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Distance measurements to Type Ia supernovae (SNe Ia) at cosmo-
logical distances indicate that the Universe is accelerating and that
a large fraction of the critical energy density exists in a component
with negative pressure. Various hypotheses on the nature of this
“dark energy” can be tested via their prediction for the equation
of state of this component. If the dark energy is due to a scalar field,
its equation of state will in general vary with time and is related
to the potential of the field. We review the intrinsic degeneracies of
luminosity distance measurements and compute the expected ac-
curacies that can be obtained for the equation of state parameter
from a realistic high statistic SNe Ia experiment.
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1 Introduction

There is now strong evidence that the Universe is flat and that matter only
amounts to about 1/3 of the critical energy, the remaining 2/3 exhibiting a
large and negative pressure. There are several candidates for this dark energy
component, which can be characterised by their “equation of state”, namely
the ratio w = p/ρ. For example the genuine Cosmological Constant has p =
−ρ, while topological defects give p = −ρ/3 for strings or p = −2ρ/3 for
domain walls. But dark energy could also be due to a possibly evolving scalar
field, in which case the equation of state may vary with time (and redshift).

Because they are performed at varying redshifts, luminosity distance mea-
surements of Type Ia supernovae can, in principle, provide estimates of this
possible varying equation of state. The luminosity distance, however, exhibits
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strong degeneracies, that may forbid any precise determination of this equa-
tion of state, especially if one allows it to vary with redshift.

We first review the expressions involved in the calculation of the luminosity
distance, and examine the main degeneracy that shows up when analysing
a simulated (yet realistic) high statistics SNe Ia experiment. We then show
how independent knowledge of ΩM will limit the effects of the degeneracy
and compute the expected statistical and systematic uncertainties that can
be achieved with such an experiment.

2 Basic Equations

We assume a flat universe made of 2 components : non-relativistic matter,
which contributes ΩM to the critical density, and a single extra component X
described by its equation of state as a function of redshift:

wX(z) = pX(z)/ ρX(z) (1)

The luminosity distance reads:

dL(z) = (1 + z)r(z) = (1 + z)
∫ z

0

dz′

H(z′)
(2)

where r(z) is the Robertson-Walker comoving coordinate to an object seen (via
massless photons) at a redshift z. Friedman’s equation for a two component
flat universe reads:

H2(z) = H2
0 ( ρM(z) + ρX(z))/ρ0 (3)

where ρM is the matter density, ρX is the dark energy density, and ρ0 is the
total density today. The equation of state defines the way the component x
behaves with expansion:

ρ̇X = −3H(1 + wX) ρX (4)

Using dz = −(1 + z)Hdt, this equation can be integrated:

ρX(z) = ρX(0) exp 3
∫ z

0
dz′

1 + wX(z′)
1 + z′

. (5)

One may notice that wX = −1 corresponds to a constant ρX. For the matter
component, ρM, w = 0 which leads to ρM(z) = ρM(0)(1 + z)3. Since observa-
tions favour a negative wX ([5]), ρM/ ρX very likely increases with redshift.
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The luminosity distance can be written:

dL(z) =
1 + z

H0

∫ z

0

dz′√
ΩM(1 + z′)3 + (1− ΩM) ρX(z)/ ρX(0)

(6)

wX(z) is the (unknown) function to be determined from measurements of dL

at various redshifts. For dark energy with negative pressure (wX < 0i), the
higher the redshift, the higher the relative matter contribution in the above
equation.

To see how the unknown wX depends on the data dL, one may invert Equa-
tion 6, first by deriving it with respect to z:

log
r′−2 −H2

0 ΩM(1 + z)3

H2
0 (1− ΩM)

= 3
∫ z

0

1 + wX(z′)
1 + z′

, (7)

where r(z) = dL(z)/(1 + z), and r′ = dr/dz. Deriving once again yields:

1 + wX(z) =
1 + z

3

3H2
0 ΩM(1 + z)2 + 2r′′/r′3

H2
0 ΩM(1 + z)3 − r′−2 (8)

So, wX is related to the first and second derivatives of the distance in a highly
non-linear way. Furthermore, the terms in the sums composing the numerator
and denominator of Equation 8 are of comparable size and opposite sign: they
typically differ by 30 % at a redshift of 1. As a consequence, small variations
of the derivatives of r will result in large variations of wX. This is shown the
other way around in [1], through striking plots.

Several papers recently addressed the problem of reconstructing wX (or equiv-
alently the potential of a scalar field) from luminosity distance measurements.
Some conclude that it is hopeless given expected uncertainties of large statis-
tics SNe Ia measurements [1], others provide reasonably accurate estimations
of wX(z), either based on Monte-Carlo experiments [2], or even on available
SNe Ia data [4]. Before attempting to clarify what causes these fundamental
differences, we will warn the reader about a potential misconception that may
arise from Equation 8: both its numerator and denominator are insensitive to
H0 because r scales as H−1

0 . Hence w depends on ΩM and not on ΩMH2
0 , nor

on H0.

3 Measurements and uncertainties

Type Ia supernovae, have been used to constraint cosmological parameters
[5,6]. Using the light curve width-peak brightness empirical relation, the in-
trinsic dispersion of peak brightness of SNe Ia was found to be about 0.15
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magnitude. A measurement with an total error of 0.2 magnitude is already
possible (it is the best resolution obtained in [5]), and we will assume conser-
vatively this value as a standard error. It translates into relative uncertainties
of measured luminosity distances of 10 %, which makes the current redshift
measurement uncertainty totally negligible. For the proposed SNAP space
mission [7], the accessible redshift range is limited to 1.7, due mainly to the
overwhelming integration times required to reach the expected signal to noise.
There is also a limitation on the low redshift side due to the large area that
has to be covered to discover a sufficient number of low redshift supernovae.
Minimising systematic errors dictates that the whole sample is observed using
the same apparatus. We will therefore consider as a conservative baseline that
2000 SNe Ia with redshifts in the range [0.2, 1.4] can be efficiently observed
and see how well we can reconstruct wX(z).

If we have a dataset of SNe Ia with redshifts zi, i = 1..N , we may compute
least squares estimates of the cosmological parameters by minimising:

χ2 =
N∑

i=1

(di − dL(zi, θ))
2

(pdi)2
(9)

where di is the measured luminosity distance, θ is the set of cosmological pa-
rameters to estimate, dL(zi, θ) is the expected value of the luminosity distance
for the redshift zi and the cosmological parameters θ, p is the relative error
(assumed to be 0.1) on the measurement.

If one assumes that wX is constant( wX = w0), θ is a 2 component vec-
tor ( ΩM, w0). To estimate a varying wX without any prejudice, one may
parametrise wX as a polynomial:

wX =
d∑

i=0

wiz
i (10)

Choosing a polynomial of z or 1+z does not make any difference from the
estimation point of view since there is a one-to-one mapping of the coefficients.
Using this expression for wX, Equation 6 can be rewritten (for clarity we limit
the polynomial to d=2):

dL(z) =
1 + z

H0

∫ z

0

dz′√
ΩM(1 + z′)3 + (1− ΩM)W (z′)

(11)

where W (z) = (1 + z)w0−w1+w2 exp((w1 − w2)z + w2z
2/2).

For models with varying wX, we will concentrate on estimating the 3 param-
eters: ( ΩM, w0, w1), which is enough to illustrate where the difficulties show
up, for 3 different universes ( ΩM, w0, w1) = (0.3,-1.0,0.0), (0.3,-0.8,0.3) and
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(0.4,-1.0,1.0), labelled A B and C in the figures. Model A is the standard Cos-
mological Constant, model B is close to a quintessence model with an inverse
power law potential modified by supergravity [3], and model C is a toy model
with a rapidly varying w.

The (logarithmic) derivatives shown in Figure 1 determine the information
that every supernova adds as a function of redshift. It is clear that higher
redshifts provide more information, but this becomes less clear if one considers
that several lower redshift objects can be measured in the time required for
the measurement of one high redshift object. One important point to notice is
that for a given model, all derivatives are very similar in shape which means
that the parameter combination that a redshift probes does not vary strongly
with redshift.
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Fig. 1. Logarithmic derivatives of the luminosity distance w.r.t ΩM, w0 and w1,
for the 3 models under study (see text), as a function of redshift. One may notice
similar shapes of the three derivatives for every model.

To study what influences the variance (and covariance) of parameter estimates,
we will restrict ourselves to the quadratic approximation of the χ2 which
consists in linearising dL as a function of parameters around the chosen model.
This is clearly not to be done for an actual estimation, where an accurate
mapping of the actual χ2 values (or of the likelihood) is necessary to obtain
reliable confidence contours. Within this linear approximation, the Hessian of
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the χ2 w.r.t the parameters reads:

1

2

∂2χ2

∂θ2
= F =

N∑
i=1

h(zi, θ)h
T (zi, θ), with h(zi, θ) =

1

pdL

ddL(zi, θ)

dθ
(12)

All derivatives are usually evaluated at the minimum χ2 (i.e. the parameter
estimate). As we are studying the estimation variance as a function of pa-
rameters and dataset, we will evaluate the derivatives at the parameter value,
which should be the average estimate value. Since θ is vector, h is also a vec-
tor, and F is then a matrix, called the Fisher (or information or sometimes
weight) matrix. Every hhT term of the sum is a matrix of rank 1 that is the
information on the parameters that a given supernova adds. Within this linear
approximation, The covariance matrix of the estimates is just C = F−1.

model “C”
√

λ Eigenvectors

A

0.2666 −0.9853 −0.9951

−0.9853 0.2826 0.9643

−0.9951 0.9643 2.117

0.00417

0.0781

2.152

0.9418 0.3274 0.07586

0.3126 −0.9363 0.1598

−0.1233 0.1268 0.9842

B

1.1913 −0.9996 −0.9976

−0.999608 1.42776 0.9953

−0.9976 0.9953 2.290

0.0053

0.125

2.948

0.8516 0.5086 0.1263

0.3339 −0.7123 0.6172

−0.4039 0.4834 0.7765

C

0.2762 −0.9964 0.6763

−0.9964 0.5835 −0.7339

0.6763 −0.7339 0.26285

0.0060

0.174

0.675

0.8840 0.4538 0.1111

−0.2333 0.222 0.9465

−0.4048 0.8627 −0.3028
Table 1
Covariance matrix of the estimates for our 3 models (where diagonal elements are the
rms errors and off-diagonal elements are the correlation coefficients). Second column
gives the square root of eigenvalues, the third gives the corresponding eigenvectors.
One may notice that the last eigenvector totally dominates the error budget. Es-
pecially for model B, the errors induced by the degeneracy forbid any independent
measurement of the parameters.

Table 1 gives C and its eigenvalues and eigenvectors within the linear approxi-
mation for our 3 universes, and for 2000 uniformly spread supernovae over the
redshift range, the distance to each of them measured with a 10 % accuracy
(0.2 mag): for model B (the worst case), the ratio of major to minor axis of the
error ellipsoid is more than 500, which means that the parameter combination
corresponding to the last eigenvector is almost unmeasured.

The dataset as proposed does not allow to estimate jointly ΩM, w0 and w1

with a decent precision. However, one should notice that the problem is very
different if ΩM is frozen, in which case the errors on w0 and w1 go down by
more than one order of magnitude. In [2,4], ΩM is fixed, unlike in [1] where
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ΩM is estimated and marginalized over. This explains partly why these papers
reach different conclusions.

The reason for this large degeneracy can be found by expanding in powers of
z the expression for H2 under the square root in Equation 11 (which is probed
observationally through (dr/dz)−1/2):

H2(z)

H2
0

= 1 + 3(1 + ΩXw0)z + 3/2(2 + 5 ΩXw0 + ΩXw1 + 3 ΩXw2
0)z

2 + o(z3)

(13)

where ΩX = 1− ΩM.

Consider for a while w1 = 0: at first order in z, only ΩXw0 is determined
(as shown by the shape of the confidence contours in the ( ΩM, w0) plane
shown in [5]), the second order fixes w0 through ΩXw2

0, which is rather weak.
( ΩXw0, ΩXw2

0) are much closer to observable that ( ΩM, w0), but ΩXw2
0 really

lacks physical sense. The scheme is the same for w1: it enters through ΩXw1 at
second and third order and through ΩXw0w1 at third order. As a consequence
the parametrisation ( ΩM, ΩXw0, ΩXw1) is not much less degenerate than the
one considered here.

Obviously, the main degeneracy goes away when fixing ΩM. Before studying
how the uncertainties on ΩM affect w, we will evaluate the effect of optimising
the redshift distribution of the dataset.

4 Optimising the redshift distribution of the dataset

To optimise the redshift distribution of the dataset, we first study the effect
on the largest eigenvalue of C, of adding to the total sample a small number of
supernovae (e.g. 40) in a given redshits bin. Figure 2 shows how this quantity
evolves as a function of the redshift in which the 40 supernovae were added.
Although no dramatic change is seen (errors scale as the plotted values), Figure
2 shows that a small subsample collected at much higher redshift would reduce
the errors more efficiently than collecting more events in the original redshift
interval.

One may want to be more radical, i.e. really optimise the redshift distribution
within the redshift range in order to minimise this largest eigenvalue, keeping
constant the total number of supernovae. This does not yield the same result as
minimising the determinant of C as done in [9] where the optimal determinant
is obtained at the cost of an even higher largest eigenvalue. However, as for
the minimum determinant, the optimum is reached for a redshift distribution
consisting in 3 delta functions, that are given in Table 2. The improvement
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Fig. 2. value of the square root of the largest eigenvalue of C as a function of the
redshift where one adds 40 supernovae to the sample.

with respect to a flat distribution is not large enough to consider seriously such
an extreme option, which has very severe drawbacks. Nevertheless, a moderate
optimisation of the redshift distribution would be worth doing since it would
lead to a gain in resolution.

5 Expected accuracy on w0 and w1 imposing an ΩM prior

We computed in the Bayesian approach the w0,w1 joint confidence contours, by
marginalizing the estimate probability distribution over ΩM with a Gaussian
prior, without recourse to the linear approximation, We used a Gaussian prior
with σ = 0.05, which is 2 to 3 times better than nowadays precision from
large scale structures, and other methods. The results are shown in Figure 2.
Despite our conservative inputs, model A and model B can be separated at
more than 95 % CL, whatever is the true one. Model B can be separated from
domain walls ((w0, w1) = (−2/3, 0)) with the same accuracy.

It is interesting to come back again to the linear approximation to study how
estimated errors scale with the (external) ΩM uncertainty, and the (internal)
precision of the luminosity distance measurements. Adding a prior is adding
a (( ΩM − ΩM

′)/σ)2 to the χ2, where ΩM
′ is the prior value, and ΩM remains

8



model “C” z1 z2 z3 fractions

A

0.1714 −0.9720 −0.989

−0.972 0.1941 0.9295

−0.989 0.9295 1.341

0.20

0.82

1.40

0.40

0.40

0.20

B

0.7798 −0.9989 −0.9944

−0.9989 0.9393 0.9887

−0.9944 0.9887 1.478

0.20

0.91

1.40

0.34

0.41

0.25

C

0.1828 −0.9918 0.3483

−0.9918 0.3715 −0.4583

0.3483 −0.4583 0.1957

0.20

0.86

1.40

0.50

0.36

0.14
Table 2
Result of optimisation of the redshift distribution to reduce the largest eigenvalue
of C (where C is given the same way as in Table 1). The 3 optimal distributions are
rather similar.

the parameter to be estimated. The Fisher and covariance matrix become:

F ′ = F +
ppT

σ2
, C ′ = C − (Cp)(Cp)T

σ2 + pT Cp
(14)

where C = F−1 and p = (1, 0, 0) is the (unit) vector describing the prior (here
it only concerns ΩM) and σ is its standard error. The a posteriori variance of
e.g. w1 (after application of the prior) reads:

V (w1) = C ′
33 = C33 − (C31)

2

σ2 + C11
= C33(1− ρ2

13

σ2/C11 + 1
)

'C33(1− ρ2
13 + ρ2

13σ
2/C11) (15)

where the last approximation holds for σ2 << C11 (which is already the case
with nowadays precision on ΩM). V (w1) scales with σ2 for large σ, and with
C33 for smaller ones. When σ = C11(1− ρ2

13)/ρ
2
13, V (w1) is twice its minimum

value (σ = 0). This happens for σ = 0.03, 0.08, 0.44 for models A,B and C
respectively. Doing the same exercise for w0 yields σ = 0.05, 0.03, 0.02. With
σ = 0.05 and our assumptions for the experimental precision, the result quality
would benefit both from a smaller σ and from a better luminosity distance
measurement.

For an infinitely well defined ΩM, we face a second “degeneracy” demonstrated
by the elongated shape of the error contours. The orientation of the major axis
defines a z (zmin) for which V ar(w0+w1z) is minimal, zmin ' 0.2 to 0.3. Models
with similar wX(zmin) but different w1 (within ∼ 0.3 in our assumptions),
will be indistinguishable. This is shown by Figure 1 of [1] where luminosity
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Fig. 3. 1 and 2 σ (39% filled areas,86% dotted lines) confidence contours for (w0,w1)
with a Gaussian prior σΩM

= 0.05 (large contours), and with an infinite precision
(small elongated contours). For model A, the 2 σ contour escapes in an unphysical
region.

distances for different wX having similar wX(z = 0.3) are shown to have the
same luminosity distance behaviour.

6 Influence of systematic errors

The overall scale of luminosity distances (deduced from fluxes) depends on
LH2

0 , where L is the absolute luminosity of the candle. So distortions that
bias the cosmological parameters are the ones that distort the shape of dL. At
lowest order in z, we may model:

dmeasured
L = dtrue

L (1 + αz), (16)

where α (hopefully small) accounts for example for the drift of photometric
calibration of supernovae across the redshift range, an unknown evolution of
supernovae, or light absorption in the intergalactic medium uniformly over the
spectral range. The SNAP mission has been designed to reduce these effects as
much as possible, and targets a precision of 0.02 mag over the redshift range
z < 1.7 which corresponds to |α| < 0.006.
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We computed the parameter biases for our 3 models, with σΩM
= 0.05 and

α = 0.01, and found negligible shifts for ΩM (as expected), and biases for
(w0, w1) of (0,-0.19), (-0.01, 0.10) and (-0.02,-0.12) for models A,B and C.
These systematic biases are all below the statistical uncertainty, and do not
change significantly for σΩM

= 0.1 or 0.025.

7 Conclusions

With conservative hypotheses for the expected performances of a future high
statistics SNe Ia experiment such as the proposed SNAP mission, we find
that the equation of state parameter of the dark energy can be measured
provided an accurate value of ΩM is used as a prior. Detailed study of Type Ia
supernovae such as with the planned nearby supernova factory project [8]
could result in further reducing the peak-brightness intrinsic dispersion which
directly affects the precision on the equation of state parameter. In addition,
independent gain of precision can be achieved by (moderately) optimising the
redshift distribution of the dataset. Finally, it is interesting to note that the
required precision on ΩM could come from the SNAP mission itself, using
large scale weak lensing which is sensitive to ΩM almost independently of
dark energy. In [10], a ground based moderately deep weak lensing survey of
5x5 degrees is estimated to measure ΩM to 10% (for ΩM around 0.3), reaching
5% for a 10x10 degrees survey.
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