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NON-RADIALLY SYMMETRIC SOLUTIONS
TO THE GINZBURG-LANDAU EQUATION *

by

Yu. N. Ovchinnikov and I.M. Sigal

Abstract. We consider the question of existence of non-radical solu-
tions to Ginzburg-Landau equation. We present results indicating that
such solutions do exist. We look for such solutions as saddle points
of the renormalized Ginzburg-Landau free energy functional (the latter
was introduced in reference [OS1]). There are two main points in our
analysis: we look for solutions having certain point symmetries and we
characterize saddle point solutions in terms of critical points of certain
intervortex energy function which we introduce. The latter critial points
correspond to forceless vortex con�guation.

1. Introduction

The Ginzburg-Landau equation, which among other things, describes, to a certain

approximation, stationary states of superuids and solidary waves in plasmas, has recently

attracted considerable attention (partly generated by the publication of the research mono-

graph [BBH]). This equation is simple to write down (we consider the purer case of the

entire plane R2 , rather than a domain in R2 as in [BBH]):

�� + (j j2 � 1) = 0 ; (1:1)

where  : R2 ! C , with the boundary condition

j j ! 1 as jxj ! 1 ; (1:2)

* Research on this paper was supported by NSERC under Grant NA7901.
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but not easy to analyze. In fact, so far only radially symmetric solutions, i.e. solutions of

the form  n(x) = fn(r)e
in�, where r and � are polar coordinates for x 2 R2 , are known

for (1.1){(1.2) (see [GP, H, HH, CEQ, FP, OS1, CK, M1,2, LL]). Solutions  n are called

the n-vortices. Note that n = deg n. Here deg , the degree (or vorticity) of  (satisfying

(1.2)), is the total index (winding number) of  , considered as a vector �eld on R2 , at 1,

i.e.

deg :=
1

2�

Z
jxj=R

d(arg )

for R suÆciently large.

Existence and properties of the vortex solutions were established only recently. What

we know now is

(i) Existence and uniqueness (modulo symmetry transformations and in the class of ra-

dially symmetric functions) ([HH, CEQ, FP, OS1])

(ii) Stability for jnj � 1 and instability for jnj > 1 ([OS1], earlier results on stability for

the disc are due to [LL, M1])

(iii) Uniqueness of  �1 (again, modulo symmetry transformation) in the class of functions,

 , with deg = �1 and obeying
R �j j2 � 1

�2
<1 ([M2]).

Thus the next question is are these non-radially symmetric solutions?

In this paper we present results indicating that such solutions do exist. There are two

key ingredients in our analysis. Firstly, we characterized non-radially symmetric solutions

as critical points of the intervortex energy function described below (see also [OS2]). Sec-

ondly, we look for solutions having certain point symmetries. The latter fact reduces the

number of free parameters describing such solutions to one (the size of the corresponding

polygon of vortices).

Solution breaking rotational symmetry were found to exist in the case of the Ginzburg-
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Landau equation in the ball BR = fx 2 R
2 j jxj � Rg with the boundary condition

 
��
@BR

= ein� and jnj � 2 (see [BBH, Thm IX.1]). However, in the case of the ball there is

an external mechanism leading to the symmetry breaking: the boundary condition. The

latter repels vortices forcing their con�nement. On the other hand the energy is lowered by

breaking up multiple vortices into +1 - (or �1 -) vortices and merging vortices of opposite

signs. Thus for R not so small the lowest energy is reached by a con�guration of jnj

vortices of vorticities �1 depending on the sign of n which, obviously, is not rotationally

symmetric.

The paper is organized as follows. In Sections 2{3 we review some material from

[OS1]: the variational formulation of the problem and some speci�c properties of the

vortex solutions. In Section 4 we de�ne the intervortex energy and discuss its properties.

In particular we discuss the correlation term in the (upper bound on) expansion of the

intervortex energy for large intervortex separations and a de�nition of G-symmetric vortex

energies, where G is a subgroup of the symmetry group of (1.1)

In Section 5 we consider point symmetries (CNv), present one of our main results,

Theorem 5.1, on existence of critial points for CNv-symmetric intervortex energies and

derive some general relations for those energies. In Section 6 we prove Theorem 5.1 and

present a discussion of some other cases.

Finally, we have �ve appendices where all the hard analytical and numerical work is

concentrated. In these appendices we compute various asymptotic expansions beyond the

leading order. We feel that these appendices are of interest on their own as they address

rather subtle computational issues.

2. Renormalized Ginzburg-Landau energy

3



OSV - June 6, 2000

It is a straightforward observation that Eqn (1.1) is the equation for critical points of

the following functional

E( ) =
1

2

Z �
jr j2 + 1

2
(j j2 � 1)2

�
: (2:1)

Indeed, if we de�ne the variational derivative, @ E( ), of E by

Re

Z
�@ E( ) =

@

@�
E( �)

���
�=0

(2:2)

for any path  � s.t.  0 =  and @
@� �

��
�=0

= �, then the l.h.s. of Eqn (1.1) is equal to

@ E( ) = @ � E( ) for E( ) given in (2.1).

(2.1) is the celebrated Ginzburg-Landau (free) energy. However, there is a problem

with it in our context. It is shown in [OS1] that if  is an arbitrary C1 vector �eld on R2

s.t. j j ! 1 as jxj ! 1 uniformly in x̂ = x
jxj and deg 6= 0, then E( ) =1.

We renormalize the Ginzburg-Landau energy functional as follows (see [OS1]). Let

�(x) be a smooth positive function on R2 vanishing at the origin and converging to one at

in�nity. De�ne

Eren( ) =
1

2

Z �
jr j2 � (deg )2

r2
�+ F (j j2)

�
d2x (2:3)

where

F (u) =
1

2
(u� 1)2 : (2:4)

Properties of the renormalized energy functional, Eren( ), are investigated in [OS1].

In this paper we take

�(x) =

�
1 for jxj � R+R�1,
0 for jxj � R

(2:5)

for R very large large compared to all length scales appearing below.
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3. Vortices

It is shown in [HH, CEQ, FP, OS1] that for any any n, Eqn (1.1) has a solution,

unique modulo symmetry transformations, of the form

 n(x) = fn(r)e
in� ; (3:1)

where 1 > fn � 0 and is monotonically increasing from fn(0) = 0 to 1 as r increases to

1. For n = 0, fn(r) = 1. For jnj > 0, fn(r) does not admit an explicit expression. These

are the n-vortices mentioned in the introduction. Of course, each solution  n generates

a one-parameter for n = 0 and a three-parameter for jnj > 0 family of solutions of (1.1).

The latter are obtained by applying symmetry transformations to  n.

The function fn(r) in (3.1) satis�es the ordinary di�erential equation

�1

r

@

@r

�
r
@fn
@r

�
+
n2

r2
fn � (1� f2n)fn = 0 : (3:2)

The (self) energy of the n-vortex is given by En;R := Eren( n). To compute En;R we

use that if  is a solution to (1.1), then, due to the integration by part formula
R jr j2 =

� R � � , we have

Eren( ) = 1

2

Z �
1� j j2 � 1

2
(1� j j2)2 � (deg )2

r2
�
�
: (3:3)

Using this formula for  =  n and using the asymptotic expression (this can be easily

derived from (3.2), in the general case see [S, OS4])

fn(r) = 1� n2

2r2
+O

� 1

r4

�
(3:4)

for r � 1, we obtain

En;R = �n2 ln
� R
jnj
�
+ c(jnj) + O

� 1

R2

�
: (3:5)
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The constant c(n) can be computed numerically (which is not quite trivial, see Appendix

1) which yields

c(1) = 0:376�; c(2) = 0:535�; c(3) = 0:577�; c(5) = 0:615� : (3:6)

The asymptotics of c(n) for n� 1 is found analytically in Appendix 2.

4. Intervortex energy

In this section we introduce and discuss a key concept of the intervortex energy (see

also [OS3,5]). We begin with some de�nitions.

By a vortex con�guration, c, we will understand a pair (a; n), where a = (a1; : : : ; aK),

aj 2 R2 , and n = (n1; : : : ; nK), nj 2 Z, for some K � 1 (positions of the vortex centers

and their vorticities). Consider once di�erentiable functions  : R2 ! C satisfying j j ! 1

as jxj ! 1. We say that the vortex con�guration of  is c = (a; n), conf  = c, if  has

zeros (only) at a1; : : : ; aK with local indices n1; : : : ; nK , respectively, i.e.

Z
j

d(arg ) = 2�nj (4:1)

for any contour j containing aj , but not the other zeros of  , and for j = 1; : : : ; K.

(Strictly speaking we have to specify the phase-factor, or rotation angle, for each vortex;

but these will play no role in our considerations and are not displayed or mentioned in

what follows.) Now we de�ne

ER(c) = inf
�Eren( ) j conf  = c

	
: (4:2)

We expect that ER(c) > �1. An argument supporting this statement is somewhat

lengthy and will be presented elsewhere (see [OS5]). Of course, for bounded domains,

this inequality is trivial. We call ER(c) the energy of the vortex con�guration c. It will

6
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play a central rôle in our analysis. Note also that E(c) serves as a Hamiltonian for the

vortex dynamics in the adiabatic approximation (see [OS2]).

In what follows we keep the vortex indices n �xed and write ER(a) for ER(c). It is

clear intuitively that a minimizer in (4.2) exists if and only if rER(a) = 0 (the force acting

on the vortex centers is zero). However, to establish this fact is not so easy.

Theorem 4.1. If there is a minimizer for variational problem (4.2), then this minimizer

satis�es Ginzburg-Landau equation (1.1).

Proof. Let  be a minimizer for (4.2). Since for any di�erentiable function �: R2 ! C

vanishing together with its gradient suÆciently fast at 1 and vanishing at the points

a1; : : : ; am we have

0 =
@

@�
Eren( + ��)

���
�=0

= Re

Z
��
��� + (j j2 � 1) 

�
;

we conclude that  satis�es (1.1) for x 6= a1; : : : ; am. On the other hand, since  2

H loc
1 (R2), we have that �� + (j j2� 1) 2 H loc

�1(R
2). Hence �� + (j j2 � 1) = 0 on

R2 . �

Conjecture 4.2. rER(a0) = 0 for some a0 (remember n is �xed) if and only if there is

a minimizer for problem (4.2) at the con�guration a0 and consequently , due to Theorem

4.1, if and only if Ginzburg-Landau equation (1.1) has a solution with the con�guration

a0.

The goal of this paper is to �nd forceless vortex con�gurations, i.e. con�gurations c

s.t.

rER(a) = 0 : (4:3)

To this end we study the intervortex energy ER(a) for very small and very large intervortex

separations.
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Let da = min
i6=j

jai � aj j for a = (a1; : : : ; aK). For da large we prove in Section 7 the

following upper bound

ER(a) � E
(0)
R � A(a) +O

�
d�8=3
a

�
+ O(R�2) ; (4:4)

where E
(0)
R =

KP
i=1

Eni;R + H
�
a
R

�
, and A(c) is a homogeneous function of degree �2,

provided a satis�es rH(a) = 0. Here, recall, En;R = Eren( n) is the self-energy of the

n-vortex (see (3.5)) and H(a) is the energy of the vortex pair interactions,

H(a) = ��
X
i 6=j

ninj ln jaijj ; (4:5)

with aij = ai � aj .

The correlation term A(a) is of importance for us here. We have an explicit expression

for it, see Eqns (A3.4)-(A3.5), and compute it explicitely in the cases of interest. We

conjecture that A(a) > 0 always.

Observe that upper bound (4.4) with the remainder O
�
d�1
a

�
instead of �A(a) +

O
�
d
�8=3
a

�
is obtained by choosing the Hartree-type function  (0)(x) =

KQ
i=1

 nj (x � ai)

describing \independent" vortices. For asymptotically forceless con�gurations, i.e. the

ones with rH(a) = 0, this estimate can be somewhat improved, but in order to move

even to the remainder estimate O
�
d�2
a ln da

�
in the latter case, one has to re�ne upon this

function and include the leading correlations.

Remark 4.3. As da !1, the following important asymptotic expression was demon-

strated in [OS5]

ER(a) =
KX
i=1

Eni;R +H
� a
R

�
+Rem ; (4:6)

where Rem = O(d�2
a ln da) in general and = O(d�2

a ) if rH(a) = 0, as da !1.

As mentioned in the introduction, our second idea is to consider solutions to (1.1)

invariant under point groups transformation. Consequently, we introduce intervortex en-

8
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ergy functions invariant under such groups. Consider a subgroup G of the total symmetry

group

Gsym = O(2)� T (2)� U(1)

(T (n) is the group of translations of Rn) of Ginzburg-Landau equation (1). For a G-

invariant vortex con�guation c = (a; n) (i.e. invariant under the spatial part of G) we

de�ne G-invariant vortex interaction energy ER;G(a) as

ER;G(a) = inffEren( )jconf = c;  is G-invariantg

(as before we �x n and omit it from the relation).

Theorem 4.1 and Conjecture 4.2 extend obviously to the G-symmetric situation. In

particular we have the following conjecture:

If a0 is a critial point of ER;G(a) (i.e. rER;G(a0) = 0), then (1.1) has a G-invariant

solution.

Our goal in what follows is, for appropriate groups G, namely, point groups CNv (see

the next section), to �nd critial points of the G-invariant intervortex energy ER;G(a).

5. Point symmetries

We look for solutions of Eqn (1.1) having symmetry groups, CNv. These groups consist

of rotations around the origin by angles a multiple of 2�
N and reection(s) in one (and

therefore N) line(s) through the origin. Such solutions are determined by �xing vortex

con�gurations having the desired symmetry group. We consider vortex con�gurations

consisting of N m-vortices uniformly spaced on a circle of radius a and a single (�k)-

vortex in the center of the circle, which is placed at the origin. Several such con�gurations

and their symmetry lines are shown in Fig. 1.

9
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N=4

m

m m

m

m

-k 

m m

-k 

m m

N=2

-k 

N=3

N=4

Fig. 1. Symmetric con�gurations and their reection lines

Such con�gurations have the symmetry group CNv. On the other hand, the symmetry

group CNv determines such a con�guration uniquely up to the vortex values m and k and

the size a.

As was pointed out at the end of the previous section we rely on the argument that

CNv-symmetric solutions are in one-to-one correspondence with critical points of the CNv-

symmetric intervortex energy

ER(c) � ER;CNv
(c)

(here and in what follows we consider only CNv-symmetric intervortex energies and we

often omit the subindex CNv). Thus our goal is to �nd critial points of ER(c). One of the

central results of this paper is the following

Theorem 5.1. There exist critical points of ER;CNv
(c) among the con�guations, c, de-

scribed above for the following values of the parameters

(N;m; k) = (2; 2; 1) and (4; 2; 3)

10
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(see Fig. 1, a critial value of the parameter a is not speci�ed, but its existence is estab-

lished).

This theorem is proven in Section 6. In the rest of this section we establish general

properties of the energy ER;CNv
(c) and �nd a necessary condition on the parameters N ,

m and k.

Observe that if c is a con�guration described above, then (again we do not display

the parameters n)

rajER(a) = âj@jaj jER(a) and rajH(a) = âj@jaj jH(a) 8 j ; (5:1)

where â = a=jaj. Thus in this case it suÆces to investigate the energy ER(a) as a function

of one variable, scale parameter a.

Note that ifm � 2, then there is a continuum of con�gurations, labeled by a parameter

� > 0, with the same symmetry group, say CNv, as a given con�guration, which have the

given con�guration as a limit as � ! 0. For instance, for m = 2, each m-vortex can be

split into a pair of 1-vortices with all pairs lying either on the circle or on the lines joining

their parent m-vortices to the origin, at equal distance, �, to those m-vortices (see Fig. 2)

+2 -1 +2 +1+1 +1-1

a
a

a α

+1

+1-1

+1+1

+1

Fig. 2.

By symmetry, the energy of the resulting con�gurations has a critical point at � = 0.

A simple analysis of the break-up of a 2-vortex shows that this critical point is a local

maximum. Indeed, e.g., for m = 2, it was shown in [OS1] that the linearization of Eqn

11
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(1.1) (= the Hessian of the energy functional) around the 2-vortex solutions  2 = f2(r)e
2i�

has exactly one negative mode (= an eigenfunction corresponding to a negative eigenvalue)

of the form � = e4i'�4(r) + �0(r), where �k(r) are some real functions. Then the function

 2 + �� for j�j suÆciently small lowers the energy of  2. On the other hand this function

has two simple zeros (i.e. of vorticities +1) in a vicinity of x = 0. Indeed, in the complex

notation z = x1 + x2 $ x = (x1; x2),  2(z) = bz2 + O(z3), while �(z) = c + O(z), for

some positive numbers b and c, in a neighbourhood of z = 0. Hence  2(z) + ��(z) =

bz2 + �c + O(z3) + O(�z) and therefore has two simple zeros z� = �
q

�c
b + O(�

3
4 ) in a

neighbourhood of z = 0. This shows in particular that splitting of a 2-vortex lowers the

energy.

Proposition 5.2. Let a con�guration c0, as described above, be asymptotically forceless,

i.e. rH(a0) = 0. Then

k =
1

2
(N � 1)m : (5:2)

Proof. By (4.1), the equation rH(a0) = 0 for the con�guration described is equiva-

lent to the equation

@

@a
H(a0) = 0 : (5:3)

Since

H(a) = H
�a
a

�
� �

X
i6=j

ninj ln a ; (5:4)

the latter equation implies that
P
i6=j

ninj = 0, which, due to the relation

X
i 6=j

ninj = �2Nmk +N(N � 1)m2 ; (5:5)

is equivalent to (5.2). �

Note that Eqn (5.3) implies that if rH(a0) = 0 then rH(a) = 0 for all a's of the form

a = sa0, s > 0. The latter fact implies another proof of (5.2). Indeed, H
�
a
R

�
behaves

12
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for large R as const � ln R + const. Hence for the asymptotically force-free con�guration

(i.e. the one with rH(a) = 0) the constant in front of ln R is independent of the scale

parameter a. This asymptotic scale invariance implies that the leading term,

�(Nm� k)2 ln R ;

for the con�guration with a = 0, i.e. when all the vortices collapse onto the center of the

circle, is equal to the leading term,

�(Nm2 + k2) ln R ;

for the con�guration with a very large a so that the vortices in such a con�guration can

be treated as virtually independent (see (4.4)). Hence

(Nm� k)2 = Nm2 + k2 ;

which implies (5.2).

Observe that Eqn (5.2) is equivalent to the relation

H
� a
R

�
= H

�a
a

�
= H(a) ; independent of a : (5:6)

Indeed, this follows from Eqns (5.4) and (5.5).

Relation (5.2) between k and m will be assumed from now on.

Now for the con�guration above we introduce the energy di�erences

�E(a) := ER(a)� �(Nm� k)2 ln R (5:7)

(remember that Nm�k is the total vorticity of the con�guration in question). Recall that

En;R denotes the energy of a single vortex of vorticity n, i.e. En;R = Eren( n). Denote the

energy di�erence for this vortex by �En:

En;R = �n2 ln R+�En : (5:8)

13
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Clearly

ER(0) = ENm�k;R and �E(0) = �ENm�k : (5:9)

This together with (3.5) implies (modulo O(R�2)) that

�E(0) = ��(Nm� k)2 ln(Nm� k) + c(Nm� k) : (5:10)

On the other hand, for the intervortex distances very large, Eqns (5.7), (5.6), (4.6)

and (3.5) imply (modulo O(R�2) + o(a�2))

�E(a) � ��(Nm2 lnm+ k2 ln k) +Nc(m) + c(k) +H(a)� Ca�2 ; (5:11)

where C = A(a=a). Compute H(a) for the con�guration at hand. Since the distances

between the vortices on the circle are 2a sin �
N , 2a sin 2�

N ; : : : ; 2a sin
(N�1)�

N , we �nd

H(a) = ��m2N
N�1X
k=1

ln
�
2 sin

k�

N

�
: (5:12)

This equation together with Eqn (5.11) yields, modulo O(R�2) + o(a�2), that for large

intervortex distances

�E(a) � ��(Nm2 lnm+ k2 ln k) +Nc(m) + c(k)

� �m2N
N�1X
k=1

ln
�
2 sin

k�

N

�� Ca�2 : (5:13)

In the next section we establish existence of points a0 s.t. rE(a0) = 0 for given

con�gurations, by comparing �E(0) and �E(a), for large intervortex distances (a).

6. The simplest cases. Proof Theorem 5.1

In this section we consider some special, in fact the simplest, cases of the vortex

con�gurations introduced in Section 5. Recall that the latter consists of a vortex of vorticity

14
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�k sitting at the origin and N vortices, each of vorticity m, distributed equidistantly on

the circle of radius a with the center at the origin. Such a con�guration will be �xed by

the symmetry group CNv, so that the only remaining free parameter is the radius of the

circle a. Thus, we denote, with a slight abuse of notation, �E(a) = �E(a).

Proof of Theorem 5.1. The correlation coeÆcient, C, in Eqn (5.13), is computed

for the con�guations of interest in Appendix 3:

C = 8� ; 20� for (N;m; k) = (2; 2; 1) ; (4; 2; 3) : (6:1)

(We suspect that for general (N;m; k); k = 1
2
(N � 1)m, C is of the form �

4
� (integer).)

Thus

�E(a) monotonically increases to �E(1) as a!1 : (6:2)

Moreover due to (3.6), we have

�E(1) < �E(0) ; (6:3)

again for the con�guations (N;m; k) = (2; 2; 1); (4; 2; 3) (explicit computations are given

below). Hence �E(a) has at least one minimum for those con�gurations as claimed.

Computation of (6.3).

(a) The case N = 2, m = 2 and k = 1 (recall, ER(a) � ER(a), etc.) We have

�E(0) � �E3(0) = c(3)� 9� ln 3 = �9:31� : (6:4)

On the other hand, Eqn (5.11) implies that for a very large

�E(a) � c(1) +
�
2c(2)� 8� ln 2

�� 8� ln 2� Ca�2 +O
� ln a
a4

�
= �9:64� � Ca�2 +O

� ln a
a4

�
:

(6:5)

(b) The case N = 4, m = 2 and k = 3 (see Fig. 1). In this case

�E(0) = �E5(0) = c(5)� 25� ln 5 = �39:62� : (6:6)

15
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On the other hand, Eqn (5.11) implies that for large a we have the following asymptotic

behaviour
�E(a) � �

4c(2)� 16� ln 2
�
+
�
c(3)� 9� ln 3

�
� 32� ln 2� Ca�2 + O

� ln a
a4

�
= �40:44� � Ca�2 + O

� ln a
a4

�
:

(6:7)

Thus (6.3) is shown. �

Remarks. a. Examine the case of m = 1, i.e. the vortices on the circle are simple. In this

case k = 1
2(N�1). Thus in the simplest case N = 3 and k = 1 we take the (m = 1)-vortices

equally spaced (Fig. 3).

-1

+1

a

+1 +1

Fig. 3.

Eqns (4.9), (4.12) and (3.6) yield that in this case �E(0) < �E(1) (in fact, �E(0) =

�E2(0) = �2:238� and �E(1) = �1:792�). Numerical computations show (see Ap-

pendices 3 and 4) that �E0(1) > 0 and �E0(0) > 0 (in fact, for a � 1, �E(a) =

4c(1) � 3� ln 3 � Ca�2 = �1:792� � Ca�2 with C > 0). Thus we cannot conclude exis-

tence of a critical point for ER(a) in this case. However, a more careful numerical analysis

indicates that, probably, there exist two extremal points of ER(a), one minimum and an-

other maximum, for 1p
2
� a � 2. Similar con�gurations for N large (and odd) are analyzed

in Appendix 5.

b. The case N = 2, m = 2 and k = 1, is the limiting case of N = 4, m = 1 and k = 1

(see Fig. 2). All three con�gurations have the same symmetry group, C2v: rotation by �

and reections in the vertical and horizontal axes passing through the vortex �1. After

16
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the symmetry group is �xed, the second and third con�gurations have two free parameters:

the scale parameter a and the angle/distance, �, between two of its neighbouring 1-vortices

(see Fig. 3). As �! 0, the second and third con�gurations are continuously transformed

into the �rst one.

7. Upper bound on the intervortex energy

In this section we prove inequality (4.4) for the energy, ER(a), of vortex con�gurations.

Namely we prove

Theorem 7.1. We have the estimate

ER(a) � E
(0)
R +Rem+ O(max jaj j2=R2) ; (7:1)

where E
(0)
R =

kP
k=1

Eni;R +H
� a
R

�
, and

Rem =

(
O
�
d�2
a

�
if rH(a) = 0

O
�
d�2
a ln da

�
otherwise

(7:2)

Moreover, if rH(a) = 0, then estimate (7.2) can be improved as

Rem = �A(a) +O
�
d
� 8

3
a

�
+ O

�
1

R2

�
; (7:3)

where A(a), the correlation term, is a homogeneous degree �2 function, explicitely given

by the following conditionaly convergent integral

A(a) =
1

4

Z 24jr'0j4 �X
j

jr'jj4
3
5 (7:5)

(here rH(a) = 0 is assumed) with

'0 =
X
j

'j and 'j(x) = nj�(x� aj) ;

�(x) = the polar angle of x 2 R
2 :

17
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Proof. We prove the upper bound (7.1) by using the variational inequality

ER(a) � ER( ) ; (7:6)

valid for any function  having the given vortex con�guration a, and by showing that for

an appropriate  , ER( ) is of the form of the r.h.s. of (7.6). Namely we show that

Eren( ) = E
(0)
R + Rem ; (7:7)

where Rem is given by either (7.2) or (7.3), as appropriate. Then (7.1) follows from (7.6)

and (7.7).

Before proceeding to a proof of these estimates, we show that the integral on the r.h.s.

of (7.4) is conditionally convergent in the foreceless case rH(a) = 0. Since the integrand

has singularities at the points a1; : : : ; aK , it suÆces to show that the integrals over the

discs, D(ak; "), centered at ak and of a radius " > 0, converge. Consider the integral over

the disc D(ak; "). Let

'(k)(x) =
X
j 6=k

'j(x) : (7:8)

Since the function '(k)(x) is harmonic in D(ak; "), it has an expansion around the point

ak of the form

'(k)(x) =
1X
m=0

cmr
m
k cosm(�k � �(m)) ; (7:9)

where rk and �k are the polar coordinates of xk = x � ak and cm and �(m) are some

constants.

In the forceless case,

r'(k)(ak) = � 1

2�nk
JrakH(a) = 0 (7:10)

and therefore

r'(k)(x) = ck(xk cos 2�k � x?k sin 2�k) +O

 
r2k
d3a

!
; (7:11)

18



OSV - June 6, 2000

where ck = O(1=d2a) is a constant, rk = jxkj and x? = (�x2; x1). Now, writing
Z

D(ak;")

�jr'j4 � jr'kj4� =
Z

D(ak;")

�
2jr'kj2�k + �2k

�
; (7:12)

where

�k := 2r'k � r'(k) + jr'(k)j2 (7:13)

and using (7.11), we see that the singular part of the integral above is

4

Z
D(ak;")

jr'kj2r'k � r'(k) =

= 4

Z
D(ak;")

n2k
r2k

�� ck sin 2�k +O(rk)
�
=

Z
D(ak;")

O

�
1

rk

�
<1 :

(7:14)

Thus the integral on the r.h.s. of (7.4) is conditionally convergent, in the sense that

it is well de�ned as a limit of the similar integrals with small discs around the points

a1; : : : ; aK excised, as the radii of those discs tend to 0.

Now we proceed to establishing estimate (7.6). We begin with proving estimate (7.1)

with remainder (7.2). Let  i(x) =  (ni)(xi), where xi = x�ai, and let fi � j ij. Consider

a class of functions  of the form  = fei'0 with a function f satisfying

f = fi +O

 
1

r � dna

!
if rj � da ; 8i (7:15)

where n = 2 if rH(a) and n = 1 otherwise and ri = jx� aij, and

f = 1 + O

�
1

d(x; a)2

�
if d(x; a)� 1 ; (7:16)

where

d(x; a) = min
j
jx� aj j ;

with the corresponding estimates of their �rst derivatives.
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We construct a function satisfying (7.15) and (7.16). Let D(z; �) denote the disc of

radius � centered at a point z. Let f�jgK1 be a smooth partition of unity, i.e.
KP
l=1

�j = 1,

having the following properties,

B
�
aj;

1

3
da
� � supp�j 8j

and

rn�j = O
�
d�na

�
; n = 0; 1; 2 :

Then the following function satis�es (7.15) and (7.16): f =
P
fj�j . Indeed, (7.6) is

obvious, while (7.7) follows from the relation

fj = 1+ O(r�1
j ) (7:17)

We prove the following

Lemma 7.1. Assume  satis�es (7.15){(7.16). Then

ER( ) = E
(0)
R + Rem+ O

� 1

R2

�
; (7:18)

where, recall, E
(0)
R is given in Theorem 7.1 and Rem is given by (7.2).

Proof. Let Dj = D(aj ; r0), the disc with the center at aj and of the radius r0 =
1
3da.

We decompose the energy functional as

ER( ) =
X
j

Z
Dj

e( ) +

Z
DRn[Dj

e( ) ; (7:19)

where e( ) is the energy density,

e( ) =
1

2
jr j2 + 1

4
(j j2 � 1)2 : (7:20)

Let e1(') =
1
2 jr'j2 and hf( )i = f( )�P

k

f( k). Eqn (4.6) implies

Z
DRn[Dk

e( ) =

Z
DRn[Dk

e1('0) +

Z
DRn[Dk

O
�
d(x; a)�4

�
: (7:21)
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Next, the estimates (7.17) and

rj ij = O(r�3
j ) (7:22)

give Z
DRn[Dk

e1('i) =

Z
DRn[Dk

e( i) + O(r�2
0 ) : (7:23)

This together with Eqn (7.12) yields

Z
DRn[Dk

he( )i =
1

2

X
i6=j

Z
DRn[Dk

r'ir'j + O(r�2
0 ) : (7:24)

Next, in the region Di we have  = ei'0fi, where, recall, fi � j ij. Expansion (7.9)

implies that Z
Di

r'i � r'(i) = 0 : (7:25)

Using this relation we obtain

Z
Di

e( ) =

Z
Di

e( i) +

Z
Di

e1('(i)) +R ;

where

R =

Z
Di

(f2i � 1)�i :

Expanding

r'(i) = r'(i)(ai) +O

 
ri
d2a

!
(7:26)

and using that jr'(i)(x)j2 = O
�
d(x; a)�2

�
; r'i(x) = O(r�1

i ) and
R
Di
(1 � f2i )r'i = 0,

we obtain that

R = O
� ln r0
d2a

�
:
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In the forceless case we can improve this estimate using relation (7.9) again to show

that, as in (7.14), Z
Di

(f2i � 1)r'i � r'(i)

=

Z
Di

(f2i � 1)

 
�ci sin 2�i + O

 
ri
d3a

!!

=

Z
Di

(f2i � 1)O

 
ri
d3a

!
= O

 
r0
d3a

!
:

This gives

R = O

 
r0
d3a

!
if r'i(ai) = 0 :

Finally, we observe that due to (7.15)

1

2

Z
Dk

jr'(k)j2 =
X
j 6=k

Z
Dk

e1( j) + IDk

=
X
j 6=k

Z
e( j) + IDk

+ O(r�2
0 ) ;

where ID := 1
2

P
i6=j
R
Dk
r'i � r'j

Collecting the estimates above, we arrive at

Z
Dk

he( )i = IDk
+ O

� ln r0
d2a

�
+ O

� 1

r20

�
; (7:27)

which together with (7.11) and (7.16) yields

ER( ) = E + Rem (7:28)

where Rem is given in (7.2) and E =
R �
g � (deg )2

n2 �
�
with g =

P
j

e( j) +
1
2

P
i 6=j

r'ir'j .

Now, by the de�nition of the cut-o� function � (� � 0 ; � = 1 for jxj � R) we have

E �
Z

B(0;R)

g +

Z
B(0;R)c

�
g � n

2r2

�
(7:29)
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where n = deg . First we compute the �rst integral on the r.h.s..

By the de�nition En;R and since ai � R we have

Z
DR

e( i) =

Z
DR+ai

e( (ni)) = Eni;R + O
� 1

R2

�
: (7:30)

Now we show that

IDR
� 1

2

X
i6=j

Z
DR

r'ir'j = �
X
i6=j

�ninj ln
� jaij j
R

�
: (7:31)

We compute

Z
DR

r'ir'j = ninj

Z 2�

0

Z R

0

r � a cos �

r2 + a2 � 2ar cos �
dr d� ; (7:32)

where a = jaij j. Furthermore, changing the variable of integration as � ! z = ei� and

computing the residue, we �nd

Z 2�

0

r � a cos �

r2 + a2 � 2ar cos �
d� =

�

r
� r2 � a2

2iar2

I
jzj=1

dz�
z � r

a

��
z � a

r

�
=

�

r
+
�

r

r2 � a2

jr2 � a2j =
2�

r

n
1 if r > a
0 if r < a

:

The last two equations yield (7.24). Observe also that up to a multiplicative constant

expression (7.24) can be found from the symmetry considerations: the invariance of the

integral on the l.h.s. under translations (ai ! ai + h and aj ! aj + h 8h 2 R2) and

rotations (ai ! gai and aj ! gaj 8g 2 O(2)) imply that it depends only on jaijj. Its

scaling properties under the dilations (ai ! �ai and aj ! �aj 8� 2 R) imply that it is a

multiple of ln
�
jaijj
R

�
.

Eqns (7.30) and (7.31) imply

Z
B(0;R)

g =
X

Eni;R +H(a=R) +O(1=R2) : (7:33)
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Next we estimate the second integral on the r.h.s. of (7.29). By Eqn (7.17) and (7.22)

we have

g =
1

2
jr'0j2 + O

�
d(x; a)�4

�
:

Furthermore, expanding the terms r�(x � aj) in r'0(x) =
P
njr�(x � aj) around the

point x we obtain

r'0(x) = nr�(x)� �00(x)
X

njaj + O

 P
nja

2
j

d(x; a)3

!
(7:34)

where �00(x) is the Hessian of �(x). Choosing the origin so that
P
njaj = 0 eliminates the

second term on the r.h.s.. (Otherwise we could have used that by an explicit computation

we have

�00(x)r�(x) = � x

r4
;

the integral of which over the exterior of the ball B(0; R) vanishes.) Hence

Z
B(0;R)c

�
g � n2

2r2

�
=

Z
B(0;R)c

O

 P
nja

2
j

d(x; a)4

!

=O

 P
nja

2
j

R2

!
:

(7:35)

Estimates (7.28), (7.29), (7.33) and (7.35) imply (7.7) with Rem given in (7.2). �

Remark 7.3. The statement of Lemma 7.2 remains true for a wider class of functions

de�ned by replacing (7.7) by the following condition

f = fi +O
� 1

r � dna
�
and

Z 2�

0

Re(e�i'0 � fi)d� = O
� 1

dn+1
a

�
;

if jx� aij � da;

(7:36)

with the corresponding estimates of their �rst derivatives, where n = 2 if rH(a) = 0 and

n = 1 otherwise.
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To prove this we write  in the region Di as  = ei'0(fi + �), where fi � j ij. Using

relation (7.25) and using that

Z
Dj

fjr'j � r Im � = nj

Z
Dj

fj
@

@�
Im � = 0 ; (7:37)

we obtain Z
Di

e( ) =

Z
Di

e( i) +

Z
Di

e1('(i)) +R+R0 ; (7:38)

where R is given above and

R0 =

Z
Di

�
(jr'0j2 + f2i � 1)fiRe � + f2i (Re �)

2

+
1

2
jr'0j2j�j2 + 1

2
jr�j2 + 2rfi � rRe � + fir'(i) � rIm �

+Im(�r'0 � r�) + 1

2
(f2i � 1 + 2fiRe �)j�j2 + 1

4
j�j4
�
:

(7:39)

Using that, due to (7.36), � = O
�

1
r�da

�
and

R 2�
0 Re � d� = O

�
1
d2a

�
in Dj and using

that jr'ij2 + f2i � 1 = O(r�4
i ), we �nd

R0 = O

 
ln r0
d2a

!
: (7:40)

Now we proceed to proving estimate (7.4) with Rem given by (7.3). First we describe

a class of test functions for which we prove this estimate:  = ei'0f with

f =

8<
:
fj � 1

2f
�1
j �j�j in D

�
aj ;

1
3da
� 8j (7:41)

1� 1
2 jr'0j2 +O

�
d(x; a)�4

�
in

�S
j

D
�
aj;

1
4da
��c

(7:42)

where we used de�nition (7.13) and where �j are smooth cut-o� functions depending only

on rj = jxj j (i.e. radially symmetric in the xj-variables) satisfying

B
�
aj ;

1

2
da
�nB�aj; 2da� � supp�j � B

�
aj;

1

2
da
�nB(aj; da� (7:43)

and

rn�j = O
�
d�na

�
; n = 0; 1; 2 ; (7:44)
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for  = 1
3 (not optimal). (The f�1

j 's in (7.41) play no important role and are chosen purely

with a view of simplifying some expressions below.)

The following function satis�es (7.41) and (7.42)

f =
X

fj�j �
X 1

2
f�1
j �j�j : (7:45)

To prove this we use the expansion

fj = 1� 1

2
jr'j j2 + O

�
r�4
j

�
(7:46)

and the estimate

�j = O
�
d�2
a

�
in D

�
aj ; da

�
; (7:47)

which is shown by expanding the function r'(j)(x) around aj and using that r'(j)(aj) =

� 1
2�nj

rajH(a) = 0 and that r'j(x) = O(r�1
j ).

Our next task is to prove the following

Lemma 7.4. Let a be forceless in the sense that rH(a) = 0. Then estimate (7.7) with

(7.3) holds for any function  satisfying (7.21){(7.22).

Proof. The proof follows the lines of the proof of Lemma 7.2 but with some subtle

modi�cations which we elaborate upon now.

First of all instead of e1( ) =
1
2 jr'j2 used in the proof of Lemma 7.2 we use the

density

e2(') =
1

2
jr'j2 � 1

4
jr'j4 ; (7:48)

which is a better approximation to the density e( ), and instead of (7.17) we use (7.27).

In particular we have

e( j) = e2('j) + O(r�6
j ) : (7:49)
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Denot fj := 1� f2j � jr'j j2. For any k and for uk = ei'0(fk + �), where � is a real

function, we have the following identity

< e(uk) > =
1

2

X
i6=j

r'i � r'j � A(') +Bk(�) +Rk ; (7:50)

where

Bk(�) := �1

2
gk(�k + 2fk�) +

1

4
�2k + �kfk� + f2k�

2
k (7:51)

and

R =
X
j 6=k

�
e2('j)� e( j)

�� 1

2
(gk � �k)�

2 + fk�k +
1

4
�4k

+
1

2

�
2rfk � r� + jr�j2

� (7:52)

Now we take � = �1
2f

�1
k �k�k. Then

e( ) = e(uk) on D
�
ak;

1

3
da
�
: (7:53)

Due to (7.28) and the corresponding estimate for the derivatives of �j and due to (7.25),

(7.27) and (7.29) we have

Rk = O
�
d�4�2
a

�
(7:54)

Note now that the form of (7.21) is chosen so that

Bk(�) = 0 on B
�
ak;

1

2
da
�nB�ak; da� � f�k = 1g :

Now we estimate Bk(�) on the entire disc D
�
ak;

1
3da
�
. Expanding the function

r'(k)(x) around the point ak and using that r'(k)(ak) = � 1
2�nk

JrakH(a) = 0, we

�nd

�k(x) = 2r'k(x) � '00(k)(ak)xk + O
�
rkd

�3
a

�
; (7:55)

where, recall, xk = �ak, and '00 is the Hessian (the matrix of second derivatives) of a

function '. Using this expression in estimating Bk(�) we �nd

Bk(�) = �gkr'k(x) � '00(k)(ak)xk��k + O
�
r�3d�3

a + d�4
a

�
��k on D

�
ak;

1

3
da
�
; (7:56)
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where ��k = 1 � �k. The �rst term on the r.h.s. of this expression is singular at xk =

x � ak = 0, but the integral of it is conditionally convergent and equals 0. Indeed, since

the function '(k)(x) is harmonic in D
�
ak;

1
3da
�
we have that (cf (7.11))

'00(k)(ak)xk = c(xk cos 2�k � x?k sin 2�k) ; (7:57)

where c = O
�
d�2
a

�
; x? = (�x2; x1) and �k is the polar angle of xk (see Eqn (7.9)). Since

gk and ��k depend only on rk (we write (gk��k)(rk) for gk(x)��k(x)), we have

Z
(gk��k)(rk)r'k(x)'00(k)(ak)xk = �c

Z
(gk��k)(rk) sin 2�k = 0 (7:58)

(strictly speaking we have �rst to excise a small disc around xk = 0 and then take the

radius of this disc to zero).

Eqns (7.32), (7.33), (7.35) and (7.37) imply that

Z
D
�
ak;

1
3
da

� < e( ) > =

Z
D
�
ak;

1
3
da

�
0
@1

2

X
i6=j

r'i � r'j � A(')

1
A

+ O
�
d�3
a + d�2�4

a + d�4+2
a

�
:

(7:59)

Finally, we derive the estimate

< e( ) >=
1

2

X
i6=j

r'ir'j �A(') +O
�
d(x; a)�6

�
(7:60)

on
�S
k

D
�
ak;

1
4da
��c

. Indeed, Eqn (7.42) implies that

e( ) = e2('0) + O
�
d(x; a)�6

�
; (7:61)

which together with (7.49) implies (7.60).

Now, Eqns (7.59) and (7.60) with  = 1=3 imply

ER( ) = E � A(a) +O
�
d8=3a

�
; (7:62)
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where the term E is de�ned after Eqn (7.28) and A(a) =
R
A('). Eqns (7.29), (7.33),

(7.35) and (7.61) imply (7.7) with Rem given by (7.3). �

Lemmas 7.2 and 7.4 and inequality (7.6) imply Theorem 7.1. �
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con�gurations.

Appendix 1. Computation of c(n)

In this appendix we compute the constants c(n) in expression (3.5) for the self-energy,

En;R, of the n-vortex (see Eqn (3.6)). To this end we derive a convenient formula for

En;R. Multiplying Eqn (3.2) by r2f 0n(r), where f
0(r) = @f(r)

@r , integrating the result over

r, observing that the �rst two integrands are full derivatives and integrating the last term

by parts, we obtain the quantization relation (see [BMR])

Z 1

0

(1� f2n)
2rdr = n2 :

This equation together with Eqn (3.3) yields an expression for En;R:

En;R = ��
2
�n2 + �

Z 1

0

(1� f2n �
n2

r2
�)rdr :

However we prefer to use a di�erent representation of En;R which is obtained from above

if we write 1� f2n = (1� f2n)f2n + (1+ f2n)
2 and use the quantization formula above again:

En;R = ��
2
�n2 + �

Z 1

0

�
(1� f2n)f

2
n �

n2

r2
�
�
rdr : (A1:1)

First of all in order to avoid a numerical evaluation of the integral in (A1.1) over

an in�nite range, we use for large r an expansion of fn(r) in
1
r . However, fn(r) is not
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analytic at r =1, it has an essential singularity at this point. Hence the resulting series is

asymptotic. We truncate this series at the order O
�
1
r6

�
. To compensate for this truncation

we add to the resulting polynomial in 1
r a multiple of the decaying solution e

�p2r=
p
r of the

linearization of Eqn (3.2) around 1. We should linearize Eqn (3.2) around the resulting

polynomial, but the powers of 1
r2

lead to similar powers multiplying e�
p
2r=
p
r, thus it

suÆces to linearize around 1. The result is

fn(r) =

�
1� n2

2r2
� n2(1 + n2=8)

r4
� 1

r6

�
n4

2

+
n2 + 16

2

�
n2 +

n4

8

��
� � � �

�
� c

e�
p
2r

p
r

(1 + � � �) ;
(A1:2)

where c is a constant to be determined by a matching procedure. Plugging this expression

into Eqn (A1.1), we obtain

En;R � �n2 lnR =
�n2

2
+ �

Z r0

0

f2n(1� f2n)rdr

� �n2
�
ln r0 +

n2 � 2

2r20
+
n2 � 16

4r40

�
+ O(r�6

0 )

(A1:3)

for any r0 > 0. We pick 6 � r0 � 10. This relation together with Eqn (3.5) implies that

1

�
c(n) =

n2

2
+

Z r0

0

f2n(1� f2n)rdr

� n2
�
ln
r0
jnj +

n2 � 2

2r20
+
n2 � 16

4r40

�
+ O(r�6

0 ) :

(A1:4)

For a numerical solution of Eqn (3.2) we take the interval (0:3; r0). Since Eqn (3.2)

linearized around the function 1 has the solutions

1p
r
e�

p
2r ; (A1:5)

one should do the numerical iteration procedure starting from the upper limit, r0. In this

way the dangerous, exponentially growing solution would not e�ect our procedure.
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In the range 0 < r � 0:3 we use the fact that, as Eqn (3.2) shows, the function fn(r)

is analytic in a disc jrj < O(1), so it can be presented by a convergent series:

fn(r) = �rn
�
1� r2

4(n+ 1)
+

r4

8(n+ 2)

�
1

4(n+ 1)
+ �2Æn;1

�

+
r6

12(n+ 3)

�
�2
�
Æn;2 � 3

4(n+ 1)
Æn;1

�
� 1

8(n+ 2)

�
1

4(n+ 1)
+ �2Æn;1

��
+ � � �

�
(A1:6)

for some number � > 0. Here Æn;k is the Kronnecker symbol, Æn;k = 1 for n = k and = 0

for n 6= k. (We expect that the pole closest to the origin lies on the imaginary axis.)

To �nish o� the computation of c(n) we have to �nd the value of the parameters �

and c. This is done by matching the solution (A1.2) for small r with that, Eqn (A1.6),

for large r. Speci�cally, using Eqn (A1.2), we compute fn(r0) and f 0n(r0) for various

values of the parameter c. Using these values as initial conditions, we integrate Eqn

(3.2) backward to r = 0:3, which yields fright(0:3) and f 0right(0:3). On the other hand

using Eqn (A1.6), we compute fleft(0:3) and f
0
left(0:3) for various values of the parameter

�. Now we match fright(0:3) and f 0right(0:3) with fleft(0:3) and f 0left(0:3) by minimizing��
fright(0:3) � fleft(0:3)

�2
+
�
f 0right(0:3) � f 0right(0:3)

�2�1=2
. This yields the values of the

parameters c and �. After this we compute c(n), using formulae (A1.4) and (A1.6).

Appendix 2. Large n asymptotics of the vortex (self) energy

In this appendix we �nd the large n asymptotics of the constant c(n) in expression (3.6)

for the (self) energy of the n-vortex. To this end we use the following large n asymptotics

for the function fn(r) de�ned in (3.2):

fn(r) =

8><
>:
q
1� n2

r2 if r � n�
�
n
2

� 1
3

�
2
n

� 1
3

g(z) if jr � nj � n

; (A2:1)
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where the variable z is de�ned by the relation

r = n+
�n
2

� 1
3

z (A2:2)

and the function g(z) is a solution to the equation

g00 + zg � g3 = 0 : (A2:3)

The function g(z) has the following asymptotics:

g(z) = z
1
2 if z � 1

= const�(z) if z � �1 ;
(A2:4)

where �(z) is the Eiry function. In particular, we have

g(z) =
0:39

(�z) 14 e
� 2

3
(�z)3=2 for z � �1 : (A2:5)

Plugging expression (A2.1)-(A2.2) into Eqn (A1.1) and using (A2.4) and (A2.5), we �nd

that

c(n) = �n
2
3� + c+ O(n�

2
3 ) ; (A2:6)

where c is some constant and

� = 2
1
3

Z 1

�1

�
g2(z)� z�(z)

�
dz ; (A2:7)

�(z) = 1 for z � 0 and = 0 for z < 0. Multiplying Eqn (A2.3) by g0(z) and taking the

integral of the result, we �nd that � = 0 and therefore

c(n) = c+ O(n�
2
3 ) (A2:8)

as n!1. A rough numerical computation yields the following value for the constant c:

c � 0:7� : (A2:9)
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Appendix 3. Computation of correlation coeÆcients

In this appendix we compute the correlation function

A = A(a) =
1

4

Z 24jr'0j4 �X
j

jr'j j4
3
5 (A3:1)

with

'0 =
X
j

'j and 'j(x) = nj�(x� aj); (A3:2)

�(x) = the polar angle of x 2 R
2 ; : (A3:3)

(see Eqn (4.4)) for con�gurations of K = N + 1 vortices with N vortices of vorticity m

lying in the circle of radius a and one vortex of vorticity �k, at the center of this circle,

s.t. rH(a) = 0.

Write a = a � b where b is a �xed con�guration with N vortices on a unit circle and

one, in the center. Changing the variable of integration in (A3.4) as x = ay, we �nd

A(a) = Ca�2 (A3:4)

where C depends on b only. Our task now is to �nd the sign of C for the con�gurations of

interest. We denote A = A(a).

1. N = 2; m = 2 and k = 1. Here there are two double vortices on the circle and

one single vortex of opposite vorticity at the center (see Fig 1). Below we shall use the

dimensionless variable

� =
jxj
a
: (A3:5)

For the con�guration under consideration we have

A =
1

4a2

Z 1

0

�d�

Z 2�

0

d�

�
48

�
� 16 cos(2�)

��2
+

64 cos2(2�)

�2

� 64

�2
�
1 + 2�2 + 2�2 cos(2�)

��
;

(A3:6)
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where

� = �4 + 1 + 2�2 cos(2�) : (A3:7)

(In general, for aj , j = 1; : : : ; N , distributed equidistantly on the circle of radius a, � =
NQ
j=1

(x� aj)2=a2N .) First we take an integral over �. To this end we change the variable of

integration as �! z = exp(2i�), i.e. we write the internal integral in (A3.8) as an integral

over a unit circle. A simple calculation gives

Z 2�

0

d�

�2
=

2�(1 + �4)

j1� �4j3 ;

Z 2�

0

d�

�2
cos(2�) = � 4��2

j1� �4j3 ; (A3:8)

Z 2�

0

d�

�
=

2��2

j1� �4j ;
Z 2�

0

d�

�
cos(2�) = � 2�

j1� �4j min

�
�2;

1

�2

�
; (A3:9)

Z 2�

0

d�

�2
cos2(2�) =

�

j1� �4j3 �
�
1 + 4�4 � �8 for � < 1
(�8 + 4�4 � 1)=�4 for � > 1.

(A3:10)

Inserting expressions (A3.7){(A3.10) into Eqn (A3.7), we obtain

A =
4�

a2

�
2

Z 1

0

dx
1� x

(1 + x)3
+

Z 1

1

dx

(1 + x)3

�
3x+ 1 +

3

x
+

1

x2

��
:

This gives

A =
8�

a2
: (A3:11)

Hence in the con�guration under consideration the energy ER(a) is given by

1

�
ER(a)� 9 ln R = �9:64� 8

a2
+O

�
ln a

a4

�
: (A3:12)

2. N = 3; m = 1 and k = 1. Similarly to Eqn (A3.8) we obtain

A =
1

4a2

Z 1

0

d��

Z 2�

0

d� �
�
6

�
(1 + 2�2)� 12 sin(3�)

��

�9(1 + �2)

�2
(1 + �2 + 2�4) +

36�2 sin2(3�)

�2
� 36�5 sin(3�)

�2

�
;

(A3:13)
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where � = �6 + 1 + 2r3 sin(3�). The integrals in Eqn (A3.13) can be taken explicitly. To

do this we set z = exp(3i�).

Z 2�

0

d�

�
=

2�

j1� �6j ;
Z 2�

0

d�

�
sin(3�) = � 2�

j1� �6j min

�
�3;

1

�3

�
(A3:14)

Z 2�

0

d�

�2
=

2�(1 + �6)

j1� �6j3 ;

Z 2�

0

d�

�2
sin(3�) = � 4��3

j1� �6j3 (A3:15)

and Z 2�

0

d�

�2
sin2(3�) =

�

j1� �6j3
�
1 + 4�6 � �12 for � < 1
(�12 + 4�6 � 1)=�6 for � > 1.

(A3:16)

Inserting expressions (A3.14){(A3.16) into Eqn (A3.13), we obtain

A =
3�

4a2

�Z 1

0

dx
5x+ 9x2 � 1� 2x3 � 2x4

(1 + x+ x2)3

+

Z 1

1

dx

�
4

1 + x+ x2
� 9

(1 + x+ x2)2
+

10x+ 18

(1 + x+ x2)3
+

6x+ 2

x2(1 + x+ x2)3

��
:

(A3:17)

A simple calculation of integrals in Eqn (A3.16) gives explicit answers for A:

A =
2�

a2
: (A3:18)

Hence the energy for such con�gurations is given by

1

�
ER(a)� 4 ln R = �1:792� 2

a2
: (A3:19)

3. N = 4; m = 2 and k = 3. Here, there are four double vortices in the corners of a

rectangular and a (-3)-vortex in the centre. For this con�guration we have

A =
16

a2

Z 2�

0

d�

Z 1

0

d� � �
�

�
�
4�12

�
+

36�4 cos2(4�)

�
+ 4:5�4

+ 13:5 cos(4�) +
24�8

�
cos(4�)� 1

�

�
(�2 + 1)6 � 2�2(�2 + 1)2(�4 + 1) + 4�6

�
�2�4 cos(4�)�3(�2 + 1)2 � 2�2

�
=�
	
;

(A3:20)
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where

� = �8 + 1� 2�4 cos(4�) :

The change of variables 2� ! ~� + �
2 , �

8 ! ~�4 reduces the integrals over � in Eqn (A3.20)

to the one given in Eqns (A3.8){(A3.10). As a result we obtain

A =
16�

a2

�Z 1

0

dx

�
1� 3x

1 + x+ x2 + x3
+

2(5x5 + 23x4 + 18x3 + 6x2 � 3x� 1)

(1 + x+ x2 + x3)3

+

Z 1

1

dx

�
7:5

1 + x2
� 1:5

x2(1 + x2)
� 4(1 + x+ x2)

x2(1 + x+ x2 + x3)

� 2

(1 + x+ x2 + x3)3

�
x5 + 11x4 � 2x3 � 22x2 � 31x� 21� 12

x
� 4

x2

����
(A3:21)

A direct calculation of the integrals in Eqn (A3.11) gives the following answer

A =
80�

a2
(A3:22)

and therefore the energy of the con�guration in question is

1

�
ER(a)� 25 ln R = �40:44� 80

a2
: (A3:23)

Note, that for all the con�gurations under consideration the correlation term, A, is

given by

A =
�

4a2
�M

where M is an integer, i.e. the quantity given by an integral in A is quantized. Moreover,

the \quantization" takes place separately for the integrals over regions r < 1 and r > 1.

We conjecture that this property is general and holds for any forceless con�guration.

Appendix 4. Inequality E0
R(0) > 0

In this appendix we show that ER(a)� ER(0) > 0 for the con�guration consisting of

N 1-vortices equidistributed on the circle of radius a and one
��N�1

2

�
-vortex in the center

and for a suÆciently small. We assume that N is odd but otherwise arbitrary.
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For a = 0 the con�guration in question collapses into a single N+1
2 -vortex,  N+1

2
,

sitting at the origin. Let L be the Hessian of Eren( ) at  =  N+1
2
. It was shown in [OS1]

that the subspaces

�
u1(r)e

im� + u2(r)e
i(2N+1

2
�m)� j uk 2 L2(rdr); k = 1; 2

	
; (A4:1)

m = N+1
2 ; N+1

2 + 1; � � �, which are orthogonal to each other and span the entire Hilbert

space L2(R2), are invariant under action of the operator L. Moreover, it was shown that L

in the sectors with m � 3N�1
2 � 1 is non-negative and 0 is not its eigenvalue (actually, the

statement in [OS1] is formulated form � 3N�1
2 but the proof works also form = 3N�1

2 �1),

while in the sectors N+1
2 + 2 � m � 2N+1

2 , the operator L has negative eigenvalues. Now

observe that the sectors with N+1
2 � m � 3N�1

2 � 2 do not have CNv symmetry and

consequently forbidden in our case. Thus on the subspace invariant under action of the

group CNv, L � 0 and 0 is now its eigenvalue. The latter implies that

ER(a)� ER(0) > 0 (A4:2)

for any odd N and for a suÆciently small.

Appendix 5. Large N asymptotics

In this appendix we �nd asymptotic behaviour of the energy of the circular, asymp-

totically forceless con�gurations, i.e. the ones with rH(a) = 0, for large values of N .

More precisely, the con�gurations we consider consist of N 1-vortices equally spaced on

the circle of radius a and with the center at the origin and one (�k)-vortex at the center.

Recall that the condition rH(a) = 0 is equivalent to the relation k = �1
2 (N � 1). We

assume in addition that N is odd and a� N .
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According to Eqn (5.10) and since sin �k
N = sin �(N�k)

N , the energy of the above con-

�guration is

ER(a) = �

�
N + 1

2

�2

lnR� �

�
N � 1

2

�2

ln

�
N � 1

2

�
+Nc(1)

� 2�N

N�1
2X

k=1

ln

�
2 sin

�k

N

�
;

(A5:1)

where, recall, we use the notation ER(a) = ER(a). For a = 0 (the \initial state") the

energy is given by Eqn (3.5):

ER(0) = �

�
N + 1

2

�2

lnR� �

�
N + 1

2

�
ln

�
N + 1

2

�
: (A5:2)

In order to calculate the sum in Eqn (A5.1) we use the Euler expansion

LX
k=M

f(k) =

Z L+ 1
2

M� 1
2

f(x)dx� 1

24

�
f 0
�
L+

1

2

�
� f 0

�
M +

1

2

��
(A5:3)

and two equalities Z �=2

0

ln(2 sinx)dx = 0 ; (A5:4)

we obtain
N�1
2X

k=1

ln
�
2 sin

�k

N

�
=

Z N
2

1
2

ln
�
2 sin

�x

N

�
dx+

1

24
� �
N

cot
�

2N

= �N
�

Z �=2N

0

ln(2 sin y)dy +
�

24N
cot

�

2N
:

For N � 1, this yields modulo terms O(1) in N

N�1
2X

k=1

ln

�
2 sin

�k

N

�
=

1

2
lnN : (A5:5)

As a result we have for the energy di�erence

ER(a)�ER(0) = N

�
C(1) +

�
1

2
� ln 2

�
�

�

= 0:183�N :

(A5:6)
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Thus for single vortices on the circle the energy for a large is greater than the energy for

a = 0.
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