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On the two kinds of vector particles
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All known elementary vector particles, the photon, Z, W and the gluons, are described by the gauge
theory. They belong to the real representation (1/2, 1/2) of the Lorentz group. On the other hand
inequivalent representations (1, 0) and (0, 1) also correspond to particles with spin 1. It is natural
to suppose that, along with the known vector particles, the new particles can exist. Evidence for
the existence of these particles in nature is the presence of the axial-vector meson resonances with
quantum numbers 1+−. Other indications for their existence are discussed. The signatures of their
contributions into different physical processes are presented.

I. INTRODUCTION

The description of the elementary particles relies on
concepts of symmetry [1]. The rotation invariance group
gives a particle classification with respect to the spin.
In the quantum theory the spin may have half-integer
or integer value. The lowest representation of the O(3)
group, which can be used as a building block for the
construction of a higher spin representation, is a two-
component spinor ψα (α = 1, 2). It describes the parti-
cles with spin 1/2. In non-relativistic quantum mechan-
ics there exists only one possibility to construct a vector:
1/2 + 1/2 = 1.

In the relativistic theory the symmetry group is the
Lorentz group O(3, 1), which is isomorphic to the direct
product of the two spatial rotation groups O(3) × O(3).
Therefore, two inequivalent representations (1/2, 0) and
(0, 1/2) exist for the spin 1/2. They correspond to parti-
cles with different chiralities and are represented by the
Weyl spinor ψα and its conjugate ψ∗α ≡ ψα̇, which are
related by the P transformation. There exist two possi-
bilities to construct the representation of the spin 1.

The vector representation (1/2, 1/2) is the well studied
one and corresponds to the gauge particles. It is chirally
neutral, because it arises from the product between the
left (1/2, 0) and the right (0, 1/2) fundamental spinors.
This property reflects the simple fact that all gauge in-
teractions preserve chiralities of incoming and outgoing
particles. This representation is transformed as a mixed
(dotted and undotted) spinor φαβ̇ , which is equivalent to
the Lorentz vector

Vm = (σm)α̇βφβα̇, (1)

where σi (i = 1, 2, 3) are the Pauli matrices and σ0 is the
unit matrix.

Let us stress that inequivalent chiral representations
(1, 0) and (0, 1), which also correspond to particles with
spin 1, can be constructed if one uses only the product
either of the left (1/2, 0) or of the right (0, 1/2) funda-
mental spinors. They are transformed independently by
the proper Lorentz group as rank-2 spinors, symmetric
in the spinor indices: φαβ and φα̇β̇ , respectively. To pass
to more convenient Lorentz indices, the decomposition
of the product of the Pauli matrices into symmetric and
antisymmetric parts can be used:

(Cσ̂mσn)αβ = gmnC
αβ − i

2
εmnab(Cσ̂aσb)αβ , (2a)

(σmσ̂nC)α̇β̇ = gmnC
α̇β̇ +

i

2
εmnab(σaσ̂bC)α̇β̇ , (2b)

where (σ̂m)αβ̇ = (C−1σT
mC)αβ̇ , Cαβ ≡ εαβ is the charge-

conjugation matrix, and εmnab is the completely anti-
symmetric tensor, with ε0123 = +1. Therefore, one can
introduce the antisymmetric anti-self-dual tensor T−

mn =
Tmn − T̃mn:

T−
mn =

i

2
εmnab(Cσ̂aσb)αβφβα, (3a)

and the antisymmetric self-dual tensor T+
mn = (T−

mn)∗ =
Tmn + T̃mn:

T+
mn = − i

2
εmnab(σaσ̂bC)α̇β̇φβ̇α̇, (3b)

where T̃mn = (i/2)εmnabT
ab is the tensor that is dual to

the real antisymmetric tensor Tmn. Hence, the real ten-
sor Tmn corresponds both to the left and to the right
vector particles or, in other words, to the vector and
axial-vector ones.

As far as the vector potential Vm (1) describes the
real vector particles, the antisymmetric tensors T±

mn (3)
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can correspond to yet unknown vector particles. It is
clear that the transformation law of the vector particles
uniquely defines their trilinear renormalizable interaction
with the fermions without derivatives. For example, the
usual gauge interaction term ΨγmΨ Vm arises from the
Lorentz-invariant form ψαφαβ̇ψ

β̇ , where

Ψ =
(

ψα

iCα̇β̇ψβ̇

)
=

(
ΨL

ΨR

)
, γm =

(
0 σ̂m

σm 0

)
,

are the Dirac bispinor and the Dirac matrices in the he-
licity representation. On the other hand, the trilinear
interaction of the new vector particles with the fermions
ψαφαβψ

β + ψα̇φα̇β̇ψ
β̇ corresponds to the Yukawa term∗

ΨσmnΨ Tmn, where σmn = i [γm, γn] /2. The key fea-
ture of the interactions mediated by the new vector par-
ticles is chirality flip of incoming and outgoing particles.
The gauge vector particles and the new ones have dif-
ferent interactions and, consequently, different quantum
numbers. Therefore, they correspond to different kinds
of vector particles. A common opinion exists in the liter-
ature, that massive vector particles can be equivalently
described by the vector potential Vm or by the antisym-
metric tensor field Tmn [2]. This is true for free parti-
cles as far as both representations correspond to particles
with spin 1. However, there is no equivalence when an
interaction is included. Only interactions, in particular
with fermions, can distinguish between these two kinds of
vector particles. To reveal this let us consider the hadron
vector resonances.

II. HADRON VECTOR RESONANCES

The bound states of a quark and an antiquark are char-
acterized by the quantum numbers JPC , where J is the
total angular momentum, P is the parity and C is the
charge conjugation. There exist three types of different
quantum numbers for the known vector mesons [3]. They
are 1−−, 1++ and 1+−. For instance, the first quantum
numbers are assigned to the ρ, ω and φ vector mesons.
The second quantum numbers are assigned to the a1

and f1 axial-vector mesons; however, note that the third
quantum numbers are assigned again to the axial-vector
mesons b1 and h1. The key point is the difference between
the last two assignments for the axial-vector mesons.

Let us consider the extended Nambu–Jona-Lasinio
(ENJL) [4] models. In such models the Lagrangian con-
tains only the quark fields, while the spontaneous sym-

∗For the gauge antisymmetric tensor field Bmn the
gauge-invariant form of the interaction with derivative
εabcm∂[aBbc]ΨγmΨ is used, which is non-renormalizable. Here
we will consider the antisymmetric tensor matter field Tmn

with a Yukawa interaction.

metry breaking and the hadron states are generated dy-
namically by the model itself. The mesonic states arise
as excitations of quark–antiquark pairs and that defines
their interactions with the quarks. There are the vector
ΨγmΨ and the axial-vector Ψγmγ5Ψ bilinear forms of the
quark spinor fields with quantum numbers 1−− and 1++,
which correspond to the vector and axial-vector mesons,
respectively. They have gauge-like interactions with the
quarks and can be described by the gauge vector Vm and
axial-vector Am fields. Up to now all local ENJL models
include only vector mesons with quantum numbers 1−−
and 1++ and do not describe mesons with quantum num-
bers 1+−. One way of incorporating these mesons into
the ENJL model has been described in [5]. These mesonic
states correspond to the vector particles, which are de-
scribed by the antisymmetric tensor field Tmn, rather
than by the gauge fields. The bilinear form ΨσmnΨ is
used to describe the quantum numbers and the interac-
tions of these mesons. The existence of the axial-vector
mesons with the quantum numbers 1+− points out that
the new kind of vector particles should exist in nature.

What concerns the hadron physics the introduction
of the antisymmetric tensor field in the ENJL model
can give new understanding of the vector mesonic res-
onances. The six components of the antisymmetric ten-
sor correspond to the axial-vector Bm = ∂n(Ψσmnγ5Ψ)
with quantum numbers 1+− and also to the vector Rm =
∂n(ΨσmnΨ) with quantum numbers 1−−. Each of these
vectors Bm and Rm has three independent components
due to the antisymmetric property of σmn. Therefore, be-
sides the axial-vector mesons Bm with quantum numbers
1+−, there are additional vector mesons Rm with quan-
tum numbers 1−−, like those of the gauge mesons Vm, but
having different coupling to the quarks. As far as there
exist two different vector particles with the same quan-
tum numbers 1−−, their mass eigenstates can be a linear
combination of them†. For example, for the isospin 1
vector mesons they are ρ(770) and ρ′, where the latter is
either the ρ(1450) or ρ(1700) state. For the axial-vector
mesons it is possible to make a unique identification of the
low-lying mesonic states with the quantum numbers 1++

and 1+− as a1(1260) and b1(1235), respectively. Apply-
ing the ENJL approach to all these (axial)-vector mesons,
a remarkable relation among their masses is derived [5]:

m2
ρ +m2

ρ′ = m2
a1

+m2
b1 . (4)

The extraction of the a1 and ρ′ masses from the experi-
ments is a model-dependent procedure. The masses have
a broad range of values. Therefore, to fix one of these

†It means, in particular, that the ρ meson can have both
gauge and anomalous tensor couplings with the quarks, while
the axial-vector mesons with quantum numbers 1++ have only
gauge interactions and the axial-vector mesons with quantum
numbers 1+− have only tensor interactions.
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masses one can use as approximation the Weinberg sum
relation [6]

ma1 '
√

2 mρ. (5)

This fixes the a1 mass value ma1 ' 1088 MeV, and
favours the choice of ρ(1450) resonance as the second
mass eigenstate with the quantum numbers 1−−, because
eq. (4) givesmρ′ ' 1450 MeV. Certainly, the new point of
view on the hadron (axial)-vector resonances enables us
not only to explain their mass spectrum, but also intro-
duces a new decay dynamics connecting with their tensor
couplings to the quarks.

III. ELECTROWEAK PHYSICS

Since two types of vector particles are used for the
hadron resonance description, one can extrapolate this
feature to the electroweak physics. Let us introduce a
new type of intermediate vector bosons into the Standard
Model (SM). As far as the tensor interaction does not
conserve chirality, these bosons should couple to the left
doublets and to the right singlets of the fermion fields.
In order to have SU(2)×U(1) invariance, the new vector
bosons must be doublets. Therefore, they do not mix
with the gauge bosons before the symmetry breaking.
It means that in the high energy experiments they do
not interfere with the gauge bosons and contribute to
processes as their squared amplitude.

Nevertheless, due to the particular chiral properties of
the new particles, the angular distribution of the fermion
annihilation cross-section for the tensor coupling differs
from the one of the vector coupling. For the vector case
at high energies the well-known expression holds‡

dσ
d cos θ

∼ (
1 + cos2 θ

)
. (6a)

While the anomalous tensor interaction of the currents
∂n(ΨσmnΨ) leads to a different angular dependence

dσ
d cos θ

∼ cos2 θ. (6b)

The differential cross-section (6b) also differs from the
case of a scalar coupling, which has uniform distribution.

This means that if the new kind of vector particles
exists, at high energies they should give an essential con-
tribution to the differential cross-section only near to the
beam direction. It is not easy to detect definitely such
an excess experimentally, but it will be a clear signature
of the new kind of interactions. Some indications of such

‡For simplicity the parity violation and the interference be-
tween the photon and Z in the SM can be neglected.

excesses exist in recent experimental data with high pseu-
dorapidity η ≥ 2: in the production of the b-quarks at the
Tevatron [7] and the τ τ̄ pairs production at LEP 2 [8].

The LEP experiments at CERN are very suitable for
a search of such deviations from the SM. Generally, the
lepton physics is free from uncertainties connected with
parton distributions, which are typical for the hadron
colliders. As far as the new interactions do not conserve
chirality, their effects increase with the mass of the par-
ticles. Therefore, the analysis of heavy particle decays,
such a τ leptons, gives a unique possibility for searching
these effects. It was noted in [9] that the new interactions
lead to another parametrization of pure leptonic decays,
different from the conventional Michel parametrization.
The experimental analysis of the τ decays and constraints
on the new tensor coupling are presented in [10].

The low energy physics is able either to constrain or to
indicate the presence of the new kind intermediate parti-
cles. This can be realized mainly in precision experiments
of particle decays. However, at present they do not ob-
tain the deserved attention. It is noteworthy to point out
here that, for example, the principal ρ parameter in the
muon decay has not been measured since 1969. Needless
to say that a knowledge of the precision spectrum shape
is important for the determination of the Fermi coupling
constant GF .

If some new interactions give a contribution into the
muon decay, this will effectively lead to a lower value
of GF in comparison with the experimentally extracted
one, which assumes only SM interactions. It may help to
solve the long-standing problem of a violation of unitar-
ity in the first row of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix [11]:

|Vud|2 + |Vus|2 + |Vub|2 = 0.9968± 0.0014. (7)

The main contribution into the unitarity sum (7) comes
from the Vud element of the CKM matrix. This element
is extracted with high precision from the nuclear super-
allowed beta decays 0+ → 0+, comparing the strength of
this vector transition to GF :

|Vud|2 = const/G2
F . (8)

A two per mille lowered value of GF will restore the uni-
tarity condition.

In principle, the new tensor interactions can be respon-
sible for such a scenario [9]. In this case the strength
of these interactions must be comparable with the elec-
troweak one and that can lead to additional observable
contributions in other experiments. Let us point out
some indication for a possible admixture of such interac-
tions in radiative pion decay [12] and semileptonic three-
body kaon decay [13].

First of all it is important to note that the tensor in-
teractions do not contribute directly to the pion decay
π → eν and avoid the strong constraints on the pseu-
doscalar interactions. Although the tensor interactions,
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like the scalar ones, do not conserve chirality and should
give a large contribution into chirality-suppressed pion
decay, this is impossible because a tensor form factor
for the pion matrix element 〈0|q̄σmnq|π(p)〉 cannot be
constructed. A different situation arises when the ra-
diative pion decay π → eνγ is considered. In this case
the tensor interactions may give a contribution them-
selves and, moreover, may interfere with a QED inner
bremsstrahlung contribution. Exactly such a type of de-
structive interference was observed in the radiative pion
decays in flight [12].

The other experiment, where the tensor form factor
can be introduced on the same footing as the vector form
factor of the SM, is the semileptonic three-body kaon
decay K → πeν. As far as most of the experiments on
kaon decays give information only about the vector form
factors, the experimental data are poor. However, the
last high-statistics experiment [13] indicates the presence
of non-zero tensor form factor.

In ref. [14] it was shown that both the anomalous de-
structive interference in the radiative pion decay and the
presence of a non-zero tensor form factor in the semilep-
tonic kaon decay, may be explained by an admixture of
tensor interactions. This is also compatible with the con-
tribution of the tensor interactions into the pure leptonic
decays at the per mille level [9]. It is clear that new ex-
periments are necessary to confirm or reject the presence
of this new type of vector particles in nature.
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