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Van Hove Singularities in the Quark-Gluon Plasma
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General arguments as well as different approximations for the in-medium quark propagator in a quark-gluon
plasma lead to quark dispersion relations that exhibit a minimum in one branch (plasmino). This minimum causes
Van Hove singularities in the dilepton production rate and mesonic correlators, which might have observable
consequences.

1. Introduction

In 1953 Van Hove [1] discussed singularities in
the density of states, so-called Van Hove singular-
ities, in solid state physics. The density of states
of a system, given by

g(ω) =
∑

n

∫
d3k

(2π)3
δ(ω − ωn(k)) (1)

with the energy eigenstates ωn(k), can be ex-
pressed by the surface integral [2]

g(ω) =
∑

n

∫
dS

(2π)3
1

|∇ωn(k)| . (2)

Here the quantity in the denominator |∇ωn(k)|
can be identified with the group velocity. Due to
symmetries in a crystal the group velocity van-
ishes at certain momenta, resulting in a divergent
integrand in (2). This divergence is integrable in
3 dimensions, leading to a finite density of states.
In lower dimensions, however, Van Hove singular-
ities appear. For example, a 2-dimensional elec-
tron gas shows logarithmic singularities, which
have been discussed in connection with high-Tc

superconductors [3].
Here we want to discuss the role of Van Hove

singularities in a quark-gluon plasma. We will
argue that the in-medium quark dispersion rela-
tion consists of two branches of which one has
a minimum at some finite value of the momen-
tum. This leads to a vanishing group velocity for
the collective quark modes. Interesting quantities
∗Heisenberg Fellow

such as the production rate of low mass lepton
pairs and mesonic correlators depend inversely on
this group velocity. Therefore these quantities,
which follow from self energy diagrams containing
a quark loop, are affected by Van Hove singular-
ities, which might have observable consequences.

In the next two sections we will show the ori-
gin of Van Hove singularities using an effective
quark propagator for the quark loop in the self
energies under consideration. First we will use
the so-called hard thermal loop (HTL) resummed
quark propagator. After that we discuss the im-
plications of a quark propagator considering the
presence of a non-vanishing gluon condensate in
the deconfined phase as indicated by lattice QCD
calculations. In section 4 we will argue that the
minimum in the quark dispersion relation and
thus the appearance of Van Hove singularities is
a general property of massless fermions at finite
temperature. Finally we will discuss the chances
and problems to observe Van Hove singularities
and to prove in this way the presence of decon-
fined collective quarks in relativistic heavy ion
collisions.

2. Hard thermal loop approximation

The HTL resummation technique has been de-
veloped by Braaten and Pisarski to cure some se-
rious problems of perturbation theory for gauge
theories at finite temperature [4]. Using only bare
propagators and vertices naive perturbation the-
ory lead to gauge dependent and infrared diver-
gent results for physical quantities. A famous ex-
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ample is the damping rate of a long-wave, col-
lective gluon mode in the QGP, which was found
to depend on the gauge choice and became even
negative corresponding to a plasma instability in
covariant gauges [5]. Braaten and Pisarski real-
ized that this undesirable behaviour is due to the
fact that higher order loop diagrams contribute
to lower order in the coupling constant at finite
temperature. Distinguishing between a soft mo-
mentum scale gT , where g is the gauge coupling,
and a hard scale of order T , Braaten and Pis-
arski isolated the dangerous diagrams. They are
given by one-loop self energies and vertices, which
contain only hard loop momenta and are related
to each other by Ward identities. For example,
in the case of the polarization tensor in QED or
QCD a result proportional to g2T 2 was obtained2.
Resumming these self energies and vertices within
the Dyson-Schwinger equation effective propaga-
tors and vertices can be constructed. These effec-
tive Green functions have to be used if all legs of
the Green function under consideration are soft.
Otherwise bare propagators and vertices are suffi-
cient. Physical quantities calculated by applying
this HTL improved perturbation theory, such as
the gluon damping rate [8], turn out to be gauge
invariant. At the same time medium effects such
as Debye screening, leading to an improved in-
frared behaviour, and Landau damping are in-
cluded. For a review of the HTL resummation
method and its applications to the physics of the
QGP see Ref.[9].

Let us now consider the HTL approximation for
the quark propagator in the QGP. Assuming that
the temperature is much larger than the mass,
which holds at least for up and down quarks, we
can neglect the quark masses. Then the most
general expression for the fermion self energy in
the heat bath can be written as [10]

Σ(K) = −a(k0, k)Kµγµ − b(k0, k)γ0, (3)

using the notation K ≡ (k0, k), k ≡ |k|. The
scalar quantities a and b are functions of the en-
ergy k0 and magnitude k of the three momentum.

2This result has been found before in the high tempera-
ture approximation [6] and much earlier already using the
semiclassical Vlasov equation [7].

They are given by traces over the self energy

a(k0, k) =
1

4k2
[tr(Kµγµ Σ)− k0 tr(γ0 Σ)] , (4)

b(k0, k) =
1

4k2

[
K2 tr(γ0 Σ)− k0 tr(Kµγµ Σ)

]
,

which read in the HTL approximation

tr(Kµγµ Σ) = 4 m2
q ,

tr(γ0 Σ) = 2 m2
q

1
k

ln
k0 + k

k0 − k
(5)

with the effective thermal quark mass m2
q =

g2T 2/6. Note that the general ansatz (3) is chi-
rally invariant in spite of the occurrence of an
effective quark mass [10]. Furthermore the quark
self energy has a non-vanishing imaginary part
below the light cone (k2

0 < k2) which can be re-
lated to Landau damping for spacelike quark mo-
menta.

For massless quarks it is convenient to decom-
pose the quark propagator into its helicity eigen-
states (k̂ = k/k) [11]

S(K) =
γ0 − k̂ · γ
2D+(K)

+
γ0 + k̂ · γ
2D−(K)

. (6)

The zeros ω±(k) of

D± = (1 + a) (−k0 ± k)− b, (7)

describe the dispersion relation of the particle ex-
citation q+ with energy ω+ and of a mode q−,
called plasmino [11], with energy ω− and nega-
tive ratio of chirality to helicity. The latter is a
consequence of the medium, breaking the Lorentz
invariance of the vacuum.

The HTL quark dispersion relations are shown
in Fig.1. We observe that both branches start at
zero momentum at the same energy ω±(0) = mq

and approach the bare dispersion ω = k at large
momenta. The plasmino branch, which is absent
in the vacuum, has a minimum at k = 0.408 mq.
The spectral strength of the plasmino decreases
exponentially for large momenta, indicating the
purely collective nature of this mode.

The emission of thermal lepton pairs from the
QGP proceeds via the decay of a virtual photon
produced to lowest order by quark-antiquark an-
nihilation. For low invariant masses of the or-
der gT medium effects from the collective quark
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Figure 1. Quark dispersion relation in HTL ap-
proximation. Also shown are the free dispersion
relations of massless (dotted line) and massive
(dashed line) quarks.

modes have to be taken into account. The annihi-
lation amplitude is related to the imaginary part
of the photon self energy containing a quark loop
by cutting rules [12]. According to the rules of
the HTL method one has to use effective propaga-
tors and vertices as shown in Fig.2, if the photon
energy and momentum are soft. The imaginary
part of this diagram comes either from the pole
of the effective quark propagator, corresponding
to the dispersion relations of Fig.1, or from the
the imaginary part of the HTL quark self energy
contained in the resummed propagator (cut con-
tribution). Therefore we have pole-pole, pole-cut,
and cut-cut contributions to the dilepton produc-
tion rate which is proportional to the imaginary
part of the polarization tensor according to [13]

dN

d4xd4p
=

α

12π4

1
eE/T − 1

ImΠµ
µ(P )

M2
(8)

with the QED fine-structure constant α and the
invariant photon mass M2 ≡ P 2. The pole-cut
and cut-cut contributions involving external glu-
ons, as can be seen by cutting the HTL quark

Figure 2. Photon self energy containing effective
quark propagators and quark-photon vertices.

self energy, lead to a smooth contribution to the
dilepton rate [11]. The pole-pole term, on the
other hand, will cause sharp structures as we will
discuss below.

Besides the dilepton production rates also tem-
poral correlators of mesons follow from the dia-
gram of Fig.2 [14]. These correlation functions
of meson currents at the same space coordinate
but different points in Euclidean time have been
measured on the lattice in the deconfined phase
(see e.g. Ref.[15]). A clear deviation from the
free correlator, which is determined using only
bare quark propagators and vertices in Fig.2 [16],
has been found in particular in the pion chan-
nel [15]. This indicates the importance of quark
interactions and medium effects in the QGP at
temperatures close to the critical. Using HTL
propagators and vertices as in Fig.2, medium ef-
fects, namely effective quark masses and Landau
damping, are taken into account. It is interesting
to study to what extend the HTL medium effects
already explain the lattice results.

The spectral functions of the temporal corre-
lators are proportional to the imaginary part of
the quark loop diagram. The only difference com-
pared to the photon self energy lies in the vertices
describing the various mesonic channels. For ex-
ample, in the pion channel the bare vertex is pro-
portional to γ5. In the vector channel, on the
other hand, the bare vertex is proportional to γµ

as in the dilepton case corresponding to Vector
Meson Dominance.

In contrast to photons and vector mesons it is
sufficient to consider a bare meson-quark vertex
in Fig.2 for pseudo-scalar mesons. This is due
to the fact that HTL vertices in the case of the
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Yukawa theory lead only to higher order contri-
butions and can be neglected therefore [17]. Since
HTL vertices are complicated functions of the en-
ergy and momentum, we will discuss here only
the spectral function of the pseudo-scalar tempo-
ral correlator. Actually the consideration of the
effective vertex does not change the position of
the Van Hove singularities, which are determined
only by the minimum in the plasmino dispersion.
Furthermore in the dilepton rate from the QGP
the inclusion or neglect of the effective vertex does
also not alter the magnitude of the rate signifi-
cantly. This is in contrast to the dilepton rate
from pion annihilation, where the consideration
of the Ward identity reduced similar singularities
in the rate strongly [18].

The spectral function of the pseudo-scalar cor-
relator is given by

σps(ω, p) =
1
π

Im χps(ω, p), (9)

where the correlation function in momentum
space contains the quark loop according to

χps(ω, p) = 2NcT
∑

n

∫
d3k

(2π)3
Tr

[
γ5SHTL(k0, k)

× γ5SHTL(ω − k0, p− k)
]
. (10)

Here Nc = 3 is the number of colors, and the
sum over n denotes the sum over the fermionic
Matsubara frequencies k0 = (2n + 1)iπT .

The HTL resummed quark propagator is con-
veniently expressed by its spectral function ρHTL

SF (k0, k) = −(γ0 k0 − γ · k)
∫ 1/T

0

d τ ek0τ

×
∫ ∞

−∞
dω ρHTL(ω, k) [1− nF (ω)] e−ωτ , (11)

where nF (ω) = 1/[1 + exp(ω/T )] and

ρHTL(k0, k) =
1
2

ρ+(k0, k)(γ0 − i k̂ · γ)

+
1
2

ρ−(k0, k)(γ0 + i k̂ · γ) (12)

with [11]

ρ±(k0, k) =
k2
0 − k2

2m2
q

[δ(k0 − ω±) + δ(k0 + ω∓)]

+ β±(k0, k)Θ(k2 − k2
0). (13)

Here the first part of (13) corresponds to the pole
contribution of the HTL propagator. The second
part, corresponding to the cut contribution from
the imaginary part of the HTL quark self energy,
is given by

β±(k0, k) = −m2
q

2
(±k0 − k)

×
{[

k(−k0 ± k) + m2
q

(
±1− ±k0 − k

2k
ln

k + k0

k − k0

)]2

+
[
π

2
m2

q

±k0 − k

k

]2
}−1

. (14)

Combining (9) to (14) the spectral function of
the pseudo-scalar correlator can be written as

σps(ω, p) = 2Nc(eω/T − 1)
∫

d3k

(2π)3

×
∫ ∞

−∞
dxdx′nF (x)nF (x′)δ(ω − x− x′) (15)

×
{

(1− q · k)[ρ+(x, k)ρ+(x′, q) + ρ−(x, k)ρ−(x, q)]

+(1 + q · k)[ρ+(x, k)ρ−(x′, q) + ρ−(x, k)ρ+(x, q)]
}

,

where q = p− k. Considering only the pole-pole
contribution originating from the first equation of
(13) all the integrals in (15) can be done exactly.
One finds

σpp
ps (ω, p = 0) =

Nc

2π2

(eω/T − 1)
m4

q

×
[
n2

F (ω+(k1))

(
ω2

+(k1)− k2
1

)2
k2
1

2|ω′+(k1)| (16)

+2
2∑

i=1

nF (ω+(ki
2))

[
1− nF (ω−(ki

2))
]

×
(
ω2−(ki

2)− (ki
2)2

) (
ω2

+(ki
2)− (ki

2)2
)
(ki

2)2

|ω′+(ki
2)− ω′+(ki

2)|

+
2∑

i=1

n2
F (ω−(ki

3))

(
ω2
−(ki

3)− (ki
3)

2
)2 (ki

3)
2

2|ω′−(ki
3)|

]
.

Here ω±(k) denote, as before, the quark disper-
sion relations for the ordinary quark (+) and
the plasmino (-) branch, k1 is the solution of
ω − 2ω+(k1) = 0, ki

2 and ki
3 are the solutions
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of ω−ω+(ki
2)+ω−(ki

2) = 0 and ω−2ω−(ki
3) = 0,

respectively. Note that for small momenta the
last two equations can each have two solutions.
Furthermore, ω′±(k) ≡ (dω±(x)/dx)|x=k.

Eq. (16) is shown in Fig.3 for mq/T = 1,
i.e., g =

√
6. The first part of (16) corresponds

to the annihilation of collective quark-antiquarks
and sets in at the threshold ω ≥ 2mq. For large
energies this is the dominating contribution which
approaches the result obtained from a bare quark
propagator (crosses) for ω � mq. The second
part corresponds to a transition from the upper
quark branch to the lower plasmino branch. It
starts at ω = 0 and terminates with an Van
Hove singularity at ω = 0.47 mq , where the dif-
ference ω+(ki

2) − ω−(ki
2) has a maximum due to

the minimum in the plasmino dispersion. The
third part describes the annihilation of plasminos
and antiplasminos which starts at the threshold
ω = 1.86 mq, where another Van Hove singularity
occurs due the minimum of the plasmino branch
ω−(ki

3). For larger momenta this contribution
vanishes quickly due to the exponentially sup-
pressed spectral strength of the plasmino branch.
The singularities in (16) can be integrated lead-
ing to finite results for the temporal correlator
[14]. Also in Fig.3 the smooth pole-cut and cut-
cut contributions are shown. In particular the
latter is suppressed by about an order of magni-
tude.

In the case of the spectral function of the vector
correlator [14] and the dilepton production rate at
zero momentum [11], for which an effective HTL
vertex has to be used, the pole-pole and pole-cut
contributions are similar (apart from some pre-
factors). In particular the Van Hove singularities
are at the same positions. The cut-cut contribu-
tion, however, diverges for small ω covering up
the low-energy Van Hove peak and leading to an
infrared divergent vector correlator.

The temporal correlator follows from its spec-
tral function by an energy integration [14]

Gps(τ) =
∫ ∞

0

dω σps(ω, p = 0)

× cosh(ω(τ − β/2))
sinh(ωβ/2)

, (17)

where β = 1/T and τ is restricted to the

1E-04

1E-03

1E-02

1E-01

1E+00

0 1 2 3 4 5

σps/T
2

(a)

ω/T

pole-pole
pole-cut
cut-cut

 
 
 

Figure 3. Pole-pole, pole-cut, and cut-cut contri-
butions (solid lines) to the spectral function of the
pseudo-scalar temporal correlator at mq/T = 1.
The crosses indicate the free spectral function.

Euclidean time interval [0, β]. Using (17) to-
gether with (16) and the corresponding expres-
sions for the pole-cut and the cut-cut contribu-
tions the temporal pseudo-scalar and vector cor-
relators turn out be similar to the free correla-
tion functions containing only bare quarks. This
is caused by a competing effect of the pole-pole
contribution and the pole-cut and cut-cut con-
tributions. Whereas the pole-pole contribution
reduces the spectral function due to the pres-
ence of the effective quark mass compared to the
free spectral function, there is an enhancement
due to the pole-cut and cut-cut contributions de-
scribing higher order diagrams involving external
gluons. Surprisingly the two effects compensate
each other in the temporal correlator almost com-
pletely. Hence the deviation from the free correla-
tor, observed on the lattice, cannot be attributed
to HTL medium effects [14].

3. Gluon condensate quark propagator

The problem connected with the above calcu-
lations relies in its perturbative nature. Since
the coupling constant g is not small in realistic
situations, the extrapolation to relativistic heavy
ion collisions is questionable. Furthermore due
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to collinear and magnetic divergences the conver-
gence even of the HTL improved perturbative se-
ries at finite temperature is upset at least for low
mass M ' g2T dileptons [19].

In Ref.[20] another effective quark propagator
has been constructed by taking into account the
gluon condensate measured in lattice QCD cal-
culations above the phase transition. In this way
non-perturbative effects are included, which allow
to study realistic temperatures addressed on the
lattice. For this purpose we calculate the quark
self energy from a one-loop diagram using a non-
perturbative gluon propagator that contains the
gluon condensate analogously to the zero tem-
perature case [21]. Of course, the approach is
a purely phenomenological combination of Green
functions with lattice results. The effective quark
propagator can then be written as in (6) and (7)
with

a = −g2

6
1

K6

[(
1
3
k2 − 5

3
k2
0

)
〈E2〉T

−
(

1
5
k2 − k2

0

)
〈B2〉T

]
,

b = −4
9
g2 k0

K6

[
k2
0〈E2〉T +

1
5
k2〈B2〉T

]
, (18)

where the in-medium chromoelectric, 〈E2〉T , and
chromomagnetic condensates, 〈B2〉T , are taken
from lattice calculations [22].

In Fig.4 the dispersion relations following from
the poles of this propagators are shown at T =
2Tc [20]. The important point here is that, al-
though the HTL resummed and the gluon con-
densate quark propagators are completely differ-
ent, the dispersion relations show the very same
behaviour. In particular we observe again the
minimum in the plasmino branch. Therefore we
expect again Van Hove singularities in the dilep-
ton rate following from this quark propagator.
In a first step we neglected an effective quark-
photon vertex, related to the gluon condensate
quark propagator by Ward identities [23]. How-
ever, as we discussed above, this will not change
the existence and positions of Van Hove singulari-
ties following solely from the quark dispersion re-
lations. In Fig. 5 the dilepton production rate at
zero photon momentum versus the invariant pho-

Figure 4. Quark dispersion relations according to
the gluon condensate quark propagator at T =
2Tc.

ton mass M from this investigation [24] is shown
for different temperatures. The interpretation of
the various curves is identical with the one in the
last section. However, in this case no pole-cut
and cut-cut contribution are present as the quark
self energy containing the gluon condensate has
no imaginary part [20].

4. General quark dispersion relations

The two completely different approximations
for the quark propagator, discussed in the last two
sections, lead to the same qualitative behaviour of
the dispersion relations. Hence one may speculate
that the dispersion relations shown in Fig.1 and
Fig.4 are a consequence of the most general full
propagator for massless fermions at finite tem-
perature. Analyzing the most general expression
for the in-medium fermion propagator (6) and (7)
one can show the following general properties of
the dispersion relations [25]: (1) there are always
two branches; (2) both branches start at the same
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Figure 5. Dilepton production rate at zero photon
momentum versus the invariant photon mass M
following from the gluon condensate quark prop-
agator.

energy, i.e. effective fermion mass, at zero mo-
mentum; (3) the both branches have an oppo-
site slope at zero momentum; (4) the branch cor-
responding to the usual fermion approaches the
free dispersion relation, ω = k, for large momenta
k. Assuming that the plasmino branch also ap-
proaches the free dispersion at large momenta,
as it does in the two independent examples dis-
cussed above, the plasmino branch must always
possess a minimum. So far this assumption has
not been proven. Maybe future lattice calcula-
tions might be capable of investigating the quark
dispersion relations [26]. However, it appears to
be reasonable that the plasmino minimum is a
general feature leading to Van Hove singularities
in the dilepton production rate and mesonic tem-
poral correlators.

5. Consequences for relativistic heavy ion
collisions

Now the important question is whether the Van
Hove singularities in the QGP can be observed

in relativistic heavy ion collisions. One possibil-
ity would be to look at the low-mass dilepton
spectrum, which has been investigated already
at SPS energies [27]. Here no sign for interest-
ing structures due to Van Hove singularities has
been found. However, hydrodynamic simulations
[28] show that the QGP contribution, if there is
a QGP phase at all as indicated at SPS [29], are
suppressed at least by an order of magnitude com-
pared to the hadronic contributions. This situa-
tion will change at RHIC and LHC, where the
QGP contribution should dominate the thermal
emission from the fireball. If low-mass dileptons
should be investigated at RHIC or LHC, interest-
ing structures coming from the Van Hove peaks
and the gap in the dilepton rate might appear.
From a comparison of the equation of state found
in lattice calculations and quasiparticle models
[30] effective quark masses of the order 500 MeV
are expected. Therefore the structures may show
up at invariant masses below about 1 GeV.

To what extent these distinct structures will
survive in heavy ion collisions depends on how
much of it will be covered and smeared out by
higher order effects, e.g. bremsstrahlung and
damping. Also finite momenta [24,31] and the
space-time evolution of the fireball will wash out
the structures to some degree. These effects are
an interesting subject for future investigations.
Anyway, if a non-trivial structure should be ob-
served in the low-mass dilepton spectrum it would
provide an unique signal for the QGP formation,
since one does not expect a similar signal from
the hadronic phase. Due to in-medium collisions
between hadrons the structures from the hadronic
phase such as the ρ-peak are washed out [32].
Hence structures in the low mass dilepton spec-
trum due to Van Hove singularities would not
only indicate a deconfined phase, but also the ex-
istence of collective quark modes in the QGP.

6. Conclusions

The quark dispersion relations in the QGP have
been studied using two different approximations
for the quark propagator. First the HTL method,
which is based on the resummation of the pertur-
bative quark self energy obtained in the high tem-
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perature limit has been adopted. Secondly the
gluon condensate measured on the lattice above
the critical temperature has been included in the
effective quark propagator. The poles of the effec-
tive quark propagators, following from these com-
pletely different approaches, determine quark dis-
persion relations which show the same behaviour.
In both approaches two branches, of which one
shows a minimum, namely the plasmino branch,
have been found. There are strong indications
that this is a general feature of massless fermions
at finite temperature.

The minimum in the plasmino branch leads to
a vanishing group velocity of the plasma modes
and therefore to a diverging density of states in
the low-mass dilepton production rate and in the
spectral function of mesonic correlators. There-
fore Van Hove singularities appear in these quan-
tities. The dilepton production might serve as a
promising signature for the QGP formation in rel-
ativistic heavy ion collisions. Whether these Van
Hove singularities can be observed in the dilepton
spectrum from a dynamical QGP, produced pos-
sibly in the fireball of a nucleus-nucleus collision,
is an open question. Anyway it will be worthwhile
to look for non-trivial structures, indicating the
existence of deconfined, collective quark modes,
in the low-mass dilepton spectrum at RHC and
LHC.

The meson correlation functions, on the other
hand, can be compared to lattice calculations,
which allows to extract informations on the non-
perturbative nature of the QGP. Future QCD
lattice calculations might be able to investigate
directly the quark dispersion relations and the
spectral functions of the mesonic correlators [33],
which contain much more informations than the
correlators themselves. Summarizing, the verifi-
cation of Van Hove singularities in the QGP ex-
perimentally as well as on the lattice will be an
interesting challenge.
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