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Abstract

Theoretical models, describing expected values of observables used in triple
gauge coupling measurements at LEP2, impose different constraints on the
values of measured quantities. Due to a presence of model excluded regions
of possible measurements, estimation of confidence intervals turns out to be
delicate. Instead of widely used classical central confidence intervals, estima-
tion of confidence intervals, based on the likelihood ratio ordering is presented.
The advantage of this method isthat it always resultsin non-empty confidence
intervals and properly takes into account a possibility of measurements out-
sidetheinterval of model allowed values, thus giving correct coverage for any
possible measurement outcome.

1. INTRODUCTION

Estimation of trilinear gauge boson couplings (TGC's) is one of advantages offered at e* e~ collisions
abovethe W pair production threshold at L EP. In the present work attention isfocused on the estimation
of confidence intervals, resulting from the determination of TGC parameters at the W+ WV vertex,
with V' = Z° ~. TGC values were extracted from the processete™ — WTW ™~ — q1q2q3@, i.e. with
each W producing two jets of hadrons (Ref.[1]).

To avoid various specifics pertaining to diverse analyses, the sample analysis presented in this
paper is done on the generator level, using the angular distributions and cross-sections as predicted by
the EXCALIBUR event generator (Ref.[2]). In this analysis, the number of W1/~ events corresponds
to an integrated luminosity of L = 200 pb~! taken at the center-of-mass energy of 189 GeV, roughly
corresponding to the situation of thefour LEP experimentsin 1998. A 100 % sel ection and reconstruction
efficiency with no background contamination is assumed.

The actua analyses of data, collected by DELPHI spectrometer at LEP in 1998 at an average
center-of-mass energy of 189 GeV, are described in Ref.[3], while description of measurements at lower
energies can be found in Refs.[4],[5]. In next sections only the common features relevant to the subject
under study will be mentioned.

Results in TGC measurements are usually given in terms of the parameters Agf, the difference
between the value of the overall W1/~ 2 coupling strength and its Standard Model prediction, Ak,
the difference between the dipole coupling x- and its Standard Model value, and )\, the W~
quadrupole coupling parameter, corresponding to the Baur parameterization (Ref.[1]). The parameters
involved are chosen so that the Standard model prediction gives a null value for al the three quantities.
Whenever variation of one of the three TGC parameters is considered, the values of the other two are
fixed at the values, predicted by the Standard Model.

Inferences about the models, describing the processesinvolving TGC's, are usualy madein terms
of point or interval estimates of unknown parameters. Most widely used method of confidence interval
estimation is based on maximum likelihood approach, quoting the classical central confidence intervals.
Predicted values of observables, mapping an outcome of a measurement to the parameter of interest,
may be subject to constraints from theoretical models. In this case it can happen that a result of the
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measurement yields an empty confidence interval at a given value of confidence level (C'L). In generd,
several prescriptions are applied in order to solve this problem: from shifting the point estimate to the
nearest theoreticaly allowed value, to ad hoc scalings of the confidence intervals. Lately, Feldman
and Cousins (Ref.[6]) offered several plausible arguments for the use of the unified approach, based
on the ordering of confidence intervals according to the likelihood ratio. The approach was originally
developed to deal with small signals but its application to extraction of all kinds of bound parametersis
straightforward. In the present paper this approach is applied in determination of confidence intervalsfor
TGC parameter measurements.

In the next section a brief description of the likelihood ratio ordering for the determination of
confidence interval is given. Section 3 describes evaluation of the measurement uncertainty using infor-
mation form the total and differential ete™ — WTW ™~ — ¢1q2q3q4 cross-section, followed by results
from the combined information. Differencesto acommonly used classical central interval estimation are
exposed on the way. Conclusions are drawn in the last section.

2. CONFIDENCE INTERVALSOF PHYSICALLY BOUND PARAMETERS

A common prescription for determination of confidenceintervalsusing thelikelihood function In £(X| &)
is given by the following condition (Ref.[7]): At a certain confidence level CL, the confidence interval
for the estimation of a set of £ unknown parameters &y, given a measurement X0, is aunion of all
values of & which satisfy the condition:

—2In R(X°|&) < x& (k). (1)

where xZ (k) isthe CL point of the chi-square distribution with k degrees of freedom, i.e. the probability
content of the x?(k) in the limits [0, x2; (k)] is CL. Thelikelihood ratio In R term is defined as:

L(X°|d)
E(XO‘&best) /

where d.s; 1S the maximum likelihood point estimate. According to classical frequentist definition the
confidence interval obtained by using criterion Eq.(1) should contain the true unknown value dyye in
CL of cases, thus satisfying the required coverage condition:

P(@yue € CI = {U &) =CL, 3)

where the confidenceinterval C'I = {U &;} isadefined asaunion of al thevalues @; that satisfy Eq.(1).

In case of one unknown parameter the condition Eq.(1) trandates into the well known one-half
rule: the confidence interval is a union of all values of the parameter for which the value of the log
likelihood function islessthan 0.5 below maximum. The criterion Eq.(1) is exact only in the asymptotic
limit (i.e. large enough statistics), nevertheless it is shown to be valid in a wide range of analyses
(Ref.[7]). A need for specia care has, however, been demonstrated in presence of physical boundaries
(Ref.[6]), which can trivialy be extended to all cases where certain regions of parameter space are
excluded by an assumed physical model.

To show this explicitly the following example should be considered: the binned extended maxi-
mum likelihood (EML - Ref.[8]) method assumes the p.d.f. to be of the form:

In R(X°|&@) = In £(X°|@) — In £(X°|@pest) = In )

P(ilg) = [] e, (4)

where k is the number of bins and i represent the array of unknown parameters. Given a specific
measurement 720 the corresponding log likelihood function is:

k
In £(7°|f7) = Zn? Inp; — pi — Inndl, (5)
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Assuming 4 to be the true value, repeating the experiments would yield the values of 7" distributed
according to the p.d.f. givenin Eq.(4).The ln R function, given by EQ.(2) isin case of EML.:

k
In R(E)7) = 3 A = 1+ S24), ©
with Ap; defined as Ap; = pbest — p;.

The values nY can be substituted by nY = p; + &; where y; is the expected value of n! and ¢;
is a(small) deviation in the asymptotic limit. A short calculation in case of unbound values of y; also
gives pbest = n?. The latter expression is however not correct for every possible value of n? in case the
values of u; are bound by amodel. In this case a modification should be made by adding an additional
function of the measured 7 that incorporates the model boundaries on ji. The corrected expression
isthus p?est = n? + f;(n?) and subsequently the term Ay; can be expressed as Ay; = §; + fi(n?).
Assuming the terms §; and Ap; to be small the logarithmic term in equation Eq.(6) is expanded into a
Taylor series and only terms up to a second order are kept; the expression becomes:;

k

62 L f(nf 2(k
R S S ! @

The above expression shows that in the absence of the model boundary on parameters ji and thus the
term g(7), the In R isindeed distributed as ax? (k) and the condition in Eq.(1) holds. However, in case
the parameters are bound, the additional term spoils this dependence and the coverage condition given
by Eq.(3) is no longer satisfied. An additional point is that in derivation of Eq.(7) it was surmised the
term Ap; to be small, which might in this case not hold even in the asymptotic limit. In this eventuality
amore general condition should be applied instead of Eq.(1):

~In R(X°|d) < —In Rey (k, @), (8)

where a dependence of In Ry, on & should also be assumed. The boundary term In R (k, &) may in
many cases not be calculable analytically and thus Monte-Carlo simulation has to be employed. The
Monte-Carlo method consists of generating MC events according to agiven p.d.f. at acertain value of @,
each time calculating the In R value by using Eq.(2) and ordering the events according to this value, i.e.
obtaining adN/dIn R distribution. Theln Rcp,(k, @) limit is then obtained by requiring CL fraction of
events with the lowest In R to be contained in the interval [In Rcor (k. @), 0]. Subsequently the procedure
should be repeated for every possible value of & to obtain a full confidence belt. This method is by a
short inspection completely analogous to the confidence belt construction using the unified approach as
described in Ref.[6].

3. ESTIMATION OF TRILINEAR GAUGE BOSON COUPLINGS

Trilinear gauge couplings affect the differential cross-section do /dS2, where €2 represents the phase space
of five independent kinematic quantities derived from the four-momenta of the four-fermion final state. In
the given analysis however, only do /d cos Oy isconsidered, i.e. differential cross-section asafunction
of the cosine of W~ production angle cos 6y, which is defined as the angle between the direction of
W~ boson and incoming e~. Other kinematic quantities are extremely difficult to reconstruct due to
reconstruction difficulties and ambiguities in the fully hadronic ete™ — WHTW ™~ — q1qaq3qs decay
channel and are also much less sensitive to the TGC values.

The sample analysis determines the point estimates and confidence intervals of the three parame-
ters Ag? Ak, and )\, using the maximum likelihood method. Procedure consists of three steps:
e Determination of TGC parameters using the total cross-section dependence on TGC-s and maxi-
mizing a Poisson log likelihood function:

InL(N|a) = NInp(a) — p(a) — In N1, 9
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where N represents the measured number of events and u(«) the expected number of events asa
function of the TGC parameters a.

e Determination of TGC parameters using angular distribution + W dependence on the TGC
parameters maximizing a binned multinomial log likelihood functi on

k
In L(N;7i|a) = In N+ Z{n(i) In pi(a) — Inn®1}, (10)

where @ = {n),n ... nk)} denotes an array of measured number of eventsin k bins and
pi(a) the corresponding probabilities.

e Combining the information by using extended maximum likelihood and maximizing a binned
Poisson log likelihood function:

In L(N; o) = Z{n O (@) — pi(a) —Inn@1}, (12)

with p;(a) representing the expected number of eventsin each bin.

As mentioned in the introduction in this analysis only one of the TGC parameters is left free while
the other two are kept at SM values during maximization. The functional dependence of the quantities
u(a), pi(a) and p; () are determined from Monte-Carlo studies.
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Fig. 1. @ Thetotal o(ee™ — WTW ™ — 4q) with respect to Ag? parameter as predicted by the EXCALIBUR event
generator. Quantitatively dependence on Ax., and )\, is similar. b) The normalised differential cross-section — ﬁ as
afunction of Ag? parameter. The total shaded region represents the change of distribution in a range [—1, 1] and the dark
shaded one the changein the range [0.5, 1] of the given parameter. Quantitatively dependence on Ak, and A, issimilar, albeit

somewhat weaker.

3.1 Total cross-section analysis

Theoretical dependence of the o(ete™ — WTW ™~ — ¢1q2q3qa) cross-section on the TGC parameters
was abtained using the EXCALIBUR generator (Ref.[2]) and has awell-known parabolic shape (Fig.1a).
Minimum of the cross-section dependence on Ag? isaround 7.5 pb, which at agiven integrated luminos-
ity yields a number of expected signal events n > 1490. The parabolic dependence of the cross-section
on the TGC parameters and the corresponding expected number of events iu(a) = L-o(«) clearly shows
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that there isamodel excluded region given by theinterval [0, i, where pp = L - o isthe lowest value
on the parabola. Consequently any measured total number of eTe™ — WTW ™ — ¢1q2q3q2 events
sufficiently lower than py excludesthe model at acertain C'L, or in other words, for such a measurement
we obtain an empty classical confidenceinterval at agiven C'L as shown in Fig. 2. Examples of possible
measurement results are shown on the same plots for Ny = 1497, corresponding to the Standard Model
expectation of o = 0, aswell asfor Ny = 1530 and Ny = 1450.
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Fig. 2: @) Confidence belt constructed using central intervals at C'L = 68.3%, plotted as Ag? vs. N. In case of No = 1450 it
is evident that the confidence interval is an empty set. b) The same confidence belt plotted in the more conventional form IV vs.
u(Ag?); in case of TGC parameters this form involves a two to one mapping due to the parabolic dependence of 1 on AgZ.

If one wants, on the other hand, to extract the TGC parameter within the presumed model, while
preserving the correct coverage, the Feldman and Cousins unified approach (Ref.[6]) using likelihood
ratio ordering should be applied. Using this procedure a confidence belt yielding a hon-empty confidence
interval for every measured value is indeed obtained as shown in Fig. 3.
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Fig. 3: &) Confidence belt constructed using likelihood ratio ordering, plotted as Ag? vs. N. It is evident that whatever the
value Ny the confidence interval is never an empty set. b) The same confidence belt plotted in the form IV vs. ;1(Ag?); note
that the shape is equivalent to the case (Ref.[6]) with po = 0.
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As shown in section 2 the presence of the model boundary affects the confidence interval estima-
tion in maximum likelihood method from simple one-half rule to a more complex prescription given in
Eq.(8), where the limits of the new confidence belt [In Ry, (k, &), 0] depend on the TGC parameter. In
this case the Monte Carlo technique is applied by generating measurement results NV according to p.d.f.
Eq.(9) and by that obtaining the distribution of —In R for different assumed values of «.. Due to the
model excluded region of possible N, estimated value oP*t is given by solving:

{ plabs=t) = N; if N > pg }

12
abest = g ;5 if N < pg (12)

where the value of the TGC parameter which yields aminimal cross-section is denoted by «.
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Fig. 4 —InRcp(a)fora) a = AgZ,b)a = A, andc) a = Ak using thetotal cross-section information. Shadowed regions
represent calculations for CL = 68.3%. Lines show examples of measurement results as — In R(No, ) for No = 1497 (full
line), No = 1530 (dashed line) and Ny = 1450 (dotted line). d) dN/d(— In R) distribution obtained by MC simulation in
case of AgZ = —0.1.

An example of aMC generated — In R distribution for Ag# = —0.1 isshown in Fig. 4d). 68.3%
of —InR(N,Ag? = —0.1) vauesliein theinterva [0,0.282] and hence — In R (AgZ = —0.1) =
0.282. Repesating the random generation and calculation of —In Ry, for different TGC parameters «
resultsin a [0, — In Rcr.(«)] confidence belt, which is shown in Fig. 4a-c). For large absolute values
of TGC parameters, corresponding to measurements N far away from the model excluded region, the
—In R¢, value agreeswith % as expected. Boundaries of the excluded region manifest themselves asthe
deepsin — In R, centered at values of TGC parameters for which the value of cross-sectionisminimal
(Ag? = 0.024, Ak, = 0.438, A, = 0.056). Examples of possible measurement results are again shown
on the same plotsin the form of — In R(Ny, «), for Ny = 1497, Ny = 1530 and Ny = 1450.
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3.2 Angular distribution analysis

The normalised differential cross-section % dcoggw_ has a nonlinear dependence on the TGC parame-

ters; its dependence on Ag?, as obtained by EXCALIBUR generator (Ref.[2]), isshown in Fig.1b). The
angular distribution changes rapidly in the vicinity of the SM value, while at larger positive values the
distribution change decreases and eventually the shape starts turning back towards the standard model,
indicating a presence of a’turning point’. Therefore, as in the case of the total cross-section measure-
ment, the number of expected events within bins of cos 6y, for different values of TGC parametersis
limited by the model. Hence again deviations from the one-half rule are expected. As noted in section
3 abinned likelihood method corresponding to the multinomial p.d.f., is applied (c.f. Eq.(10)). Dueto
multidimensional nature a simple representation of the confidence belt construction is impossible. In-
stead, generation of likelihood ratio distribution as described in previous subsection should be applied.
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Fig. 5: @)-c) — In Rcr(«) for the three TGC parameters using the angular distribution information. Results of possible mea-
surements are shown as — In R(7, ) for SM prediction o = 0 obtained by EXCALIBUR generator (full line), o« = —0.5
(dotted ling) and @ = 0.3 (dashed line). Deviations from the one half rule are most pronounced for Ag? and Ak.,. d) Example
of —In Rcy, estimation at 68.3% CL in the case of Ag? = —0.1.

Intheanalysis50 binsin cos 6y;— were used. For each value of the TGC parameter from -2.0t0 2.0
in steps of 0.1, numbers of events n; in angular bins were randomly generated according to multinomial
p.d.f. (Ref.[7]) using the standard routine of CERNLIB package (Ref.[9]). Probabilities were cal culated
from the EXCALIBUR predicted number of eventsin the i-th bin as p; () = w;(a)/ >, pi(er). Point
estimate ot for each random generation of 77 was given by the value of a maximising Eq.(10). An
example of the — In R(7, Ag?) distribution for Agf = —0.1 is shown in Fig. 5d), together with the
interval [0, — In Rer(Agf = —0.1)] for CL = 68.3%.

265



The —In R (o) dependence is shown for all three TGC parametersin Fig. 5a-c). Asin the case
of thetotal cross-section measurement, examples of possible experimental results are shown on the same
plots in the form of — In R(7iy, ) functions. The chosen ones correspond to the exact SM distribution
(1o equal to the MC prediction for « = 0), and to @« = —0.5,0.3 for each of the TGC parameters
respectively.

Substantial deviations from the one-half rule can be seen around the "turning point’ of the dis-
tribution dependence on the TGC parameter involved (see fig 1b). For example in fig. 5a) in case of
Ag? = 0.3 thelikelihood ratio method gives two disconnected intervals at 68.3% C L while the one-half
rulewould give only oneinterval whichisnot equal to either of thetwo. The deviationsfrom the one-half
rulein case of \, are only dight.

3.3 Combined analysis

As afina step in our analysis the two informations obtained from angular distribution and total cross-
section can be combined simply by multiplying the p.d.f.-s which correspond to extended maximum
likelihood analysis given by Eq.(11). The —In Rz, (a) values can again be obtained by MC simulation
and the results are shown in Figs. 6a-c). At the assumed luminosity and precision of the measurement
(i.e. selection and reconstruction efficiency being ideal) significant deviations from the one-half rule
remain evident only in the case of Ak, however this cannot be generalised to a real physical analysis
with lower statistics and/or precision.
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Fig. 6: —In Rcr(«) for the three TGC parameters in case of using combined total cross-section and angular distribution
information. The deviations from one half rule remain evident in case of Ak, whereas in the case of the other two TGC
parametersthe deviationsfrom the one half rule are negligible at the assumed luminosity, selection and reconstruction efficiency.
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4. CONCLUSION

Estimation of confidence intervals for a parameter 1 stemming from a measurement of observable z is
delicate in the presence of model boundaries for possible measurement outcomes. Feldman and Cousins
recently suggested Ref.([6]) a unified approach to the classical statistical analysis, based on the likeli-
hood ratio ordering. Advantage of such an approach isin obtaining confidence intervals within a model
assumed, taking into account measurements which would yield an empty classical confidence interval,
i.e. decoupling goodness-of-fit from Cl estimation while preserving the correct coverage.

Example of measurement in the proximity of the model limits is triple gauge coupling determi-
nation at LEP2 collider. Using the total number of observed e*e™ — WV~ events as an observable
for estimation of TGC's of two charged and a neutral gauge boson reveals a discrepancy between the
confidence intervals cal culated by both methods. The discrepancy reflects the model excluded region of
expected number of events below the minimum of the parabola that describesthe o(ete™ — WTW )
dependence on the TGC parameter. Using the likelihood ratio approach, the confidence intervals can be
deduced for each measurement of the total number of events NV, even when N islower than the minimal
expected number of events. In case of the classical central intervals such a measurement would lead to
an empty confidence interval at a certain confidence level C'L.

Another observable, applicable to the TGC measurements at LEP2, is the distribution 1__do

o dcosby,—’
where 60y, represents the angle between the direction of W~ boson and incoming e~. Like the total

cross-section for W+ pair production, angular distribution shows anon-linear dependence on the param-
eters of interest and model excluded region of expected number of eventsin bins of cos 6y;,—. Since the
multidimensional nature of the multinomial probability density function, describing numbers of events
in individual angular bins, prevents a classical confidence belt construction, a large number of toy MC
experiments has been performed, resulting in the distribution of the likelihood ratio and consequently
in construction of the confidence intervals. Again a significant difference is observed with regard to the
classical centra confidence intervals.

Following the procedure used for the two measurements, the total cross-section and the angular
distribution, confidence intervals for the three TGC parameters were evaluated also for the case of com-
bined information. These are found to be in agreement with the intervals obtained from the widely used
one-half rule, for the AgZ and A\, parameters, while small differences remain in the case of Ax.,. It
should be noted that the sample analysis was done on the generator level assuming ideal selection and
reconstruction; a more realistic analysis, including reconstruction effects in determination of the W+
charge and its direction, might give raise to larger deviations from the classical intervals. Hence in the
TGC measurements, because of the proximity of the model bounds, one should cal culate the confidence
intervals based on the likelihood ratio ordering at least in order to check the reliability of the quoted
errors.
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Discussion after talk of Borut-Paul Kersevan. Chairman: Wilbur Venus.

Bob Cousins

| have a question about when an interval is split into two intervals. Isit like the case of neutrino
oscillations? Would that make sense, or does it not make sense.

Bor ut-Paul Kersevan

It does make sense. Due to aturning point in the angular distribution dependence on TGC-S, we
have two local minima in the minus log-likelihood curve, even at this sensitivity on generator level; the
distribution shapes on the two sides of the turning point are not equivalent, but with given statistics we
can get ajump (change of global minimum) to the other side of the turning point, so thisis also a cause
of bias. Actually having the two intervals correctly set means that the likelihood ratio approach givesthe
correct coverage. This approach can be used in confidence belt computation and maximum likelihood,
either of which would take into account the biases or the discrepancies as well, so it's sensible.
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