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Abstract
Theoretical models, describing expected values of observables used in triple
gauge coupling measurements at LEP2, impose different constraints on the
values of measured quantities. Due to a presence of model excluded regions
of possible measurements, estimation of confidence intervals turns out to be
delicate. Instead of widely used classical central confidence intervals, estima-
tion of confidenceintervals, based on thelikelihood ratio ordering ispresented.
Theadvantageof thismethod is that it alwaysresults in non-empty confidence
intervals and properly takes into account a possibility of measurements out-
side the interval of model allowed values, thusgiving correct coverage for any
possiblemeasurement outcome.

1. INTRODUCTION

Estimation of trilinear gauge boson couplings (TGC’s) is one of advantages offered at ������� collisions
abovethe

�	�
pair production threshold at LEP. In thepresent work attention isfocused on theestimation

of confidence intervals, resulting from the determination of TGC parameters at the
� � � ��
 vertex,

with 
�	������� . TGC values were extracted from the process � � � ��� � � � ������� ������� ��� , i.e. with
each

� �
producing two jets of hadrons (Ref.[1]).

To avoid various specifics pertaining to diverse analyses, the sample analysis presented in this
paper is done on the generator level, using the angular distributions and cross-sections as predicted by
theEXCALIBUR event generator (Ref.[2]). In thisanalysis, thenumber of

� � � � eventscorresponds
to an integrated luminosity of �	 "!�#�#%$'& � � taken at the center-of-mass energy of 189 GeV, roughly
corresponding to thesituation of thefour LEPexperimentsin 1998. A 100 % selection and reconstruction
efficiency with no background contamination is assumed.

The actual analyses of data, collected by DELPHI spectrometer at LEP in 1998 at an average
center-of-massenergy of 189 GeV, aredescribed in Ref.[3], whiledescription of measurementsat lower
energies can be found in Refs.[4],[5]. In next sections only the common features relevant to the subject
under study will bementioned.

Results in TGC measurements are usually given in terms of the parameters (*),+ � , the difference
between the value of the overall

� � � � ��� coupling strength and its Standard Model prediction, (.-0/ ,
the difference between the dipole coupling - / and its Standard Model value, and 1 / , the

� � � �2�
quadrupole coupling parameter, corresponding to the Baur parameterization (Ref.[1]). The parameters
involved are chosen so that the Standard model prediction gives a null value for all the three quantities.
Whenever variation of one of the three TGC parameters is considered, the values of the other two are
fixed at thevalues, predicted by theStandard Model.

Inferencesabout themodels, describing theprocesses involving TGC’s, areusually made in terms
of point or interval estimates of unknown parameters. Most widely used method of confidence interval
estimation is based on maximum likelihood approach, quoting the classical central confidence intervals.
Predicted values of observables, mapping an outcome of a measurement to the parameter of interest,
may be subject to constraints from theoretical models. In this case it can happen that a result of the3
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measurement yields an empty confidence interval at a given value of confidence level ( 45� ). In general,
several prescriptions are applied in order to solve this problem: from shifting the point estimate to the
nearest theoretically allowed value, to ad hoc scalings of the confidence intervals. Lately, Feldman
and Cousins (Ref.[6]) offered several plausible arguments for the use of the unified approach, based
on the ordering of confidence intervals according to the likelihood ratio. The approach was originally
developed to deal with small signals but its application to extraction of all kinds of bound parameters is
straightforward. In thepresent paper thisapproach isapplied in determination of confidenceintervals for
TGC parameter measurements.

In the next section a brief description of the likelihood ratio ordering for the determination of
confidence interval is given. Section 3 describes evaluation of the measurement uncertainty using infor-
mation form the total and differential � � � �6� � � � �7�8�9� �:���:� �:� cross-section, followed by results
from thecombined information. Differencesto acommonly used classical central interval estimation are
exposed on theway. Conclusions aredrawn in the last section.

2. CONFIDENCE INTERVALS OF PHYSICALLY BOUND PARAMETERS

A commonprescription for determinationof confidenceintervalsusing thelikelihood function ; <>=*?%@ACB @D�E
is given by the following condition (Ref.[7]): At a certain confidence level CL, the confidence interval
for the estimation of a set of F unknown parameters @DHGJI�K�L given a measurement @A � , is a union of all
values of @D which satisfy thecondition:

M !N; <PO*?Q@A � B @D�ESR6T
�UWV ?XF E:� (1)

where T � UWV ?XF E istheCL point of thechi-squaredistributionwith F degreesof freedom, i.e. theprobability
content of the T � ?:F E in the limits Y # �ZT � UWV ?:F E\[ is CL. The likelihood ratio ; <]O term isdefined as:

; <PO*?Q@A � B @D^E  C; <_=`?%@A � B @D�E M ; <>=*?%@A � B @DHa LcbcG E  C; < =*? @A � B @D�E
=*? @A � B @DHa LcbZG E

� (2)

where @DHa LcbZG is the maximum likelihood point estimate. According to classical frequentist definition the
confidence interval obtained by using criterion Eq.(1) should contain the true unknown value @DHGJI�K�L in
CL of cases, thus satisfying the required coveragecondition:d ? @DHGeIZK�L%f 4]gP Ch�i @DHjZk�E  C4]� � (3)

wheretheconfidenceinterval 4]g] lh�i @D j k isadefined asaunion of all thevalues @D j that satisfy Eq.(1).

In case of one unknown parameter the condition Eq.(1) translates into the well known one-half
rule: the confidence interval is a union of all values of the parameter for which the value of the log
likelihood function is less than #�mJn below maximum. Thecriterion Eq.(1) isexact only in theasymptotic
limit (i.e. large enough statistics), nevertheless it is shown to be valid in a wide range of analyses
(Ref.[7]). A need for special care has, however, been demonstrated in presence of physical boundaries
(Ref.[6]), which can trivially be extended to all cases where certain regions of parameter space are
excluded by an assumed physical model.

To show this explicitly the following example should be considered: the binned extended maxi-
mum likelihood (EML - Ref.[8]) method assumes thep.d.f. to beof the form:

d ? @o B @pqE  
r
j
ptsvujo jZw � �yx u � (4)

where F is the number of bins and @p represent the array of unknown parameters. Given a specific
measurement @oW� thecorresponding log likelihood function is:

; <>=*? @o � B @pSE  
r
j o � j ; < p j M p j M ; < o � j w m (5)
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Assuming p to be the true value, repeating the experiments would yield the values of @oz� distributed
according to thep.d.f. given in Eq.(4).The ; <PO function, given by Eq.(2) is in caseof EML:

; <PO`? @o � B @pqE  
r
j ( p j M o � j ; <�?:{>| ( ptjp j E:� (6)

with ( ptj defined as ( ptj  p a LZbcGj M pzj .
The values oz�j can be substituted by oz�j  pzj |C} j where ptj is the expected value of oW�j and } j

is a (small) deviation in the asymptotic limit. A short calculation in case of unbound values of p j also
gives p a LZbcGj  oW�j . The latter expression is however not correct for every possible value of oW�j in case the
values of p j are bound by a model. In this case a modification should be made by adding an additional
function of the measured @oz� that incorporates the model boundaries on @p . The corrected expression
is thus p a LcbcGj  o � j |C~ j ? o � j E and subsequently the term ( p j can be expressed as ( p j  "} j |C~ j ? o � j E .
Assuming the terms } j and ( ptj to be small the logarithmic term in equation Eq.(6) is expanded into a
Taylor series and only terms up to asecond order arekept; theexpression becomes:

; <PO`? @o � B @pqE  
r
j M } �j

! p j |
r
j ~ j ? oW�j E

! p j  M T
� ?:F E
! |�)H? @o � E m (7)

The above expression shows that in the absence of the model boundary on parameters @p and thus the
term )'? @oW��E , the ; <PO is indeed distributed asa T � ?:F E and thecondition in Eq.(1) holds. However, in case
the parameters are bound, the additional term spoils this dependence and the coverage condition given
by Eq.(3) is no longer satisfied. An additional point is that in derivation of Eq.(7) it was surmised the
term ( ptj to be small, which might in this case not hold even in the asymptotic limit. In this eventuality
amoregeneral condition should beapplied instead of Eq.(1):

M ; <PO*?Q@A � B @D�ESR M ; <]O UWV ?:F � @D�EX� (8)

where a dependence of ; <]O UWV on @D should also be assumed. The boundary term ; <PO UWV ?:F � @D�E may in
many cases not be calculable analytically and thus Monte-Carlo simulation has to be employed. The
Monte-Carlo method consistsof generating MC eventsaccording to agiven p.d.f. at acertain valueof @D ,
each time calculating the ; <PO value by using Eq.(2) and ordering the events according to this value, i.e.
obtaining a �0������; <PO distribution. The ; <PO UWV ?XF � @D�E limit is then obtained by requiring CL fraction of
eventswith the lowest ; <PO to becontained in the interval Y ; <PO UWV ?XF � @D^E:� # [ . Subsequently theprocedure
should be repeated for every possible value of @D to obtain a full confidence belt. This method is by a
short inspection completely analogous to the confidence belt construction using the unified approach as
described in Ref.[6].

3. ESTIMATION OF TRILINEAR GAUGE BOSON COUPLINGS

Trilinear gaugecouplingsaffect thedifferential cross-section �v�z���0� , where � representsthephasespace
of fiveindependent kinematic quantitiesderived from thefour-momentaof thefour-fermion final state. In
thegiven analysishowever, only �v�z������������� � isconsidered, i.e. differential cross-section asafunction
of the cosine of

� � production angle �Z����� ��� , which is defined as the angle between the direction of� � boson and incoming � � . Other kinematic quantities are extremely difficult to reconstruct due to
reconstruction difficulties and ambiguities in the fully hadronic ������� � � � � � � � � � � � � � � decay
channel and arealso much less sensitive to theTGC values.

The sample analysis determines the point estimates and confidence intervals of the three parame-
ters (*) + � , (.-0/ and 1,/ using themaximum likelihood method. Procedureconsists of threesteps:� Determination of TGC parameters using the total cross-section dependence on TGC-s and maxi-

mizing aPoisson log likelihood function:

; <>=*?:� B D�E  C��; < p ? D�E M p ? D^E M ; <]� w � (9)
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where � represents the measured number of events and p ? D^E the expected number of events as a
function of theTGC parameters D .� Determination of TGC parameters using angular distribution

�� � ��0���:����� � dependence on the TGC
parametersmaximizing abinned multinomial log likelihood function:

; <>=*?X��� @o B D�E  l; <P� w |
r
j h o��

j�� ; <>$ j ? D�E M ; < oq� j�� w k�� (10)

where @o  �h o � � � �Zo � � � � m�m�m �Zo � r � k denotes an array of measured number of events in F bins and$ j ? D�E thecorresponding probabilities.� Combining the information by using extended maximum likelihood and maximizing a binned
Poisson log likelihood function:

; <>=*?:��� @o B D�E  
r
j h oq�

j�� ; < p j ? D�E M p j ? D�E M ; < o�� j\� w k�� (11)

with p j ? D�E representing theexpected number of events in each bin.

As mentioned in the introduction in this analysis only one of the TGC parameters is left free while
the other two are kept at SM values during maximization. The functional dependence of the quantitiesp ? D�EX� $ j ? D^E and p j ? D�E aredetermined from Monte-Carlo studies.
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Fig. 1: a) The total ª'«¬9®�¬ ��¯±° ® °²�³¯µ´·¶�¸ with respect to ¹�ºv»¼ parameter as predicted by the EXCALIBUR event

generator. Quantitatively dependence on ¹_½�¾ and ¿�¾ is similar. b) The normalised differential cross-section
¼À Á ÀÁ�ÂÄÃÆÅ�ÇXÈ�ÉzÊtË as

a function of ¹�ºv»¼ parameter. The total shaded region represents the change of distribution in a range ÌÎÍ^Ï·ÐZÏ�Ñ and the dark

shaded one thechange in the range Ì Ò�ÓÄÔ�ÐZÏ�Ñ of thegiven parameter. Quantitatively dependenceon ¹_½�¾ and ¿�¾ is similar, albeit

somewhat weaker.

3.1 Total cross-section analysis

Theoretical dependence of the �W? � � � �7� � � � �7�Õ��� �����:� �:� E cross-section on the TGC parameters
wasobtained using theEXCALIBUR generator (Ref.[2]) and hasawell-known parabolic shape(Fig.1a).
Minimum of thecross-section dependenceon (*) + � isaround 7.5 pb, which at agiven integrated luminos-
ity yields a number of expected signal events p�Ö {�×'Ø�# . The parabolic dependence of the cross-section
on theTGC parametersand thecorresponding expected number of events p ? D�E  C�]ÙX�W? D�E clearly shows
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that there is a model excluded region given by the interval Y # �Zp � [ , where p �  C��Ù�� � is the lowest value
on the parabola. Consequently any measured total number of ������� � � � � � � � � � � � � � � events
sufficiently lower than p � excludes themodel at acertain 4]� , or in other words, for such ameasurement
weobtain an empty classical confidence interval at agiven 4]� asshown in Fig. 2. Examplesof possible
measurement results are shown on the same plots for � �  Ú{·×2Ø�Û , corresponding to the Standard Model
expectation of D  C# , as well as for � �  C{�n�Ü�# and � �  C{·×2n�# .
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Fig. 2: a) Confidence belt constructed using central intervals at àHáãâåä�æ·Óèç�é , plotted as ¹�ºv»¼ vs. ê . In case of êìë�âíÏ ´ Ô�Ò it

isevident that theconfidence interval isan empty set. b) Thesameconfidencebelt plotted in themoreconventional form ê vs.î «\¹�ºv»¼ ¸ ; in caseof TGC parameters this form involves a two to onemapping due to theparabolic dependenceof î on ¹�ºv»¼ .

If one wants, on the other hand, to extract the TGC parameter within the presumed model, while
preserving the correct coverage, the Feldman and Cousins unified approach (Ref.[6]) using likelihood
ratio ordering should beapplied. Using thisprocedureaconfidencebelt yielding anon-empty confidence
interval for every measured value is indeed obtained as shown in Fig. 3.
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Fig. 3: a) Confidence belt constructed using likelihood ratio ordering, plotted as ¹�ºv»¼ vs. ê . It is evident that whatever the

value ê ë the confidence interval is never an empty set. b) The same confidence belt plotted in the form ê vs. î «�¹�º »¼ ¸ ; note

that theshape is equivalent to thecase (Ref.[6]) with î ëtâïÒ .
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As shown in section 2 the presence of the model boundary affects the confidence interval estima-
tion in maximum likelihood method from simple one-half rule to a more complex prescription given in
Eq.(8), where the limits of the new confidence belt Y ; <]O UWV ?:F � @D�E:� # [ depend on the TGC parameter. In
this case the Monte Carlo technique is applied by generating measurement results � according to p.d.f.
Eq.(9) and by that obtaining the distribution of M ; <PO for different assumed values of D . Due to the
model excluded region of possible � , estimated value D'ð9ñ �óò is given by solving:

p ? D'ð9ñ �óò E  C�ô� õJöã��÷ p �D ð�ñ �óò  D � � õJöí�"ø p � (12)

where thevalueof theTGC parameter which yields aminimal cross-section is denoted by D � .
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Fig. 4: Í��������
	�«�� ¸ for a) � âí¹�ºv»¼ , b) � âå¿�¾ and c) �.âå¹_½�¾ using thetotal cross-section information. Shadowed regions

represent calculations for àHáåâ�ä�æ�ÓÄç�é . Lines show examples of measurement results as Í����� «ê>ë Ð�� ¸ for êìë�â�Ï ´���� (full

line), êìë_â Ï�Ô�ç�Ò (dashed line) and êìë_â Ï ´ Ô�Ò (dotted line). d) ��ê�����« Í������ ¸ distribution obtained by MC simulation in

caseof ¹�ºv»¼ âåÍ'Ò�ÓÄÏ .
An example of a MC generated M ; <PO distribution for (*),+ �  M #�mJ{ is shown in Fig. 4d). 68.3%

of M ; <]O`?:� � (*) + �  M #�mJ{ E values lie in the interval Y # � #�mJ!���! [ and hence M ; <PO UWV ?X(*) + �  M #�mJ{ E  #�mJ!���! . Repeating the random generation and calculation of M ; <]O UWV for different TGC parameters D
results in a Y # � M ; <]O UWV ? D�E\[ confidence belt, which is shown in Fig. 4a-c). For large absolute values
of TGC parameters, corresponding to measurements � far away from the model excluded region, theM ; <PO UWV valueagreeswith

�� asexpected. Boundariesof theexcluded region manifest themselvesasthe
deepsin M ; <PO UWV , centered at valuesof TGC parametersfor which thevalueof cross-section isminimal
( (*) + �  l#�mJ#�!·× , (.-0/� C#�m ×2Ü�� , 1,/� C#�me#�n�� ). Examplesof possiblemeasurement resultsareagain shown
on thesameplots in the form of M ; <PO`?:� � ��D�E , for � �  C{�×'Ø�Û , � �  C{�n�Ü�# and � �  l{�×'n�# .
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3.2 Angular distribution analysis

The normalised differential cross-section
�� � ��0���:����� � has a nonlinear dependence on the TGC parame-

ters; itsdependenceon (*) + � , asobtained by EXCALIBUR generator (Ref.[2]), isshown in Fig.1b). The
angular distribution changes rapidly in the vicinity of the SM value, while at larger positive values the
distribution change decreases and eventually the shape starts turning back towards the standard model,
indicating a presence of a ’turning point’ . Therefore, as in the case of the total cross-section measure-
ment, the number of expected events within bins of �Z����� ��� for different values of TGC parameters is
limited by the model. Hence again deviations from the one-half rule are expected. As noted in section
3 a binned likelihood method corresponding to the multinomial p.d.f., is applied (c.f. Eq.(10)). Due to
multidimensional nature a simple representation of the confidence belt construction is impossible. In-
stead, generation of likelihood ratio distribution as described in previous subsection should be applied.
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Fig. 5: a)-c) Í��������
	�«&� ¸ for the three TGC parameters using the angular distribution information. Results of possible mea-

surements are shown as Í����� «(') Ð�� ¸ for SM prediction ��â³Ò obtained by EXCALIBUR generator (full line), � â Í'Ò�ÓÄÔ
(dotted line) and �.â�Ò�ÓÄç (dashed line). Deviations from theonehalf rulearemost pronounced for ¹�ºv»¼ and ¹_½�¾ . d) Example

of Í��������
	 estimation at ä�æ·Óèç % CL in thecaseof ¹�ºv»¼ âåÍ'Ò�ÓÄÏ .
In theanalysis50 binsin �Z����� ��� wereused. For each valueof theTGC parameter from -2.0 to 2.0

in steps of 0.1, numbers of events ozj in angular bins were randomly generated according to multinomial
p.d.f. (Ref.[7]) using the standard routine of CERNLIB package (Ref.[9]). Probabilities were calculated
from the EXCALIBUR predicted number of events in the * -th bin as $ j ? D�E  pzj ? D^E � j ptj ? D�E . Point
estimate D'ð�ñ �Æò for each random generation of @o was given by the value of D maximising Eq.(10). An
example of the M ; <PO*? @oS� (*) + � E distribution for (*) + �  M #�me{ is shown in Fig. 5d), together with the
interval Y # � M ; <PO UWV ?:(*),+�  M #�mJ{ Eó[ for 4]�� +����mJÜ�, .
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The M ; <]O UWV ? D�E dependence isshown for all threeTGC parameters in Fig. 5a-c). As in thecase
of thetotal cross-section measurement, examplesof possibleexperimental resultsareshown on thesame
plots in the form of M ; <PO`? @o � ��D�E functions. The chosen ones correspond to the exact SM distribution
( @o � equal to the MC prediction for D  # ), and to D  M #�mJn � #�mJÜ for each of the TGC parameters
respectively.

Substantial deviations from the one-half rule can be seen around the ’turning point’ of the dis-
tribution dependence on the TGC parameter involved (see fig 1b). For example in fig. 5a) in case of(*) + �  C#�mJÜ the likelihood ratio method givestwo disconnected intervalsat 68.3% 45� while theone-half
rulewould giveonly oneinterval which isnot equal to either of thetwo. Thedeviationsfrom theone-half
rule in caseof 1,/ areonly slight.

3.3 Combined analysis

As a final step in our analysis the two informations obtained from angular distribution and total cross-
section can be combined simply by multiplying the p.d.f.-s which correspond to extended maximum
likelihood analysis given by Eq.(11). The M ; <]O UWV ? D�E values can again be obtained by MC simulation
and the results are shown in Figs. 6a-c). At the assumed luminosity and precision of the measurement
(i.e. selection and reconstruction efficiency being ideal) significant deviations from the one-half rule
remain evident only in the case of (.-0/ , however this cannot be generalised to a real physical analysis
with lower statistics and/or precision.
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Fig. 6: Í�����1�
	�«&� ¸ for the three TGC parameters in case of using combined total cross-section and angular distribution

information. The deviations from one half rule remain evident in case of ¹ ½�¾ , whereas in the case of the other two TGC

parametersthedeviationsfrom theonehalf rulearenegligibleat theassumed luminosity, selectionand reconstructionefficiency.
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4. CONCLUSION

Estimation of confidence intervals for a parameter p stemming from a measurement of observable 2 is
delicate in thepresenceof model boundaries for possiblemeasurement outcomes. Feldman and Cousins
recently suggested Ref.([6]) a unified approach to the classical statistical analysis, based on the likeli-
hood ratio ordering. Advantage of such an approach is in obtaining confidence intervals within a model
assumed, taking into account measurements which would yield an empty classical confidence interval,
i.e. decoupling goodness-of-fit from CI estimation whilepreserving thecorrect coverage.

Example of measurement in the proximity of the model limits is triple gauge coupling determi-
nation at LEP2 collider. Using the total number of observed ������� � � � � � events as an observable
for estimation of TGC’s of two charged and a neutral gauge boson reveals a discrepancy between the
confidence intervals calculated by both methods. The discrepancy reflects the model excluded region of
expected number of events below the minimum of the parabola that describes the �W? � � � �³� � � � � E
dependence on the TGC parameter. Using the likelihood ratio approach, the confidence intervals can be
deduced for each measurement of the total number of events � , even when � is lower than theminimal
expected number of events. In case of the classical central intervals such a measurement would lead to
an empty confidence interval at acertain confidence level 45� .

Another observable, applicable to the TGC measurements at LEP2, is the distribution
�� � ��v���:����� � ,

where � ��� represents the angle between the direction of
� � boson and incoming ��� . Like the total

cross-section for
�	�

pair production, angular distribution showsanon-linear dependenceon theparam-
eters of interest and model excluded region of expected number of events in bins of �Z����� ��� . Since the
multidimensional nature of the multinomial probability density function, describing numbers of events
in individual angular bins, prevents a classical confidence belt construction, a large number of toy MC
experiments has been performed, resulting in the distribution of the likelihood ratio and consequently
in construction of the confidence intervals. Again a significant difference is observed with regard to the
classical central confidence intervals.

Following the procedure used for the two measurements, the total cross-section and the angular
distribution, confidence intervals for the three TGC parameters were evaluated also for the case of com-
bined information. These are found to be in agreement with the intervals obtained from the widely used
one-half rule, for the (*) + � and 1,/ parameters, while small differences remain in the case of (.-v/ . It
should be noted that the sample analysis was done on the generator level assuming ideal selection and
reconstruction; a more realistic analysis, including reconstruction effects in determination of the

� �
charge and its direction, might give raise to larger deviations from the classical intervals. Hence in the
TGC measurements, because of the proximity of the model bounds, one should calculate the confidence
intervals based on the likelihood ratio ordering at least in order to check the reliability of the quoted
errors.
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Discussion after talk of Borut-Paul Kersevan. Chairman: Wilbur Venus.

Bob Cousins

I have a question about when an interval is split into two intervals. Is it like the case of neutrino
oscillations? Would that makesense, or does it not makesense.

Borut-Paul Kersevan

It does make sense. Due to a turning point in the angular distribution dependence on TGC-S, we
have two local minima in the minus log-likelihood curve, even at this sensitivity on generator level; the
distribution shapes on the two sides of the turning point are not equivalent, but with given statistics we
can get a jump (change of global minimum) to the other side of the turning point, so this is also a cause
of bias. Actually having the two intervalscorrectly set means that the likelihood ratio approach gives the
correct coverage. This approach can be used in confidence belt computation and maximum likelihood,
either of which would take into account thebiases or thediscrepancies as well, so it’s sensible.
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