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Abstract

In present paper the possibility of construction of continuous ana-
logue of Poisson distribution with the search of bounds of confidence
intervals for parameter of Poisson distribution is discussed and the re-
sults of numerical construction of confidence intervals are presented.
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Introduction

In paper [1] the unified approach to the construction of confidence in-
tervals and confidence limits for a signal with a background presence, in
particular for Poisson distributions, is proposed. The method is widely used
for the presentation of physical results [2] though a number of investigators
criticize this approach [3] (in particular, this approach avoids a violation
of the coverage principle). Series of Workshops on Confidence Limits has
been held in CERN and Fermilab. At these meetings demands for properties
of constructed confidence intervals and confidence limits have been formu-
lated [4]. On the other hand, the results of experiments often give noninteger
values of a number of observed events (for example, after fitting [5]) when
Poisson distribution take place. That is why there is a necessity to search a
continuous analogue of Poisson distribution. The present work offers some
generalization of Poisson distribution for continuous case. The generalization
given here allows to construct confidence intervals and confidence limits for
Poisson distribution parameter both for integer and real values of a number
of observed events, using conventional methods. More than, the supposi-
tion about continuous of some function f(x, \) described below allows to use
Gamma distribution for construction of confidence intervals and confidence
limits of Poisson distribution parameter. In present paper we consider only
the construction of confidence intervals.

In the Section 1 the generalization of Poisson distribution for the con-
tinuous case is introduced. An example of confidence intervals construction
for the parameter of analogue of Poisson distribution is given in the Section
2. In the Section 3 the results of construction of confidence intervals having
the minimal length for the parameter of Poisson distribution using Gamma
distribution are discussed. The main results of the paper are formulated in
the Conclusion.

1 The Generalization of Discrete Poisson Dis-
tribution for the Continuous Case

Let us have a random value &, taking values from the set of numbers x € X.
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Let us consider two-dimensional function f(z, \) = —'e”\,
x



where z >0 X > 0.

Assume, that set X includes only integer numbers, then discrete function
f(z,A) describes distribution of probabilities for Poisson distribution with
the parameter A and random variable x

Let us rewrite the density of Gamma distribution using unconventional
notation
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parameter and A > 0 is a random variable. Here the quantities of x and A

take values from the set of real numbers. Let a = 1 and as is the convention
x! =T'(z + 1), then a continuous function
X

flz,A) = %e"\, A >0, x > —1 is the density of Gamma distribution with
the scale parameter a = 1.
To anticipate a little, it is indicative of the Gamma distribution of pa-
rameter A for the Poisson distribution in case of observed value z = 7.
Figure 1 shows the surface described by the function f(z,A). Smooth
behaviour of this function along x and A (see Fig.2) allows to assume that

there is such a function —1 < [(A), that /Oo) f(z,\)dx = 1 for given value
I

e~ )\? where « is a scale parameter, x > —1 is a shape

of A. It means that in this way we introduce continued analogue of Poisson
€T

distribution with the probability density f(z, \) = geq‘ over the area of
function definition, i.e. for > I(A) and A\ > 0. The values of the function
f(z, A) for integer x coincide with corresponding magnitudes in the probabil-
ities distribution of discrete Poisson distribution. Dependences of the values
of function I(\), the means and the variances for the suggested distribution
on \ were calculated by using programme DGQUAD from the library CERN-
LIB [6] and the results are presented in Table 1. This Table shows that series
of properties of Poisson distribution (E§ = A, D§ = \) take place only if the
value of the parameter \ > 3.
It is appropriate at this point to say that
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The function v(\) = / Tt D) )dx is well known and, according to ref. [7],
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if A — o0, |argA| < § for any integer N. Nevertheless we have to use the
function {(\) in our calculations in Section 2. We consider it as a mathemat-
ical trick for easy construction of confidence intervals by numerically.

In principle, we can numerically to transform the function f(z, A) in the
interval = € (0,1) so that

/OO fla, e = 1, E€ = /Oo of(z, \)dz = A and

0 0

D¢ = / (x — EE)?f(x,\)dz = X for any \. In this case we can construct
0

confidence intervals without introducing of [()).

In Section 3 only assumption about continuous of the function f(z,\)
along the variable x are used for construction of confidence intervals of pa-
rameter A\ for any observed .

Let us construct a central confidence intervals for the continued analogue
of Poisson distribution using function [(\).

2 The Construction of the Confidence Inter-
vals for Continued Analogue of Poisson Dis-
tribution.

Assume that in the experiment with the fixed integral luminosity the & events
(Z is not necessity integer) of some Poisson process were observed. It means
that we have an experimental estimation ;\(92) of the parameter A of Poisson
distribution. We have to construct a confidence interval (A;(z), Aa()), cov-
ering the true value of the parameter A\ of the distribution under study with
confidence level 1 — o, where « is a significance level. It is known from the
theory of statistics [8], that the value of mean of selected data is an unbi-
assed estimation of mean of distribution under study. In our case the sample
consists of one observation . For the discrete Poisson distribution the mean
coincides with the estimation of parameter value, i.e. A = 2. This is not
true for small value of A in considered case (see Table 1). That is why in
order to find the estimation of A(#) for small value # there is necessary to
introduce correction in accordance with Table 1. Let us construct the central
confidence intervals using conventional method assuming that

/ flx, \)de = % for the lower bound A; and



/ [z, 5\2)(195 = % for the upper bound A, of confidence interval.
[(A2)

Figure 3 shows the introduced in the Section 1 distributions with param-
eters defined by the bounds of confidence interval (A\; = 1.638, X, = 8.498)
for the case # = A\ = 4 and the Gamma distribution with parameters a = 1,
x = & = 4. The association between the confidence interval and the Gamma
distribution is seen from this Figure. The bounds of confidence interval with
90% confidence level for parameter of continued analogue of Poisson distri-
bution for different observed values Z (first column) were calculated and are
given in second column of the Table 2. It is necessary to notice that the
confidence level of the constructed confidence intervals always coincides ex-
actly with the required confidence level. As it results from Table 2 that the
suggested approach allows to construct confidence intervals for any real and
integer values of the observed number of events in the case of the values of
parameter A > 3. The Table 2 shows that the left bound of central confidence
intervals is not equal to zero for small z. It is not suitable.

Also note that 90% of the area of Gamma distributions with parameter
x = I are contained inside the constructed 90% confidence intervals for ob-
served value Z (for small values of A < 0.3 we have got 88%). It points out the
possibility of Gamma distribution usage for confidence intervals construction
for parameter of Poisson distribution.

3 Shortest Confidence Intervals for Parame-
ter of Poisson Distribution.

As is follow from formulae for f(x, A) (see Fig.3) we may suppose that the
parameter \ of Poisson distribution for the observed value & has Gamma
distribution! with the parameters a = 1 and = = 2. This supposition allows
to choose confidence interval of minimum length from all possible confidence
intervals of given confidence level without violation of the coverage principle.
The bounds of minimum length area, containing 90% of the corresponding
Gamma distribution square, were found by numerically both for integer value
of # and for real value of . Here we took into account that A = Z, constructed
the central 90% confidence interval and, then, found the shortest 90% con-

IThe similar supposition is discussed in ref. [9]



fidence interval for the parameter of Poisson distribution. The results are
presented in third column of Table 2. For comparison with the results of
conventional procedure [2] of finding confidence intervals, the results of cal-
culations of confidence intervals for integer value of Z [1] are adduced in the
Table 2. By this means confidence intervals, got using Gamma distribution,
may be used for real values of &, even though the Z is negative (z > —1).

Conclusion

In the paper the attempt of introducing of continued analogue of Poisson
distribution for the construction of classical confidence intervals for the pa-
rameter A of Poisson distribution is described. Two approaches (with using
of function [(A) and with using of Gamma distribution) are considered. Con-
fidence intervals for different integer and real values of number of observed
events for Poisson process in the experiment with given integral luminosity
are constructed. As seems the approach with the use of Gamma distribution
for construction of confidence intervals more preferable than approach with
using of function [()).
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Table 1: The function [(\), mean

and variance versus A.

A I(A) | mean (E¢) | variance (D€)
0.001 | -0.297 -0.138 0.024
0.002 | -0.314 -0.137 0.029
0.005 | -0.340 -0.130 0.040
0.010 | -0.363 -0.120 0.052
0.020 | -0.388 -0.100 0.071
0.050 | -0.427 -0.051 0.113
0.100 | -0.461 0.018 0.170
0.200 | -0.498 0.142 0.272
0.300 | -0.522 0.256 0.369
0.400 | -0.539 0.365 0.464
0.500 | -0.553 0.472 0.559
0.600 | -0.564 0.577 0.653
0.700 | -0.574 0.681 0.748
0.800 | -0.582 0.785 0.844
0.900 | -0.590 0.887 0.939

1.00 | -0.597 0.989 1.035
1.50 | -0.622 1.495 1.521
2.00 | -0.639 1.998 2.012
2.50 | -0.650 2.499 2.506
3.00 | -0.656 3.000 3.003
3.50 | -0.656 3.500 3.501
4.00 | -0.647 4.000 3.999
4.50 | -0.628 4.500 4.498
5.00 | -0.593 5.000 4.997
5.50 | -0.539 5.500 5.497
6.00 | -0.466 6.000 5.996
6.50 | -0.373 6.500 6.495
7.00 | -0.262 7.000 6.995
7.50 | -0.135 7.500 7.494
8.00 | 0.000 8.000 7.993
8.50 | 0.000 8.500 8.496
9.00 | 0.000 9.000 8.997
9.50 | 0.000 9.500 9.498
10.0 | 0.000 10.00 9.999




Table 2: 90% C.L. intervals for the Poisson signal mean A for total events
observed .

bounds (Section 2) | bounds (Section 3) | bounds (ref[1])
i A Ao A Ao A Ao
0.000 | 0.121E-08 2.052 0.0 2.302 0.00 2.44
0.001 | 0.205E-08 2.054 0.0 2.304
0.002 | 0.292E-08 2.056 0.0 2.306
0.005 | 0.666E-08 2.061 0.0 2.311
0.01 | 0.307E-07 2.076 0.0 2.320
0.02 | 0.218E-06 2.098 0.0 2.337
0.05 | 0.765E-05 2.166 | 1.66E-05 2.389
0.10 | 0.137E-03 2.275 | 2.23E-05 2.474
0.20 | 0.186E-02 2.490 | 6.65E-05 2.642
0.30 | 0.696E-02 2.692 | 1.49E-04 2.806
0.40 | 0.161E-01 2.891 | 2.60E-03 2.969
0.50 | 0.295E-01 3.084 | 5.44E-03 3.129
0.60 | 0.466E-01 3.269 | 1.35E-02 3.290
0.70 | 0.673E-01 3.450 | 2.63E-02 3.452
0.80 | 0.911E-01 3.629 | 4.04E-02 3.611
0.90 0.1179 3.804 | 6.12E-02 3.773
1.0 0.1473 3.977 | 8.49E-02 3.933 0.11 4.36
1.5 0.3257 4.800 0.2391 4.718
2.0 0.5429 5.582 0.4410 5.479 0.53 5.91
2.5 0.7896 6.340 0.6760 6.220
3.0 1.056 7.076 0.9284 6.937 1.10 7.42
3.9 1.340 7.792 1.219 7.660
4.0 1.638 8.493 1.511 8.358 1.47 8.60
4.5 1.946 9.188 1.820 9.050
5.0 2.264 9.869 2.120 9.714 1.84 9.99
5.5 2.590 10.55 2.453 10.39
6.0 2.924 11.21 2.775 11.05 2.21 11.47
6.5 3.264 11.87 3.126 11.72
7.0 3.609 12.53 3.473 12.38 3.56 12.53
7.5 3.961 13.18 3.808 13.01
8.0 4.316 13.82 4.160 13.65 3.96 13.99
8.5 4.677 14.46 4.532 14.30
9.0 5.041 15.10 4.905 14.95 4.36 15.30
9.5 5.406 15.73 5.252 15.56
10. 9.779 16.36 5.640 16.21 5.50 16.50
20. 13.65 28.49 13.50 28.33 13.55 28.52
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Figure 1: The behaviour of the function f(z,\) versus A and z if f(z,\) < 1.
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Figure 2: Two-dimensional representation of the function f(z,A) versus A and x
for values f(z,\) < 1.
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Figure 3: The probability densities f(x,\) of continuous analogous Poisson dis-
tribution for A’s determined by the confidence limits 5\1 and 5\2 in case of observed
number of events & = 4 and the probability density of Gamma distribution with
parameters a = 1 and z = & = 4.
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