mA2
.

The tree-level CP-even mass squared matrix in the basis (H1;H2; N) is

M2 =

0
B@

m2

Z cos
2 � +m2

A sin
2 � �(m2

Z +m2

A � 2�2v2) sin � cos � :

�(m2

Z +m2

A � 2�2v2) sin � cos � m2

Z sin
2 � +m2

A cos
2 � :

: : :

1
CA (52)

where, as usual, v = 174 GeV, tan� = v2=v1; again the dots correspond to singlet terms.
Apart from the terms involving �, the upper 2�2 block of this matrix is identical to the MSSM

CP-even matrix. However, whereas the MSSM matrix is diagonalized by rotation through a
single angle �, the matrix in eq.52 is diagonalized by a 3�3 unitary matrix V , leading to three
mass eigenstates h1; h2; h3 with masses ordered as mh1 � mh2 � mh3.

The singlets obviously cannot mix with charged scalars, and at tree-level the mass of the

charged Higgs is

m2

H� = m2

A +m2

W � �2v2 (53)

Clearly a non-zero � tends to reduce the charged scalar masses which can now be arbitrarily
small, and { in contrast to the MSSM { below the W mass.

We shall de�ne the relative couplings Ri � RZZhi as the ZZhi coupling in units of the

standard model ZZH coupling, and similarly we shall de�ne a ZhiAj coupling factor RZhiAj .

For example RZZh1 is a generalization of sin(� � �) and the RZh1Ai are generalizations of

cos(���) in the MSSM. The ZhiAj coupling factorises into a CP-even factor Si and a CP-odd

factor which depends only on the angle 
 which controls singlet mixing in the CP-odd sector.
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It can be shown that the CP-even Higgs bosons in this model respect the following relations

[131, 132, 133]:

m2

h1
� �2 = m2

Z cos
2 2� + �2v2 sin2 2�

m2

h2
� �2 �R2

1
m2

h1

1 �R2

1

m2

h3
=

�2 �R2

1
m2

h1
�R2

2
m2

h2

1 �R2

1
�R2

2

(54)

In the case � = 0, � is equal to the lightest CP-even upper mass bound in the MSSM. The

above results show that if R1 � 0 we may simply ignore h1 and concentrate on h2 which then

becomes the lightest physically coupled CP-even state and must satisfy m2

h2
� �2. Similarly if

both R1 and R2 are nearly zero, then m2

h3
= �2.

It can also be shown that

m2

A1
� m2

A

m2

A2
=

m2

A �m2

A1
cos2 


1� cos2 

(55)

If the lighter CP-odd state is weakly coupled (cos 
 � 0) then it is mainly singlet, and the
heavier CP-odd state is then identi�ed with the MSSM state of mass mA.

b) Theoretical Upper Limit on �

According to eq.(54), � is clearly a function of tan � and �, and to �nd the absolute upper
bound on the mass of the lightest CP-even Higgs boson we must maximize this function (�max).

Radiative corrections, which drastically a�ect the bound [134], are included using recently
proposed methods [89].

For a �xed tan�, the maximum value of � is given by the maximum value of � as derived

from the triviality requirement that none of the Yukawa couplings becomes non-perturbative
before the GUT scale of around 1016 GeV. Using the recently calculated two-loop RGEs [130],
we �nd an upper limit on � as a function of tan �. The maximum value of � is typically in
the range 0.6-0.7 for a wide range of tan�, depending on Mt and �3(mZ), and falls o� to

zero for tan � !�1.5 or 60 because ht or hb, respectively, is very close to triviality. Having

derived the maximum value of � as a function of tan �, we can use this information to obtain
an Mt-dependent maximum value of � shown as the upper solid curve in Fig.39. The MSSM

bound is also shown (lower solid curve) for comparison. The dashed line is the corresponding
upper mass bound in the constrained NMSSM (see later).

As well as being the upper bound on the mass of the lightest CP-even Higgs boson, the
parameter � plays an important role in constraining all the CP-even Higgs boson masses and
couplings. Thus the value of �max, corresponding to the upper solid line in Fig.39, also con-

strains h2 and h3 according to eq.(54).
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Figure 39: Theoretical upper bound on the mass of the lightest CP-even Higgs boson as a

function of Mt. We have used �3(mZ) = 0:12, a mean squark mass of 1 TeV, and varied

At and tan � in such a way as to maximize the upper bound. The upper solid line is for the

NMSSM and the lower solid line is for the MSSM. As Mt becomes very large the two bounds

become very close, since here ht is always close to triviality and hence � must be small. The

dashed line refers to the constrained NMSSM.

c) Experimental Lower Limits on �

� has a theoretical upper limit given by �max � 146 GeV. Now we shall discuss how experiment
may place a lower limit on � which we shall refer to as �min. The meaning of �min is as follows.
For each value of � there are many possible sets of parameters (Ri;mhi) subject to the bounds
in eq.(54). Each of the three (CP-even) Higgs bosons in each set may or may not be discovered

at LEP, depending on how light it is and how strongly coupled to the Z it is. We can consider
the present R2 � mh 95% exclusion plots at LEP [119] and classify each of the three Higgs
bosons in each set (for a �xed �) as excluded or not excluded. We may �nd, for some value of

�, that for all the allowed sets at least one out of the three Higgs bosons is always excluded.
In this case we classify this value of � as being excluded by experiment. We now de�ne �min

as the largest value of � which may be excluded by the LEP data. There will be a di�erent
�min for each of the expected LEP2 R2 �mh 95% exclusion plots (see Fig. 31 and Table 15).

If �min exceeds �max then the model is excluded.

�min is approximately determined by the \worst case" of all three CP-even Higgs bosons

having equal masses mhi � �, and equal couplings Ri
2 � 1=3. 3 Using this simple approxima-

tion, together with current R2�mh exclusion limits [119], LEP1 already places a limit on � of

� > �min = 59 GeV, which is just equal to the mass limit for a CP-even Higgs boson with its

3This approximate result is exact in the limit that 95% exclusion is equated to 50 produced events.
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ZZh coupling suppressed by R2 = 1=3.

The values of �min which may be excluded by a future e+e� collider of a given energy and

integrated luminosity [note that this is total luminosity of all four experiments pooled] are

shown in Fig.40 where exclusion is approximately equated to 50 produced events.
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Figure 40: Excluded values of � at e+e� colliders with energy
p
s.

Focusing speci�cally on LEP2, we consider energies and integrated luminosities per ex-
periment of

p
s = 175, 192, 205 GeV and

R L= 150, 150, 300 pb�1, respectively. Using
the R2 � mh 95% exclusion plots [135], we �nd that LEP2 will yield the exclusion limits

�min = 81; 93; 105 GeV respectively, for the three sets of LEP2 machine parameters above.
These excluded values of � (corresponding to R2 = 1=3) are not far from the values of SM
Higgs boson masses which may be excluded, due to the steep rise of the exclusion curves in the
R2 �mh plane.

d) Exclusion Limits in the mA � tan� Plane

It is possible to obtain exclusion limits in this model in the mA� tan� plane, rather similar to
the familiar MSSM plots. The excluded regions are obtained from the following three searches:

(i) For the processes Z ! Zhi, we exploit the fact that the upper 2�2 block of the CP-even
mass squared matrix is completely speci�ed (for �xed �) in the mA-tan � plane. However,

unlike the MSSM, the CP-even spectrum is not completely speci�ed since it depends on three

remaining unknown real parameters associated with singlet mixing (i.e. the dots in eq.(52)).

Nevertheless, since each choice of these parameters completely speci�es the parameters mhi and
Ri, we can scan over the unknown parameters; if the resulting spectrum is always excluded,
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Figure 41: Excluded regions of the General NMSSM with � = 0 (left) and � = 0:5 (right). We

have included radiative corrections by assuming degenerate squarks at 1 TeV, with no squark

mixing and Mt = 175 GeV. Note the in
uence of radiative corrections on the charged Higgs

mass for large tan � since both ht and hb must be large for such corrections to be important.

then we conclude that this point in the mA-tan � plane (for �xed �) is excluded. For these
excluded regions we use the available LEP1 and LEP2 R2 �mh 95% exclusion lines.

(ii) An excluded lower limit on mA, as a function of tan � and � in this model comes from
the non-observation of Z ! hiAj. The excluded lower limit on mA in this model is determined
by the \worst-case" values of mhi;mAj ; Si; 
 consistent with this value of mA. It turns out that

the worst case experimentally is when the three CP-even Higgs bosons all have equal masses
as heavy as possible

mhi
2 = mA

2 + (mZ
2 � �2v2) sin2 2� (56)

and equal coupling factors, Si
2 � 1=3, and the two CP-odd Higgs bosons both have masses

equal to mA and 
 = �=4, leading to R2

ZhiAj
= 1=6. For these excluded regions we use the

simple approximation that 50 events corresponds to 95% exclusion.

(iii) Finally we shall present excluded regions for charged Higgs production, assuming de-
tection up to the kinematic limit. We note that the charged Higgs signal is the same as in the

MSSM as considered in Section 3.

In Fig.41 we show the excluded regions of this model corresponding to the choice of pa-
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rameter � = 0 4 for the three sets of LEP2 machine parameters
p
s = 175, 192, 205 GeV andR L= 150, 150, 300 pb�1, respectively, and using the LEP1 and LEP2 exclusion data, Fig. 31

and Table 15. In each case the solid lines correspond to exclusion limits from Z ! Zhi as

obtained using procedure (i) above in the NMSSM, the dashed lines correspond to exclusion

limits from Z ! hiAj as obtained using procedure (ii) above in the NMSSM, and the dotted

lines correspond to the exclusion limits from charged Higgs production using procedure (iii)

above. These exclusion plots should be compared to similar exclusion plots in the MSSM for

Mt = 175 GeV and degenerate squarks at 1 TeV, which are the parameters assumed in Fig.41.

In Fig.41 we also show a similar plot but with � = 0:5. In this case the solid lines have

disappeared beneath the tan� = 1 horizon, because for larger � the bound � may be larger,

which allows a heavier CP-even spectrum which is consequently more di�cult to exclude. The

charged Higgs and hiAj channels now give improved coverage, however, since larger � decreases

the charged Higgs mass, and also decreases the hi masses for a �xed Si coupling.

4.1.2 The Constrained NMSSM

As noted in the introduction, the constrained NMSSM is de�ned by eq.(50) with �, �0, �00 ! 0
and the condition of universal SUSY-breaking gaugino masses M1=2, scalar masses m0 and
trilinear couplings A0 at MGUT . In addition, the e�ective potential has to have the correct
properties, i.e. the SU(2) � U(1) symmetry has to be broken by Higgs vev's, but the vev's of
charged and/or colored �elds as sleptons, squarks and charged Higgs scalars have to vanish.

Finally, present lower limits on sparticle masses due to direct searches have to be satis�ed, and
for the top-quark mass Mt we require values between 150 GeV and 200 GeV.

A priori the constrained NMSSM has six parameters atMGUT , three dimensionless couplings
�, k and ht (the top-quark Yukawa coupling) and three dimensionful ones M1=2, m0 and A0.
The scale set by the known mass of the Z boson reduces the number of free parameters of the
model to �ve. A scan of the parameter space of the model, which is consistent with all the
above constraints, has been performed in [129] and [130]. Below we present results, relevant
for the Higgs search at LEP2, which are based on the data obtained in [129]. We will discuss

the allowed Higgs masses and couplings within the constrained NMSSM.

First note that neither a CP-odd Higgs boson Aj with su�ciently large coupling RZhiAj

nor a charged Higgs boson can be su�ciently light within the constrained NMSSM in order

to be visible at LEP2. Thus we will concentrate on the neutral CP-even Higgs bosons in the

following. Concerning their decays, it follows that neutralinos are too heavy to play a role,

thus their branching ratios are close to the standard model ones (essentially b�b) and the same
search criteria apply.

In general, the upper limit on the lightest Higgs mass as a function of the top-quark mass

4Strictly speaking if � = 0 then there is no singlet mixing. However these curves apply to the case where
� is small (say less than 0.1) and singlet mixing is possible. Such small values of � are always found in the
constrained NMSSM.
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depends on the magnitude of the SUSY-breaking parameters due to radiative corrections to

the Higgs potential. For a gluino mass beyond 1 TeV more and more �ne tuning is required

between these parameters; thus Fig.39 shows the upper limit on the lightest Higgs boson within

the constrained NMSSM as a dashed line, for gluinos lighter than 1 TeV.

As noted before, the lightest Higgs boson within the NMSSM can essentially be a gauge

singlet state and thus couple very weakly to the Z boson. Fig.42 (left) shows the logarithm

of the coupling R1 as a function of the mass m1 of the lightest Higgs boson. Two di�erent

regions exist within the constrained NMSSM: A densely populated region with R1 � 1 and

m1 > 50 GeV, and a tail with R1 < (or �) 1 and m1 as small as � 10 GeV. Within the tail,

the lightest Higgs boson is essentially a gauge singlet state, which explains the small values

of R1.

The solid line in Fig.42 (left) indicates (for m1 > 60 GeV) the boundary of the region which

can be tested at LEP2 with a maximal c.m. energy of 192 GeV and a luminosity of 150 pb�1;

the dotted line corresponds to a maximal c.m. energy of 205 GeV and a luminosity of 300 pb�1

[both after combining all experiments [135]]. A large part of the region with R1 � 1, but only
a small part of the tail can be tested.
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Figure 42: The logarithm of the ZZh1(2) coupling R1(2) squared vs. the mass of the lightest

CP-even state h1(2) in the constrained NMSSM.

Fortunately, as noted above, the second lightest Higgs boson cannot be too heavy if the

lightest Higgs boson is essentially a gauge singlet state [131], [132], [133]. In the region of the
tail of Fig.42 (left), within the constrained NMSSM, the mass of the second Higgs boson h2
varies between 80 GeV and the upper limit indicated in Fig.39 as a dashed line. Its coupling
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to the Z boson R2 is very close to 1 if R1 � 1. Fig.42 (right) shows the logarithm of the

coupling R2 as a function of the mass m2 of the second lightest Higgs. The tail of Fig.42 (left)

corresponds to the region with R2 � 1 in Fig.42 (right) and vice versa. Thus, a small part of

the parameter space corresponding to the tail of Fig.42 (left) actually becomes visible at LEP2

through the observation of h2, which behaves like the lightest Higgs boson of the MSSM in this

case.

If a Higgs boson is observed, it will generally be very di�cult, however, to distinguish the

NMSSM from the MSSM [130]. This seems only possible if a Higgs boson happens to contain a

sizeable amount of the singlet state (and hence a measurably reduced coupling to the Z boson),

but couples still strongly enough in order to be visible. Finally, the constrained NMSSM could

actually be ruled out at LEP2 if a neutral CP-odd Higgs particle, a charged Higgs particle, or

an invisibly decaying Higgs particle would be observed.

4.2 Non-linear Supersymmetry

Most of the supersymmetric models investigated so far are models based on linearly realized
supersymmetry. However, supersymmetry may as well be realized nonlinearly. Whereas the
linear supersymmetric models require supersymmetric partners for all conventional particles in
the standard model, the nonlinear models do not lead to SUSY partners. Most global nonlinear
supersymmetric models require only one new particle: the Akulov-Volkov �eld [136], which is

a Goldstone fermion. This Goldstino can be removed by going over to curved space, i.e. to
supergravity, where it can be gauged away. In the 
at space limit, the supergravity multiplet
decouples from ordinary matter so that supersymmetry can manifest itself only in the Higgs
sector.

The formalism for extending the standard model to a supersymmetric theory in a nonlinear
way was developed in ref.[137]. Recently, the general form of the nonlinear supersymmetric
standard model has been constructed and the Higgs potential in the 
at space limit [138] has
been derived.

The Higgs sector of the nonlinear SUSY models is evidently larger than that of the Standard
Model. It contains at least two dynamical Higgs doublets and an auxiliary Higgs singlet. In the

case that both the dynamical and the auxiliary singlet are included in the theory, the spectra

of Higgs bosons in the nonlinear models resemble those of the linear model with two Higgs
doublets and one singlet (NMSSM). Both models have three scalar, two pseudoscalar Higgs

bosons and one charged Higgs boson pair. However, the structure of the Higgs potential is
quite di�erent between nonlinear models and the NMSSM. For the general nonlinear model,

the complete potential in the 
at space limit is given by [138]

V = 1

8
(g2

1
+ g2

2
)(jH1j2 � jH2j2)2 + 1

2
g2
2
jH+

1
H2j2 + j�1 + �1N j2 jH1j2

+ j�2 + �2N j2 jH2j2 + j�0H1T �H2 + �0N + kN2j2 (57)
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involving novel types of interactions between the Higgs �elds. The two Higgs doublets H1;H2

and the singlet N develop the vev's v1; v2; and x respectively. The three scalar Higgs bosons

are the eigenstates of the scalar-Higgs mass matrix. In a way similar to the NMSSM, an upper

bound for the mass m1 of the lightest scalar Higgs boson S1 can be derived at the lowest order,
5

m2

1
� m2

1;max = m2

Z(cos
2 2� + 2�2g sin

2 2�) (58)

where �g = �2
0
=(g2

1
+ g2

2
). Hence, m1 � mZ for �0 �

q
(g21 + g22)=2 � 0:52 and m1 � 1:92�0mZ

for �0 > 0:52. In the latter case, the upper bound of �0 determines the limit of m1. For

Mt = 175 GeV and with the GUT scale as cut-o� scale, one obtains m1 � 130 GeV. Even

though at the c.m. energies of 175, 192, and 205 GeV for LEP2 the production of S1 may be

kinematically possible, the production rate is in general not large enough for S1 to be detected.

The main contributions to the production cross sections come from (i) the Higgs-strahlung

process; (ii) the process where S1 is radiated o� leptons or quarks, and (iii) associated pair

production PjS1, where Pj (j = 1; 2) is a pseudoscalar Higgs boson.

Figure 43: Contour lines of the lightest scalar Higgs mass m1 (dashed) and of the production

cross section � (full) at
p
s = 175 GeV, as functions of �1; �2 for tan � = 6; �0 = 0:3; k =

�0:02; mC = 400 GeV. The shaded area marks the parameter region excluded by LEP1, de�ned

as the region where the production cross section at the Z peak is greater than 1 pb.

We have �rst searched for parameter regions where the experimental lower limit on m1 given

by the LEP1 data is minimal; it turned out that there are regions where even m1 = 0 is still

5In the present exploratory analysis we have neglected the radiative corrections.
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allowed. Fig.43 shows (dashed) the contour lines of m1 and (full) the contour lines of the cross

section � for the production of S1 in e+e� collisions at
p
s = 175 GeV, in the �1; �2 plane for a

representative set of the parameters tan�; �0; k and mC (mC being the charged-Higgs mass).

In the shaded region, the cross section � at
p
s = mZ is greater than 1 pb, which corresponds

to the discovery limit of LEP1 for m1 � 65 GeV [135]. This region is excluded by LEP1 since

the discovery limit decreases with decreasing m1. The discovery limit at
p
s = 175 GeV with

a luminosity of 500 pb�1 is about 50 fb for m1 = 80 GeV (about 30 fb for m1 = 40 GeV) [135].

Thus the region accessible at LEP2 includes the area in Fig.43 where m1 < 80 GeV and � >

50 fb. As with LEP1, a massless S1 could be undetectable.

For some parameter sets, the nonlinear SUSY model may be tested even if the lightest scalar

is undetectable. If the production cross section of S1 is smaller than the discovery limit, one

can examine whether the production of the other Higgs bosons is kinematically possible and

whether their production rates are large enough for discovery.

For the higher energies 192 and 205 GeV, the e�ects are similar to the 175 GeV case.

Though the accessible region increases, an undetectable massless S1 Higgs boson is still pos-
sible. Energies of 240 GeV and more are needed to test this nonlinear supersymmetric model
conclusively.

4.3 Majoron Decays of Higgs Particles

There are a variety of well motivated extensions of the Standard Model (SM) with a sponta-
neously broken global symmetry. This symmetry could either be lepton number or a combina-
tion of family lepton numbers [139, 140]. These models are characterized by a more complex
symmetry breaking sector which contains additional Higgs bosons. It is specially interesting

for our purposes to consider models where such symmetry is broken at the electroweak scale
[141, 142]. In general, these models contain a massless Goldstone boson, called majoron (J),
which interacts very weakly with normal matter. In such models, the normal doublet Higgs
boson is expected to have sizeable invisible decay modes to the majoron, due to the strong
Higgs{majoron coupling. This can have a signi�cant e�ect on the Higgs phenomenology at

LEP2. In particular, the invisible decay could contribute to the signal of two acoplanar jets

and missing momentum. This feature of majoron models allows one to strongly constrain the
Higgs mass in spite of the occurrence of extra parameters compared to the SM. In particular,
the LEP1 limit on the predominantly doublet Higgs mass is close to the SM limit irrespective

of the decay mode of the Higgs boson [143, 144].

We consider a model containing two Higgs doublets (�1;2) and a singlet (�) under the

SU(2)L � U(1)Y group. The singlet Higgs �eld carries a non-vanishing U(1)L charge, which
could be lepton number. Here we only need to specify the scalar potential of the model:

V = �2i�
y

i�i + �2��
y� + �i(�

y

i�i)
2 + �3(�

y�)2 +

�12(�
y

1�1)(�
y

2�2) + �13(�
y

1�1)(�
y�) + �23(�

y

2�2)(�
y�)
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+�(�y1�2)(�
y

2
�1) +

1

2
�[(�y1�2)

2 + h:c:] (59)

where the sum over repeated indices i=1,2 is assumed.

Minimization of the above potential leads to the spontaneous SU(2)L � U(1)Y � U(1)L
symmetry breaking and allows us to identify a total of three massive CP even scalars Hi

(i=1,2,3), plus a massive pseudoscalar A and the massless majoron J . We assume that at the

LEP2 energies only three Higgs particles can be produced: the lightest CP-even scalar h, the

CP-odd massive scalar A, and the massless majoron J . Notwithstanding, our analysis is also

valid for the situation where the Higgs boson A is absent [145], which can be obtained by setting

the couplings of this �eld to zero.

At LEP2, the main production mechanisms of invisible Higgs bosons are the Higgs-strahlung

process (e+e� ! hZ) and the associated production of Higgs bosons pairs (e+e�! Ah), which

rely upon the couplings hZZ and hAZ respectively. The important feature of the above model

is that, because of its singlet nature, the majoron is not sizeably coupled to the gauge bosons

and cannot be produced directly, thereby evading strong LEP1 constraints. The hZZ and hAZ

couplings depend on the model parameters via the appropriate mixing angles, but they can be
e�ectively expressed in terms of the two parameters �A, �B:

LhZZ = �B
�p

2GF

�1=2
m2

ZZ�Z
�h (60)

LhAZ = ��A
g

cos �W
Z�h

$

@� A (61)

The couplings �A(B) are model dependent. For instance, the SM Higgs sector has �A = 0 and
�B = 1, while a majoron model with one doublet and one singlet leads to �A = 0 and �2B � 1.

The signatures of the Higgs-strahlung process and the associated production depend upon
the allowed decay modes of the Higgs bosons h and A. For Higgs boson masses mh accessible
at LEP2 energies the main decay modes for the CP-even state h are b�b and JJ . We treat the

branching fraction B = BR(h ! JJ) as a free parameter. In most models BR is basically
unconstrained and can vary from 0 to 1. Moreover we also assume that, as it happens in the
simplest models, the branching fraction for A ! b�b is nearly one, and the invisible A decay
modes A! hJ , A! JJJ do not exist (although CP-allowed). Therefore our analysis depends
upon �ve parameters: mh, mA, �A, �B, and B. This parameterization is quite general and

very useful from the experimental point of view: limits on mh, mA, �A, �B, and B can be later
translated into bounds on the parameter space of many speci�c models.

The parameters de�ning our general parameterization can be constrained by the LEP1 data.

In fact Refs.[143, 146] analyze some signals for invisible decaying Higgs bosons, and conclude

that LEP1 excludes mh up to 60 GeV provided that �B > 0:4. Similar results are obtained in
�g.(32).

The �bb+ p/T topology is our main subject of investigation and we carefully evaluate signals

and backgrounds, choosing the cuts that enhance the signal over the backgrounds. Our goal is

to evaluate the limits on mh, mA, �A, �B, and B that can be obtained at LEP2 from this �nal
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state. There are three sources of signal events with the topology p/T+ 2 b-jets: one due to the

associated production and two due to the Higgs{strahlung.

e+e� ! (Z ! b�b) + (h! JJ) (62)

e+e� ! (Z ! ���) + (h! b�b) (63)

e+e� ! (A! b�b) + (h! JJ) (64)

The signature of this �nal state is the presence of two jets containing b quarks and missing

momentum (p/T ). It is interesting to notice that for light mh and mA, the associated production

dominates over the Higgs{strahlung mechanism [146].

There are several sources of background for this topology:

e+e� ! Z=
 Z=
 ! q�q ��� e+e� ! (e+e�)

 ! [e+e�]q�q

e+e� ! Z�=
� ! q�q[n
] e+e� ! W+W� ! q�q0 [`]�

e+e� !W [e]� ! q�q0 [e]� e+e� ! Z��� ! q�q ���

where the particles in square brackets escape undetected and the jet originating from the quark
q is identi�ed (misidenti�ed) as being a b-jet.

At this point the simplest and most e�cient way to improve the signal-over-background

ratio is to use that the A and h decays lead to jets containing b-quarks. So we require that the
events contain two b-tagged jets. Moreover, the background can be further reduced requiring
a large p/T . We therefore have imposed a set of cuts which is based on the cuts used by the
DELPHI collaboration for the SM Higgs boson search [63].

Depending on the h and A mass ranges, including or excluding an invariant mass cut
m� 10 GeV [where m is the mass of the particle decaying visibly] gives better or weaker limits
on the ZhA and ZZh couplings. Therefore, for each mass combination four limits are calculated
(with or without invariant mass cut, with thrust cut or the cut on the minimal two-jet energy)

and the best limit is kept.

We denote the number of signal events for the three production processes (62 { 64), after
imposing all cuts, NJJ , NSM , and NA respectively, assuming that �A = �B = 1. Then the

expected number of signal events when we take into account couplings and branching ratios is

Nexp = �2B [BNJJ + (1 �B)NSM ] + �2ABNA (65)

In general, this topology is dominated by the associated production, provided it is not sup-

pressed by small couplings �A or phase space. The most important background after the cuts
is Z=
Z=
 production. The total numbers of background events summed over all relevant
channels are 2.3, 2.8 and 5.9 for

p
s = 175 , 190 and 205 GeV respectively.

In order to obtain the limits shown in Figs.44-45, we assumed that only the background

events are observed, and we evaluated the 95 % CL region of the parameter space that can
be excluded with this result. By taking the weakest bound, as we vary B, we obtained the
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Figure 44: Limits on �2B as a function of mh for 500 pb
�1 and

p
s =175 GeV and for 300 pb�1

and
p
s = 190 GeV; for di�erent values of B = Br(h! JJ)

Figure 45: Limits on �2A as a function of mh;mA for
p
s = 190 GeV. The left plot shows the

limits obtained for B = Br(h! JJ) = 1, in the right plot B is varied from 0 to 1.
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absolute bound on �A, �B, and mh independent of the h decay mode. The limits on �A obtained

by searches for the b�b + p/T �nal states are stronger than those obtained from the b�bb�b topology.

Moreover, the bounds in the limiting case �A = 0 apply for the simplest model of invisibly

decaying Higgs bosons, where just one singlet is added to the SM. A more complete presentation

of these results will be given in Ref.[147].

4.4 Strongly Interacting Higgs Particle

The radiative corrections at LEP1 depend only logarithmically on the Higgs mass, and the

measurements, although very precise, are not su�cient to determine the structure of the Higgs

sector. It is therefore necessary to keep an open mind to the possibility that the Higgs sector is

more complicated than in the Standard Model. Beyond the Standard Model various extensions

have been suggested. One of the possibilities is supersymmetry which has been previously

discussed. Another possibility is strong interactions in the form of technicolor, which at least

in its simplest form is ruled out by the LEP1 data. Strong interactions in the Standard Model
itself imply a heavy Higgs boson and can presumably be studied at the LHC.

However, the idea of strong interactions is more general. In particular it is possible that
strong interactions are present in the singlet sector of the theory. In general the choice of
representations in a gauge theory is arbitrary and presumably a clue to a deeper underlying
theory. Singlets do not have quantum numbers under the gauge group of the Standard Model.
They therefore do not feel the strong or electroweak forces, but they can couple to the Higgs

particle. As a consequence, radiative corrections to weak processes are not sensitive to the
presence of singlets in the theory, because no Feynman graphs containing singlets appear at
the one{loop level. Because e�ects at the two{loop level are below the experimental precision,
the presence of a singlet sector is not ruled out by any of the LEP1 precision data.

It is therefore not unreasonable to assume that there exists a hidden sector that a�ects
Higgs physics only. Such an extension of the Standard Model involving singlet �elds preserves
the essential simplicity of the model, while at the same time acting as a realistic model for
non{standard Higgs properties. Here we will study the coupling of a Higgs boson to an O(N)

symmetric set of scalars, which is one of the simplest possibilities introducing only a few extra
parameters in the theory. The extra scalars may give rise to large invisible decay width of

the Higgs particle. When the coupling is large enough, the Higgs resonance can become wide

even for a light Higgs boson. This has led to the conclusion that this Higgs particle becomes
undetectable at the LHC [148]. As one can measure missing energy more precisely at e+e�

colliders than at a hadron machine, LEP2 can give important constraints on the parameters of

the model. However, it is clear that there will be a range of parameters where this Higgs boson

can be seen neither at LEP nor at the LHC.
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a) The Model

The Higgs sector of the model is described by the following Lagrangian,

L = �@��+@��� �(�+�� v2=2)2

� 1=2 @� ~'@
�~'� 1=2m2 ~'2 � �=(8N) (~'2)2 � !=(2

p
N) ~'2 �+�

where � is the normal Higgs doublet and the vector ~' is an N{component real vector of scalar

�elds, which we call phions. Couplings to fermions and vector bosons are the same as in the

Standard Model. The ordinary Higgs �eld acquires the vacuum expectation value v=
p
2. We

assume that the ~'{�eld acquires no vacuum expectation value, which can be assured by taking

! positive. After the spontaneous symmetry breaking one is left with the ordinary Higgs boson,

coupled to the phions into which it decays. Also the phions receive an induced mass from the

spontaneous symmetry breaking. The factor N is taken to be large, so that the model can be

analyzed in the 1=N expansion. By taking this limit, the phion mass stays small, but because

there are many phions, the decay width of the Higgs boson can become large. Therefore the
main e�ect of the presence of the phions is to give a large invisible decay rate to the Higgs

boson. The invisible decay width is given by

�H =
!2v2

32�mH

(66)

The Higgs width is compared with the width in the Standard Model for various choices of
the coupling ! in Fig.46. The model is di�erent from Majoron models, since the width is not
necessarily small. The model is similar to the technicolor{like model of Ref.[149].

Consistency of the model requires two conditions. One condition is the absence of a Landau
pole below a certain scale �. The other follows from the stability of the vacuum up to a certain
scale. An example of such limits is given in Fig.47, where � = 0 was taken at the scale 2mZ,
which allows for the widest range. For the model to be valid beyond a scale � one should be
below the indicated upper lines in the �gure. One should be to the right of the indicated lower
lines to have stability of the vacuum.

For the search for the Higgs boson there are basically two channels; one is the standard

decay, which is reduced in branching ratio due to the decay into phions. The other is the

invisible decay, which rapidly becomes dominant, eventually making the Higgs resonance very
wide, Fig.46. In order to �nd the bounds we neglect the coupling � as this is a small e�ect. We

also neglect the phion mass. For non{zero values of the phion mass the bounds can be found

by rescaling the decay widths with the appropriate phase space factor. The present bounds,
coming from LEP1 invisible search, are included as a dashed curve in Fig.48 below.

b) LEP2 Bounds

In the case of LEP2 the limits on the Higgs mass and couplings in the present model come

essentially from the invisible decay, as the branching ratio into �bb quarks drops rapidly with
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Figure 46: (left) Higgs width in the phion model, in comparison with the Standard Model.

Figure 47: (right) Theoretical limits on the parameters of the model in the ! vs. MH plane.

For a given scale �, the physical region is below the upper lines and to the right of the lower

lines.

increasing '{Higgs coupling. To de�ne the signal we look at events around the maximum of
the Higgs resonance, with an invariant mass mH � � for � = 5 GeV, which corresponds to
a typical mass resolution. Exclusion limits are determined by Poisson statistics as de�ned in

Appendix 5.3. The results are given by the full lines in Fig.48. One notices the somewhat
reduced sensitivity for a Higgs mass near the Z boson mass and a looser bound for small Higgs
masses because there the e�ect of the widening of the resonance prevails. The small ! region
is covered by visible search. There is a somewhat better limit on the Higgs mass for moderate
! in comparison with the ! = 0 case; this is due to events from the extended tail of the Higgs

boson which is due to the increased width.

We conclude from the analysis that LEP2 can put signi�cant limits on the parameter space
of such a model. However there is a range where the Higgs boson will not be discovered, even if

it does exist in this mass range. This also holds true when one considers the search at the LHC.

Assuming moderate to large values of !, i.e. in the already di�cult intermediate mass range, it
is unlikely that su�cient signal events are left at the LHC. In that case the only information can
come directly from high{energy e+e� colliders or indirectly from higher precision experiments

at LEP1.
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Figure 48: Exclusion limits at LEP2 (full lines), and LEP1 (dashed). The region where ! is

small can be covered by the search for visible Higgs decays.
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5 Appendices

5.1 Higgs-strahlung and WW Fusion

Compact forms can be derived for the cross section of the process [10, 11]

e+e� ! H + ��� (67)

by choosing the energy EH and the polar angle � of the Higgs particle as the basic variables in the

e+e� c.m. frame. The overall cross section that will be observed experimentally, receives contributions

3� GS from Higgs-strahlung with Z decays into three types of neutrinos, GW from WW fusion, and

GI from the interference term between fusion and Higgs-strahlung for ��e�e �nal states. We �nd:

d�(H���)

dEH d cos�
=
G3

Fm
8

Zpp
2 �3s

(3GS + GI + GW ) (68)

with

GS =
v2e + a2e

96

ss� + s1s2�
s �m2

Z

�2 �
(s� �m2

Z)
2 +m2

Z�
2

Z

� (69)

GI =
(ve + ae)c

4
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8

s� �m2
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where ae = �1 and ve = �1 + 4s2W . The cross section is written explicitly in terms of the Higgs

momentum p = (E2

H �m2

H)
1=2, and the energy �� =

p
s�EH and invariant mass squared s� = �2� � p2

of the neutrino pair. The expression for GW had �rst been obtained in Ref.[10]. The following

abbreviations have been introduced:

s1;2 =
p
s(�� � p cos �)

h1;2 = 1 + 2m2

W =s1;2

c� = 1� 2ss�=(s1s2)

s2� = 1� c2�

t1;2 = h1;2 + c�h2;1

r = h2
1
+ h2

2
+ 2c�h1h2 � s2�

L = log
h1h2 + c� +

p
r

h1h2 + c� �
p
r

To derive the total cross section �(e+e� ! H���), the di�erential cross section must be integrated

over the region �1 < cos � < 1 and mH < E < 1

2

p
s
�
1 +m2

H=s
�
.

5.2 Higgs Mass Computation: analytical approximation in the limit

of a common scale MS and restricted mixing parameters

In this appendix we present the results of the analytical approximation which reproduces the two{loop

RG improved e�ective potential results in the case of two light Higgs doublets below MS (mA �MS)
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[89]. The two CP-even and the charged Higgs masses read

m2

h(H)
=

TrM2 �p(TrM2)2 � 4 detM2

2
(72)

m2

H� = m2

A + (�5 � �4)v
2; (73)

where

TrM2 = M2

11
+M2

22
; detM2 = M2

11
M2

22
�
�
M2

12

�
2

; (74)

with

M2

12
= 2v2[sin� cos�(�3 + �4) + �6 cos

2 � + �7 sin
2 �]�m2

A sin� cos�

M2

11
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2 �] +m2

A sin2 � (75)

M2

22 = 2v2[�2 sin
2 � + 2�7 cos� sin� + �5 cos

2 �] +m2

A cos2 �:

The mixing angle � is equally determined by

sin 2� =
2M2

12q
(TrM2)2 � 4 detM2

cos 2� =
M2

11
�M2

22q
(TrM2)2 � 4 detM2

(76)

The above quartic couplings are given by
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They contain the same kind of corrections as eq.(26), including the leading D-term contributions, and

we have de�ned,
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All quantities in the approximate formulae are de�ned at the scale Mt. and ht = mt(Mt)=(v sin�)

hb = mb(Mt)=(v cos�) are the top and bottom Yukawa couplings in the two-Higgs doublet model.

For mA �Mt, tan � is �xed at the scale mA, while for mA �Mt, tan� is given by [79]

tan�(Mt) = tan�(mA)

"
1 +
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t

#
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For the case in which the CP-odd Higgs mass mA is lower than M
S
, but still larger than the top-

quark mass scale, we decouple, in the numerical computations, the heavy Higgs doublet and de�ne an
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e�ective quartic coupling for the light Higgs, which is related to the running Higgs mass at the scale

mA through �(mA) = (mh(mA)=2v
2). The low energy value of the quartic coupling is then obtained

by running the SM renormalization-group equations from the scale mA down to the scale Mt. In

the analytical approximation, for simplicity the e�ect of decoupling of the heavy Higgs doublet at an

intermediate scale is ignored but is partially compensated by relating the value of tan� at the scale

Mt with its corresponding value at the scale mA through its renormalization-group running, eq.(85).

A subroutine implementing the above computations is available [93].

5.3 Deriving 5� Discovery and 95% C.L. Exclusion Contours

The minimum luminosity needed to assess the discovery or to exclude the existence of a Higgs boson

with mass mH can directly be determined from the numbers of events expected from the signal and

from the background processes at the three di�erent center-of-mass energies. Given the rather small

numbers of events involved in this process, it is preferable to use Poisson statistics to derive the result.

Several de�nitions for the \minimum luminosity needed" were proposed. For instance, the mini-

mum luminosity needed for a 5� discovery can be de�ned either (i) as the luminosity needed by the

typical experiment, i.e. by an experiment that would actually observe the number of events expected;

or (ii) as the luminosity for which 50% of the experiments would make the discovery at the requested

5� level, where the a priori unknown numbers of events observed are properly generated according

to a Poisson distribution around their expected values. Although both de�nitions lead to the same

numerical result, a preference was given to the second one, which allows in addition the proportion of

the experiments required to make the discovery to be varied.

In detail, let b and s be the numbers of background and signal events expected with a luminosity

of 1 fb�1, and � be the fraction needed for the discovery. The �rst de�nition corresponds to �nding

the smallest value of � that ful�lls the condition

1� exp(��b)
N�1X
i=0

(�b)i

i!
� 5:7� 10�7; (1)

where N = �(s + b), i.e. that renders the probability of a background 
uctuation smaller than the

probability of a 5� e�ect in the case of Gaussian distributions. The second requirement consists in

�nding the smallest value of � for which the number of events N1 that would correspond to a 5� (high)


uctuation of the background alone is smaller than the numbers of events N2 that would correspond

to a 50% probability (low) 
uctuation of the total number of events (signal included). This amounts

to �nding a value of N which ful�lls, in addition to (1), the following condition

exp [��(s + b)]
N�1X
i=0

[�(s+ b)]i

i!
� 0:5: (2)

As to the exclusion of the existence of a signal at the 95% con�dence level, the minimum luminosity

needed has been similarly de�ned as the luminosity for which 50% of the experiments would actually

exclude it in the case of the absence of signal. Again, this is equivalent to the luminosity needed by
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the typical experiment, which is given by the value of � such that

exp [��(s + b)]
NX
i=0

[�(s+ b)]i

i!

exp(��b)
NX
i=0

(�b)i

i!

� 0:05;

where N = �b.

In both instances, when deriving the result, b and s were conservatively increased (resp. reduced)

by their systematic uncertainties, mainly coming from the yet limited Monte Carlo statistics. The

numbers of events expected by each of the four experiments were then added together, and the

individual uncertainties were added in quadrature.

However, one caveat should be mentioned. Even if it is legitimate to compute the minimum

luminosity needed by each of the four individual experiments by requiring only 50% of the Gedanken-

experiments to make the discovery/exclusion, this becomes unclear for the combined experiment: this

minimum luminosity would not su�ce in 50% of the cases, and this would not be \compensated" by

having two (or four) such combined experiments. Since a choice for this fraction cannot be uniquely

de�ned, the combined results have been presented with a fraction of 50% too.
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