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ABSTRACT

We study the amplification of electromagnetic vacuum fluctuations induced by the evolution
of scalar metric perturbations at the end of inflation. Such perturbations break the conformal
invariance of Maxwell equations in Friedmann-Robertson-Walker backgrounds and allow the
growth of magnetic fields on super-Hubble scales. We relate the strength of the fields generated
by this mechanism with the power spectrum of scalar perturbations and estimate the amplifica-
tion on galactic scales for different values of the spectral index. Finally we discuss the possible
effects of finite conductivity during reheating.
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1 Introduction

The existence of cosmic magnetic fields with large coherence lengths (> 10 kpc) and typical
strength of 10−6 G, still remains an open problem in astrophysics [1]. A partial explanation,
widely considered in the literature, is based on the amplification of seed fields by means of
the so called galactic dynamo mechanism. In this mechanism, the differential rotation of the
galaxy is able to transfer energy into the magnetic field, but nevertheless it still requires a
pre-exisiting field to be amplified. The present bounds on the necessary seed fields to comply
with observations are in the range Bseed >∼ 10−17 − 10−22 G (h = 0.65 − 0.5) at decoupling
time, coherent on a comoving scale of λG ∼ 10 kpc, for a flat universe without cosmological
constant. For a flat universe with nonvanishing cosmological constant, the limits can be relaxed
up to Bseed >∼ 10−25 − 10−30 G (h = 0.65 − 0.5) at decoupling for ΩΛ = 0.7 and Ωm = 0.3 [2].
The observations of micro-Gauss magnetic fields in two high-redshift objects (see [1, 2] and
references therein) could, if correct, impose more stringent conditions on the seeds fields or
even on the dynamo mechanism itself.

The cosmological origin of the seed fields is one of the most interesting possibilities, although
some other mechanisms at the astrophysical level, such as the Biermann battery process, have
also been considered [3, 4]. In the cosmological case, in which we will be mainly interested
in this work, it is natural to expect [5] that the same mechanism that gave rise to the large-
scale galactic structure, i.e. amplification of quantum fluctuations during inflation, was also
responsible for the generation of the primordial magnetic fields. However, it was soon noticed
[5] that the gravitational amplification does not operate in the case of electromagnetic (EM)
fields. This is because of the conformal triviality of Maxwell equations in Friedmann-Robertson-
Walker (FRW) backgrounds, i.e. conformally invariant equations in a conformally flat space-
time. In order to avoid this difficulty, several production mechanisms have been proposed in
which Maxwell equations are modified in different ways. Thus for example, the addition of
mass terms to the photon or higher-curvature terms in the Lagrangian was studied in [5]. The
contribution of the conformal anomaly was included in [6]. In the context of string cosmology,
the effects of a dynamical dilaton field were taken into account in [7]. Other examples include
non-minimal gravitational-electromagnetic coupling [8], inflaton coupling to EM Lagrangian [9],
spontaneous breaking of Lorentz invariance [10] or backreaction of minimally coupled charged
scalars [11, 12, 13]. Some of them are able to generate fields of the required strength to seed
the galactic dynamo or even to account for the observations without further amplification.

In this paper we explore the alternative possibility, i.e. we avoid conformal triviality by con-
sidering deviations from the FRW metric (see [14] for a suggestion along these lines). This ap-
proach is rather natural since we know that galaxies formed from small metric inhomogeneities
present at large scales and, in addition, it does not require any modification of Maxwell electro-
magnetism. In the inflationary cosmology, metric perturbations are generated when quantum
fluctuations become super-Hubble sized and thereafter evolve as classical fluctuations, reenter-
ing the horizon during radiation or matter dominated eras [15]. The same mechanism would
operate on large-scale EM fluctuations. However, if conformal invariance is not broken, each
positive or negative frequency EM mode will evolve independently, without mixing. This im-
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plies that photons cannot be created and therefore magnetic fields are not amplified. However,
in the presence of an inhomogeneous background, we will show that the mode-mode coupling
between EM and metric perturbations generates the mixing. This in turn will allow us to relate
the strength of the magnetic field created by this mechanism and the particular form of the
metric perturbations described by the corresponding power spectrum. Those photons produced
in the inflation-radiation transition with very long wavelengths can be seen as static electric
or magnetic fields. Because of the high conductivity of the Universe in the radiation era, the
electric components are rapidly damped whereas, thanks to magnetic flux conservation, the
magnetic fields will remain frozen in the plasma and their subsequent evolution will be trivial,
Ba2 =const [5, 9]. The paper is organized as follows. In section 2 we obtain the Maxwell equa-
tions in the presence of an inhomogeneous background and calculate the occupation number
of the photons produced. In section 3 we apply these results to calculate the corresponding
magnetic field generated at galactic scales. Section 4 is devoted to the analysis of the effects
of finite conductivity in those results and finally, section 5 includes the main conclusions of the
paper.

2 Maxwell equations and photon production

Although there are previous works on the production of scalar and fermionic particles in inho-
mogeneous backgrounds [16, 17], in this paper we will need to extend the analysis to the case
of gauge fields. Let us then consider Maxwell equations

∇µF µν = 0, (1)

in a background metric that can be splitted as gµν = g0
µν + hµν , where

g0
µνdxµdxν = a2(η)(dη2 − δijdxidxj) (2)

is the flat FRW metric in conformal time and

hµνdxµdxν = 2a2(η)Φ(dη2 + δijdxidxj) (3)

is the most general form of the linearized scalar metric perturbation in the longitudinal gauge
and where it has been assumed that the spatial part of the energy-momentum tensor is diagonal,
as indeed happens in the inflationary or perfect fluid cosmologies [15]. In this expression Φ(η, ~x)
is the gauge invariant gravitational potential. The equation (1) can be written as:

1√
g

∂

∂xµ

(√
ggµαgνβ(∂αAβ − ∂βAα)

)

= 0, (4)

which leads in this background to the following linearized equations

∂

∂xi
((1 − 2Φ)(∂iA0 − ∂0Ai)) = 0, (5)
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for ν = 0 and

∂

∂η
((1 − 2Φ)(∂iA0 − ∂0Ai))

+
∂

∂xj
((1 + 2Φ)(∂jAi − ∂iAj)) = 0, (6)

for ν = i. In addition, we will use the Coulomb gauge condition ~∇ · ~A = 0.

In order to study the amplification of vacuum fluctuations, let us consider a particular

solution of the above equations that we will denote by A
~k,λ
µ (x) such that asymptotically in the

past it behaves as a positive frequency plane wave with momentum ~k and polarization λ, i.e,

A
~k,λ
µ (x)

η→−∞→ A(0)~k,λ
µ (x) =

1√
2kV

εµ(~k, λ)ei(~k~x−kη) (7)

where k2 = ~k2. For the two physical polarization states we have, ~ε(~k, λ) ·~k = 0 and ε0(~k, λ) = 0.
We will work in a finite box with comoving volume V and we will take the continuum limit at
the end of the calculation. We are assuming that metric perturbations vanish before inflation
starts, so that we can define an appropriate initial conformal vacuum state. Because of the
presence of the inhomogeneous background, in the asymptotic future, this solution will behave
as a linear superposition of positive and negative frequency modes with different momenta and
different polarizations, i.e.,

A
~k,λ
µ (x)

η→∞→
∑

λ′

∑

q

(

αkqλλ′

εµ(~q, λ′)√
2qV

ei(~q~x−qη) + βkqλλ′

ε∗µ(~q, λ′)√
2qV

e−i(~q~x−qη)

)

(8)

It is possible to obtain an expression for the Bogolyubov coefficients αkqλλ′ and βkqλλ′ to first
order in the metric perturbations. With that purpose, we look for solutions of the equations of
motion in the form:

A
~k,λ
µ (x) = A(0)~k,λ

µ (x) + A(1)~k,λ
µ (x) + ... (9)

where A(0)~k,λ
µ (x) is the solution in the absence of perturbations given by (7). Introducing this

expansion in (5) and Fourier transforming, we obtain for the temporal component of the EM
field to first order in the perturbations:

A
(1)~k,λ
0 (~q, η) = −

√

2k

V

~q · ~ε(~k, λ)

q2
Φ(~k + ~q, η)e−ikη (10)

where, as usual, Φ(~q, η) = (2π)−3/2
∫

d3xei~q~xΦ(~x, η). The zeroth order equation implies A
(0)~k,λ
0 (~q, η) =

0. The spatial equations (6) can be written to first order as:

2Φ′A
(0)′
i + ∂iA

(1)′
0 − A

(1)′′
i + 2~∇Φ · ~∇A

(0)
i − 2~∇Φ · ∂i

~A(0) + ~∇2A
(1)
i + 4Φ~∇2A

(0)
i = 0 (11)

Inserting again expansion (9), these equations can be rewritten in Fourier space as:

d2

dη2
A

(1)~k,λ
i (~q, η) + q2A

(1)~k,λ
i (~q, η) − J

~k,λ
i (~q, η) = 0 (12)
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where:

J
~k,λ
i (~q, η) = −

√

2k

V







iΦ′(~k + ~q, η) +
k2 − ~k · ~q

k
Φ(~k + ~q, η)



 εi(~k, λ)e−ikη

+ (~ε(~k, λ) · ~q) Φ(~k + ~q, η)
ki

k
e−ikη − i

~ε(~k, λ) · ~q
q2

d

dη

(

Φ(~k + ~q, η)e−ikη
)

qi



 (13)

Solving these equations we find, up to first order in the perturbations:

A
~k,λ
i (~q, η) =

εi(~k, λ)√
2kV

δ(~q − ~k)e−ikη +
1

q

∫ η

η0

J
~k,λ
i (~q, η′) sin(q(η − η′))dη′ (14)

where η0 denotes the starting time of inflation. Comparing this expression with (8), it is
straightforward to obtain the Bogolyubov coefficients βkqλλ′, they are given by:

βkqλλ′ =
−i√
2qV

∫ η1

η0

~ε (~q, λ′) · ~J
~k,λ(~q, η)e−iqηdη (15)

where η1 denotes the present time. The total number of photons created with comoving
wavenumber kG = 2π/λG, corresponding to the relevant coherence length, is therefore given by
[18]:

NkG
=
∑

λ,λ′

∑

k

|βkkGλλ′ |2 (16)

We will concentrate only in the effect of super-Hubble scalar perturbations whose evolution is
relatively simple [15]:

Φ(~k, η) = Ck
1

a

d

dη

(

1

a

∫

a2dη
)

+ Dk
a′

a3
, (17)

the second term decreases during inflation and can soon be neglected. Thus, it will be useful to
rewrite the perturbation as: Φ(~k, η) = CkF(η). During inflation or preheating, these perturba-
tions evolve in time, whereas they are practically constant during radiation or matter eras. We
will neglect the effects of the perturbations once they reenter the horizon. This is a good ap-
proximation for modes reentering right after the end of inflation since they are rapidly damped.
In addition, we will show that those modes are the more relevant ones in the calculation.

The power spectrum corresponding to (17) is given by:

PΦ(k) =
k3|Ck|2
2π2V

= A2
S

(

k

kC

)n−1

(18)

where for simplicity we have taken a power-law behaviour with spectral index n and we have set
the normalization at the COBE scale λC ' 3000 Mpc with AS ' 5 · 10−5. In the case of a blue
spectrum, with positive tilt (n > 1), perturbations will grow at small scales and it is necessary
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to introduce a cut-off kmax in order to avoid excessive primordial black hole production [19].
Accordingly, only below the cut-off the perturbative method will be reliable. For negative tilt
or scale-invariant spectrum there will be also a small scale cut-off related to the minimum size
of the horizon kmax <∼ aIHI, where the I subscript denotes the end of inflation.

We can obtain an explicit expression for the total number of photons (16) in terms of the
power spectrum. Taking the continuum limit

∑

k → (2π)−3/2V
∫

d3k, we get:

NkG
=

∑

λ,λ′

V
∫ d3k

(2π)3/2
|βkkGλλ′ |2

=
∑

λ,λ′

V
∫

d3k

(2π)3/2

|C|k+kG||2
2kGV 2

∣

∣

∣

∣

∣

∣

∫

dη





√
2k







iF ′ +
k2 − ~k · ~kG

k
F


 (~ε(~k, λ) · ~ε(~kG, λ′))

+ (~ε(~k, λ) · ~kG) (~ε(~kG, λ′) · ~k)
F
k

)

e−i(kG+k)η
)∣

∣

∣

∣

2

(19)

Notice that the last term in (13) does not contribute to βkqλλ′ because of the transversality
condition of the polarization vectors. The integration in d3k is dominated by the upper limit,
i.e. k � kG and accordingly we can ignore the effect of the terms proportional to ~kG. In
addition, for those modes k which are outside the Hubble radius at the end of inflation, we
have kη � 1. With these simplifications we obtain:

NkG
'

∑

λ,λ′

∫

dk dΩ

(2π)3/2

|Ck|2k2

2kGV

∣

∣

∣

∣

∫

dη
(√

2k
(

(iF ′ + kF) (~ε(~k, λ) · ~ε(~kG, λ′))
))

∣

∣

∣

∣

2

(20)

Performing the integration in the angular variables and using the definition of the power spec-
trum in (18), we obtain:

NkG
' 4(2π)3/2

3kG

∫

dkA2
S

(

k

kC

)n−1 ∣
∣

∣

∣

∫

dη (iF ′ + kF)

∣

∣

∣

∣

2

(21)

Finally, we will estimate the time integral. The behaviour of scales that reenter the horizon
during the radiation dominated era is oscillatory with a decaying amplitude [15], therefore,
there is no long-time contribution to the integral that could spoil the perturbative method.
Thus, for simplicity we will assume that the function F vanishes for η ≥ 1/k, and accordingly
we estimate, |∫ dη (iF ′ + kF)|2 ∼ O(1). Our final expression for the occupation number is:

NkG
' 4(2π)3/2A2

S

3kG(kC)n−1

∫ kmax

kC

dkkn−1 ' 4(2π)3/2A2
S

3 n

kn
max

kG kn−1
C

(22)

3 Magnetic field generation

The energy density stored in a magnetic field mode Bk with wavenumber k is given by:

ρB(ω) = ω
dρB

dω
=

|Bk|2
2

, (23)
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