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BEAM DYNAMICS SIMULATION FOR THE CTF3 DRIVE-BEAM
ACCELERATOR

D. Schulte, CERN, 1211 Geneva, Switzerland

Abstract

A new CLIC Test Facility (CTF3) at CERN will serve to
study the drive beam generation for the Compact Linear
Collider (CLIC). CTF3 has to accelerate a3.5 A electron
beam in almost fully-loaded structures. The pulse contains
more than 2000 bunches, one in every second RF bucket,
and has a length of more than oneµs. Different options
for the lattice of the drive-beam accelerator are presented,
based on FODO-cells and triplets as well as solenoids. The
transverse stability is simulated, including the effects of
beam jitter, alignment and beam-based correction.

1 INTRODUCTION

In the nominal stage of CTF3, the drive-beam accelerator
will have eight klystrons, each feeding two 1m-long struc-
tures. The structures are almost fully loaded, transferring
more than90 % of their input power to the beam. The av-
erage energy gain per structure is∆E ≈ 9.1 MeV [1]. The
beam pulse consists of ten short trains of about 210 bunches
each. The first train fills odd buckets, the immediately fol-
lowing second train fills even buckets; this pattern is then
repeated. An RF-deflector at half the linac frequency is
used to separate the trains after acceleration [2]. The ini-
tial beam energy isE0 ≈ 26 MeV, the final beam energy
Ef ≈ 170 MeV, the bunch chargeq = 2.33 nC, its length
σx ≈ 1.5 mm [3] and the transverse normalised emittances
areε∗x = ε∗y = 100 µm.

2 STRUCTURE MODEL

The simulations below have been performed using
PLACET [4]. The long-range transverse wakefield is repre-
sented by the lowest two dipole modes of each cell. These
have been calculated neglecting the coupling between cells
and the effect of the damping waveguides [5]. The damp-
ing of the lowest dipole mode has been found [6] to be in
the rangeQ = 11 to Q = 19 for perfect loads. In the sim-
ulation, the modes are confined to their cells, which allows
one to take into account the angle of the beam trajectory
in the structure. The loss factors used in the simulation are
50 % larger than in [5]. This is to account for the effect
of higher-order modes. Also, the damping is conservative
in the simulation;Q = 30 andQ = 400 are used for the
lowest and the second dipole band. The short-range lon-
gitudinal [5] and transverse [7] wakefields have been cal-
culated and are included in the simulation. Almost perfect
compensation of the long-range longitudinal wakefields is
predicted [1].

Quadrupole wakefields may be important and have been
implemented in PLACET. The corresponding modes have
not yet been calculated but need to be included in the sim-
ulation as soon as they are available.

3 LATTICES

Three different lattices were investigated. One consists of
simple FODO-cells, with one structure between each pair
of quadrupoles. The other two lattices are based on triplets.
In one case (called T1 below), one structure was placed
between two triplets; in the other case two structures (T2).
The weaker triplet lattice (T1) and the FODO lattice are
roughly comparable in length and cost, whereas the strong
triplet lattice (T2) is significantly longer and more costly.

In the FODO lattice, the phase advance isµ = 102◦

per cell, with a quadrupole spacing of2 m. In T2 one has
µx = 97◦ andµy = 110◦, and a distance of4.2 m between
triplets. The sum of the integrated strengths of the outer
two magnets is slightly larger than that of the inner one.
With this arrangement, the horizontal and the vertical beta-
functions are equal in the accelerating structures, and the
energy acceptance of the lattice is markedly improved. For
T1 the phase advances areµx = 84◦ andµy = 108◦ for a
triplet spacing of3 m. The transverse acceptance is4.2 σ
for the FODO lattice,4.9 σ for T2 and5.8 σ for T1.

Since the beams have to be compressed after the accel-
eration, the RF-phase cannot be used to optimise the beam
transport. It must be chosen to achieve the required com-
pression and to limit the energy spread of the beam before
the combiner ring to the latter’s energy acceptance. An RF
phaseΦRF = 6◦ is used in the following.

4 TRANSVERSE BEAM JITTER

No estimate of the transverse jitter of the incoming beam
exists. Therefore, only the jitter amplification is calculated.
In the simulation, each bunch is cut into slices; the beam is
set to an offset of∆x and tracked through the linac. The
normalised amplification factorA for a slice is defined as

A =
σx,0

∆x

√(
xf

σx,f

)2

+
(

x′
f

σx′,f

)2

Here,σx,0 andσx,f are initial and final beam size,σx′,0
andσx′,f are initial and final beam divergence,∆x is the
initial beam offset andxf andx′

f are the final position and
angle of the centre of the slice. For a slice with nominal
energy and without wakefield effects, one hasA = 1. The
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Figure 1: The amplifiaction factor of the beam at the end of the
drive-beam accelerator, using the FODO lattice, without a ramp
(left) and with a ramp (right). A mono-energetic beam without
wakefields should stay on the innermost circle.
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Figure 2: The beam at the end of the drive-beam accelerator in a
triplet lattice. On the left-hand side T2, on the right-hand side T1.

maximum amplification factor̂A is the maximum over all
slices. The left-hand side of Fig. 1 shows the bunches at
the end of the accelerator using the FODO lattice. Differ-
ent quadrupole strengths were used to find the best phase
advance. Some bunches are kicked significantly; the maxi-
mum amplification isÂ = 3.7. Without knowledge of the
acceptance downstream and the size of the beam jitter, it is
not possible to decide whether the amplification is accept-
able. Within the linac, even a large jitter of∆x = σx does
not lead to beam loss.

The first few bunches in each train are kicked particu-
larly hard. This can be prevented by adding charge ramps.
Towards the end of a train that fills even buckets, the bunch
charge is slowly decreased from the nominal bunch charge
to zero. At the same time one increases the charge in the
odd buckets from zero to nominal, to keep the beam cur-
rent constant. Thus the two consecutive trains practically
overlap. On the right-hand side of Fig. 1, one can see that
in this case all bunches are well confined, with a maximum
amplification ofÂ = 2.

In the triplet lattices, the horizontal plane has a larger
jitter amplification than the vertical one. But even the hori-
zontal amplifications are significantly smaller than in the
FODO lattice. Figure 2 shows the examples of a pulse
without charge ramps, the amplification factors being 1.8
(T2) and 1.5 (T1). With charge ramps, they are reduced
to 1.5 and 1.3. If the beam jitters significantly, the triplet
lattices are markedly better than the FODO lattice.
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Figure 3: The minimum acceptance along the linac, with a gra-
dient error. For each lattice, 100 machines have been simulated
and their minimum acceptance at each point is plotted.

5 BEAM-BASED ALIGNMENT

To keep operation as simple as possible, only one-to-
one correction is considered. All elements are assumed
to be scattered around a straight line following a normal
distribution with σ = 200 µm. In the FODO lattice,
corrector dipoles are located after each quadrupole and
beam position monitors (BPM) are placed in front of each
quadrupole. In the triplet lattices, the corrector dipoles are
positioned after the triplets and the BPMs are positioned
in front and after the triplets. The correctors are used to
bring the average beam position to zero in the BPMs. For
each case, 100 different machines are simulated. The small
growths of about0.5 % are almost the same for all lattices.

6 GRADIENT AND PHASE ERRORS

The limit on the variation of the bunch energy is1 % [8],
much smaller than the single-bunch energy spread. In nor-
mal operation, the additional dispersive effects are there-
fore small. Static local energy errors are of more concern
and are discussed here.

The initial and final beam energy can be well measured,
and from this the average gradient can be derived. A local
variation of the gradient is more difficult to detect. It will
lead to a quadrupole strength that is not adapted to the beam
energy. The worst case is too low a gradient in the first two
structures, which are fed by one klystron. In the simula-
tion, 100 different machines with a gradient in the first two
structures that is too low by10 % (20 %) are corrected with
the beam. The emittance growth found after correction is
1 % (5 %) in the FODO lattice and0.5 % (2 %) in T1, which
seems to be sufficiently low. In T2, the value for a10 % er-
ror is small,2 %, but for an error of20 % it starts to be
large:14 %. The transverse acceptance is reduced to3.8 σ
(3.2 σ) in the FODO lattice,4.7 σ (3.8 σ) in T2 and to5.2 σ
(5.1 σ) in T1. Figure 3 shows the acceptance for a gradient
error of20 %. For the FODO lattice, and to a lesser degree
also for T2, one starts to worry about beam losses. How-
ever, an error of10 % seems acceptable with all lattices.
To be able to use the FODO lattice or T2, it necessary to
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Figure 4: The minimum acceptance of the linac, as a function of
the RF-gradient error; 20 machines were simulated for each case.
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Figure 5: The amplification of beam jitter with and without the
charge ramp for the lattice T2 including the injector solenoid.

measure the local gradient to better than10 %, to be able to
correct the lattice accordingly. For T1, a precision of20 %
is sufficient.

The RF power produced by a klystron has a systematic
phase variation during the pulse. One hopes to correct this
effect globally, but local variations will remain. To esti-
mate their importance, a linear change in phase of20◦ over
the pulse is assumed for the two structures driven by one
klystron. The next pair has an exactly opposite phase vari-
ation. The resulting bunch-to-bunch energy spread is2 %,
full width, which is not acceptable in the combiner ring;
so a better compensation would be needed. In contrast, the
emittance growth seems acceptable with about1.5 % av-
eraged over 100 machines for all lattices; the acceptance
is hardly decreased. This phase variation does not cause
significant transverse effects.

7 ENERGY ACCEPTANCE

During commissioning of the linac, large energy errors
may occur. To study the sensitivity to this, 20 machines
were simulated for each lattice in the following way: the
linac is corrected with a nominal beam; then the incom-
ing beam is assumed to be accelerated at a different gra-
dient. Figure 4 shows the minimum transverse acceptance
of the three lattices as a function of the RF-gradient error.
The final energy error is about1.4 times larger than that of
the RF-gradient, since the beam loading does not change.
The FODO lattice and T1 have a comparable energy accep-

tance, whereas that of T2 is slightly smaller. By reducing
the focal strength, the energy acceptance can be further im-
proved at the cost of higher transverse wakefield effects. By
reducing the strength of T2 toµx = 83◦ andµy = 94◦, the
energy acceptance becomes larger than that of the FODO
lattice. The maximum amplification of an initial jitter in-
creases from 1.8 to 2.6 but is still smaller than the factor
3.7 in the FODO lattice. With each lattice, the linac energy
acceptance is largely sufficient during normal operation.

8 SOLENOID

PLACET has been modified to also simulate the effects
of solenoids with acceleration. This allows to include the
last two structures of the injector which are placed inside
a solenoid. Two triplets are used to match the end of the
solenoid to the T2 version of the drive-beam accelerator.
The field of the solenoid is0.2 T and its length is chosen
such that a horizontal jitter of the nominal beam leads to a
final horizontal offset. The end fields of the solenoid are
modelled as thin lenses. Neither space charge nor the dif-
ference of the particle velocities from the speed of light are
taken into account, but the wakefields are considered, in
contrast to calculations done with PARMELA [9].

Figure 5 shows the amplification factor. While there is
some contribution from the structures in the solenoid, the
overall amplification seems still acceptable.

9 CONCLUSION

The simulations show that the lattices considered here can
be acceptable; the best is the strong triplet lattice T1. The
triplet lattice T2 seems to be a better choice than the FODO
lattice. The FODO lattice is less expensive than T2, which
is much cheaper than T1. To find the best compromise,
more information is needed. For the FODO lattice the
ramps have to be studied in more detail. For all lattices,
the matching from the injector to the linac and from the
linac to the combiner ring needs to be understood.
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