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Abstract

A new way of defining limitsin classical statisticsis presented. Thisisanatu-
ral extension of the original Neyman’'s method, and has the desirable property
that only information relevant to the problem is used in making statistical in-
ferences. The result is a strong restriction on the alowed confidence bands,
excluding in full generality pathologies as empty confidence regions or unsta-
ble solutions. The method is completely general and directly applicable to all
problems of limits. Some examples are discussed. In the well-known problem
of Poisson processes with background it gives limits that do not depend on
background in the case of no observed events.

1. INTRODUCTION

| belong to that class of physicists which prefer aclassical approach to statistical inferences from physics
experiments. | will not discuss in this contribution my motivations for this preference, since they are
very eloquently described by other contributors to this workshop (see [5]).

However, | do believe that severa difficulties with the current methods for setting confidence
limits pointed out by critics of Bayesian inclination are reasons for real concern. Thisis because | am
convinced that any method for quoting limits, in order to have interest for a physicist, must have some
minimally good intuitive properties (for instance, better experiments should be able to set tighter limits).
We just can’t help the simplefact that classical limits are not statements on p(parameter|data) (see[5] for
avery clear explanation of this point). But | think we should try to make sure they are indeed statements
about something related to the parameter. | do believe that the coverage requirement is a very important
property: | am very reluctant to accept any method for summarizing the information under the form of
an accepted region per the parameters that does not guarantee a minimum rate of correct results. It is
simply too good a property to giveit up.

Unfortunately, we al know that coverage is not sufficient. It does not prevent paradoxical results
to be obtained, otherwise there would have been no motivation for devel oping so many different methods
for choosing limits. If one had to take the attitude that the coverage property is sufficient reason to justify
any limit, however counterintuitive, then there would be no reason for not simply accepting an empty set
as a possible result of a measurement. As a matter of fact, most physicists do not accept that, because
that kind of results tells them nothing about the parameter.

Luckily, the range of methods allowed in classical statistics is potentially much wider than the
currently explored solutions, so there is ample space for looking for better behaved confidence bands. |
have described in [2] therationale for anovel classical method for setting confidence limits that addresses
al concerns | had with classical limits. | will briefly summarize here the proposed method and argue
that its properties are better than that of al other known methods, referring the reader to [2] for a more
complete discussion. | aso apply the method to the now famous problem of Poisson plus background.

2. DEFINITION OF ‘STRONG CONFIDENCE LEVEL’

The essence of the proposal isto quote limits by replacing (or supplementing) the usual CL as defined by
Neyman[1] with asimilarly formulated, but much more restrictive concept, which | called "strong CL”.
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The strong CL is by construction always smaller than plain CL, therefore a band at a given sCL isaso
alegal band at the corresponding CL, so the standard Neyman's coverage is guaranteed, possibly with
some overcoverage. One can view it either asjust another way of choosing aparticular band in the ample
set of possibility left by Neyman's requirement of correct coverage, or as aradically different idea, that
till preservesthe standard coverage requirement. Asadifference with other proposed methods, the band
is not necessarily uniquely identified.

The definition runs as follows: a confidence band is said to have strong Confidence Level equal to
sCL if it complies with the following requirement[2]:

for every possible value of the parameters 1. and every subset of possible values for the observable
z (x):

p(x € x, 1 & B(x)|p)
sup, p(x € x|p)

<1-sCL. (1)

whenever the denominator is non-zero. Here B(x) represents the accepted region for 1, given the
observed z.

For comparison, the standard definition of CL, when written in the same form is:
for every possible value of the parameters p:

p(n & B(z)|p) <1-CL. )
The definition of strong CL is graphically illustrated in Fig. 1.
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Fig. 1. Graphical illustration of the standard definition of CL (upper) and the new concept of “strong CL” (lower). The property
illustrated for strong-CL must hold for every possible set y of observable values.

208



It isinteresting to note that this condition can be seen simply as the application of a generalized
Neyman condition to every possible subsets of the observable space. As the standard CL, strong CL
also has an intuitive interpretation in terms of expected frequency of reporting wrong conclusions: if one
focuses on any particular subset of observable values, the frequency of wrong resultsislimited to a small
fraction (1-sCL) of the maximum expected rate of resultsin that category.

The interesting novelty here is the guarantee that inferences from all possible experimental out-
comes will have the same quality: the possibility of “unlucky results’ is ruled out. This uniformity of
treatment of all possible experimental outcomes isthe basis of many good properties of confidence bands
that satisfy this more restrictive requirement, which justify the additional computational effort.

3. PROPERTIES

Since it is not possible to explain in detail and formally prove the properties of strong CL in a single
short talk, | will limit here just to list and quickly illustrate them with the help of a single very ssmple
example, referring the interested reader to ref. [2] for details.

The example | will use is that of atrivial pdf that does not depend on the value of the unknown
parameters. More precisely, let's consider the case of a parameter p having only two possible discrete
values, and an observable x also having only two possible discrete values, and let the pdf be given by the
following table:

| opt | p2
xl || 0.95 | 0.95 3
x2 || 0.05 | 0.05

Surprisingly, thistrivial example allows many interesting considerations to be done.

3.1 Conceptual purity

Strong CL is a 100% pure classical method: it does not make any use of the concept of probability of an
unknown parameter. Of course thisis good to some, bad to others.

I think however that purity in itself should be appreciated by most people. Classical and Bayesian
methods rest on very contrasting views of the very basic concepts, starting from the definition of prob-
ability itself, and it is difficult to avoid the suspect that any constructions made by a mix of the two (of
which there are several examples) will eventually meet with contradictions and paradoxes.

3.2 Empty confidenceregions are forbidden

Suppose one wants to find a 95% Confidence band for the above trivia pdf (3). Intuitively one expects
not to be able to draw any conclusion, since the value of the parameter is irrelevant to the outcome of
the experiment. In this simple case one can easily list al possible bands satisfying Neyman's definition
of CL. They are four and shown in Fig 2. All but the first have some “overcoverage’, that is they
cover alarger region than strictly required by the definition of CL. Overcoverageis generally considered
negatively, as aloss of power, therefore the first solution (@) is the most attractive from the point of view
of its greater “discriminating power”. Unfortunately, that is far from being intuitively satisfactory: if x2
is observed the absurd conclusion is that both values of the parameter are excluded.

Bands b) and c¢) are also intuitively repugnant. They imply one can draw a statistical conclusion at
95% on some parameter by measuring atotally unrelated quantity (I like to call those “Voodoo” bands).
From the point of view of Neyman’'s requirement, they are just as good as any other band. Thisisaclear
demonstration that mere coverage is not sufficient to ensure one will obtain meaningful limits.
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a) b)

ul u2 nl u2
x1 0.95 095 «x1 0.95 0.95
X2 0.05 0.05 x2 0.05 0.05

c) d)

ul u2 ul u2
x1 0.95 0.95 x1 0.95 0.95
X2 0.05 0.05 X2 0.05 0.05

Fig. 2: The set of all possible bands at 95% CL for avery simple “indifferent” pdf. The accepted region in each case is shown
ingrey.

If one looks at sCL, however, it is easy to verify that sCL is zero for band a), b) and c¢), while
sCL=CL=100% for band (d), the intuitively correct conclusion. It can actually be proved rigorously[2]
that the probability of an empty region is zero when using a strong band, whatever the pdf.

Are there other classical methods capable of avoiding this pitfall ? The most commonly used
construction[10] looks explicitly for the narrowest band, so it yields (@) as the solution. If one looks at
Likelihood Ratio ordering, one seesthat al cells of the table get assigned the same rank in the ordering.
If one had to follow exactly the prescription of ref. [3], one would start adding cells at random until
attaining proper coverage: thisyields randomly to any one of the four results. If one takes the attitude of
ref. [4] then heisforced to add all cellstogether, and correctly finds (d).

Whilethisiscorrect, it isavery near miss of paradoxical conclusions, compared with the clear cut,
black-or-white answer provided by the strong CL. This difficulty in reaching the correct conclusion in
a so simple case, should make one suspect that L R-ordering is not addressing the issue of empty region
correctly. Indeed, it can be shown with more complex examples that LR ordering can actually yield
empty confidence regions for wide ranges of observable valueg[2].

| feel that the RwW maodification of LR[9], based on removing ancillary variables, does correctly
address the substance of this problem, but unfortunately it is not clear, to me at least, how it can be
extended to more than afew specific cases. Incidentally, note that Bayes method is also exempt from this
problem.

3.3 Thequestion of correct sensitivity
We can learn even more by adding an infinitessmal perturbation to this simple pdf, as shown in Fig. 3.
Band a) and c) are discarded by Neyman's condition since they now undercover and oneisleft just with
options b) and d).

Now, both the narrowest band[10] and the LR criteria (whatever their flavor) choose solution b)
without ambiguity ! (I am not sure about how to apply method [9] to this case).

b) d)
nl u2 nl u2
x1 0.95+¢ 0.95-¢ x1 0.95+¢ 0.95-¢
X2 0.05-¢ 0.05+¢ X2 0.05-¢ 0.05+¢

Fig. 3: The set of all possible bands at 95% CL for a slightly perturbed indifferent pdf. The accepted region in each case is
shown in grey.
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Thisband is till very close to the “Voodoo” paradox of previous case. While now there isindeed
asmall sensitivity of x to the value of p, it isworth reflecting on the fact that this result will be quoted at
95% CL, however small ¢ is.

Conversely, strong CL follows perfectly the intuitive perception of the situation: sCL isinfinitesi-
mally small for band b)? , whileitisstill > 95% for band d) (it is actually 100%).

| think thisis a prototype case where the sensitivity of the experiment is not correctly reflected by
the usual ways of quoting limits, just as it happens in the problem of Poisson with background. | think
that criticisms as those raised by [6, 9] must be given proper attention if we wish classical methods to
keep their current popularity. In my view, alimit that requires additional information about sensitivity
to be quoted is lacking something: it is hard for a physicist to be happy with alimit figure that does not
correctly account for the resolution of the experimental setup. The sCL doesthe job correctly and without
the need for a separate parameter to represent the sensitivity of the experiment. This works also for the
Poisson case (see below). A genera statement requires a precise definition of the term ‘ sensitivity’, but
it is seen from the definition of sCL that a parameter value cannot be excluded unless its likelihood is
small relative to the maximum.

3.4 Stability

It is worth noting the instability of all methods other than strong CL: if one changes the sign of ¢ in
the above example, al probabilities change by infinitesimal quantities, but the decision on y in case of
observing z2 is suddenly reversed, however small ¢ is, and the conclusion is in both cases claimed at
95% CL !

Limits obtained from Strong CL are always stable for small perturbations of the pdf. This robust-
ness is very important from a physicist point of view, and is due to the fact that sCL is based on integrals
of probabilities. Conversaly, the LR quantity depends on the maxima of the Likelihood function, which
are sensitive to narrow local peaks and other possible small irregularities of the pdf.

3.5 Invariance under change of variablein the observable

This is another good property, since it removes an important element of arbitrariness. | think it is an
important advantage of the classical methods that they are invariant under a change of variable in the
parameter, and it is even better to have the same property in the observable space. The only classi-
cal methods | know of that have this property are the “unified method” [3] and the strong confidence
described here.

3.6 Exclusion of ‘irrelevant information’ and the Likelihood Principle
Strong CL has the following property:

Take a subset of observable values. The set of all possible sCL limits for = inside this subset
depends only on the Likelihood functions for values of = within that same subset (actually, even upto a
multiplicative constant) (formal proof foundin [2] )

Thisisamore abstract, but | think highly significant property, probably the ultimate reason for al
other good properties of Strong CL. It isremarkably closeto the Likelihood Principle, and it isvery good
and far from obvious that this property can be attained simultaneously with the seemingly contrasting
requirement of correct coverage. Note that the Bayesian method obviously has this good property, but
no classical method other than strong CL hasit (also proved in [2]).

It might seem at first sight that this property means that knowledge of the ensemble is not neces-
sary to set sCL limits. Of course, this cannot be true, since sCL guarantees correct coverage. What is
determined by the Likelihood function is a set of limits. A choice must be made, and the choices for

Htis exactly sCL=g2—
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different regions of x cannot be made independently, therefore knowledge of the ensemble is necessary.
If one ignores the ensemble and simply makes a random choice based on the likelihood of the actual
observation, the result is the effect called “flip-flopping” in ref. [3].

4. APPLICATION TO POISSON+BACK GROUND

An immediate consequence of the last mentioned property of strong CL isthat the limits obtained when
no events are observed cannot depend on expected background: thisis because the likelihood function at
n = 0 isindependent of b, up to a constant factor.

| have explicitly calculated some strong bands for this distribution using the method outlined in
[2] and compared with other choices. Fig. 4 shows a 90% sCL band for an expected background of 3.0
events, compared to FC[3] and RW[9] bands at 90% CL. It appears that the strong band is somewhat
wider than both, even if it is not very different from RW for smal n. The sCL band in case of no
background is aso shown, and it is seen to coincide at n = 0 with the sCL band for b = 3.0, as expected.

20 T T T T T i i i i T 5y

| | — & - FCmin /

—W¥ - FC max ’
t | —&— sCL min //

—¥— sCL max Y

15 /

|l | —~— sCL b=0min

—— sCL b=0 max
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Fig. 4: Comparison of some bands at 90% CL for Poisson with mean expected background of 3.0 events. A strong band is
shown together with FC and RW bands. The strong CL result for the zero-background case is al'so shown. It can be seen that
thelimitsfor n = 0 are the same for thetwo casesof b = 0.0 and b = 3.0 .

Figure 5 shows that the strong band at 90% sCL is not too different from the FC band at 95% CL.
Larger deviations at n = 0 must of course be expected at higher background levels, since the FC upper
limit will approach zero.

5. CONCLUSIONS

The strong CL is a classical method for constructing confidence bands with very good properties. |
suggest that whenever a confidence band is constructed using any method, one always evaluates its sCL
as away to check that the limits obtained will be physically sensible.
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Fig. 5: Comparison of strong band at 90% sCL with FC band at 95% CL. The shapes are similar, with the exception of the
pointatn=20.
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Discussion after talk of Giovanni Punzi. Chairman: Peter go-Kemenes.

H. Prosper

Just a couple of comments and a question. You made a comment that one of the reasons why you
criticized the likelihood ratio method isthat — I’ m quoting a paper — ‘ the results can be counter-intuitive,
and hard to interpret’. I’'m just trying to imagine, two years from now, we're looking for the Higgs, and
| try to use this method, and | try to explain to my colleagues what this means. It seems to me that we
are dready finding it very difficult to understand even the current methods, they’'re simply at a level of
complexity that | think many people would find difficult. The reason you reject the Bayesian approach, |
gather, is because it's subjective and you do not know what prior to use, and since you don’t know what
prior to use, you have to pick one out of a hat - that’s subjective. However, reading your paper, it's quite
clear that your reason for rejecting other confidence intervals is that you don’t like their behaviour. Do
you regard that as subjective? And if so why do you reject another method that’s subjective? Are your
motivations for doing what you do that basically you do not like the behaviour of the confidence limits
calculated by, say, the likelihood ratio method or other methods (yes, yes - reply by Punzi); whatever
you do not like, that’s your motivation? You then invent a new method, and my question is, why is your
method in that sense less subjective than any other method?

G. Punzi

Less subjective? Well, | don’'t know if it's less subjective, | think it has some good properties.
Within classical methods, there are no other methods with such good properties, this at least is what
appearsto me. If onelikesto do classical statistics, it looks like this gives you the best you can have. I'm
not arguing Bayesian versus classical, I'm just saying ‘if you want to be classical, thislooks like a good

way’ .

H. Prosper

My problem with all these methods is this. Today we have very powerful computers, so | can
imagine, | can say ‘I don’'t like this particular set of limits.’ It would be very easy to take the likelihood
ratio limits, and then by brute force modify them until they behave the way | want, and I’ m beginning to
get very worried that we're moving in that direction. That is, we say: we don’t particularly like this, but
we modify them in some way so that I’'m now happy, and | know how to do it. You could just take any
sort of limits whatsoever and just perturb them, run my computer many many times until they behave the
way | want. Why is that different from what you're doing?

G. Punzi

But this method | am proposing is general, Here you don’t have to do any specia treatment. You
do the same thing every time.

H. Prosper

But your method requires, as | understand it, looking at every subset of the data, and therefore
this is computationally intensive, so if I’m going to use a computer to do this, | might aswell doitina
straightforward way, as |I've suggested.
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G. Punzi

Yes, it is possible. It is true that it takes more CPU, but, | don't know if thisis your point, it is
possible to write a program that automatically gives you the limit without having to worry case by case.
Thisis possible. It's not something that you have to look at case by case, but it’s a general requirement
that you can run a program, maybe a CPU-heavy program, but it will automatically give you the limits,
it doesn’t require your judgement.

G. Zech

You give in your paper a corrolary which eventually says you have to fulfil alikelihood limit. Is
this formula a necessary condition only, or isit also sufficient?

G. Punzi

No it isnot sufficient. Infact | didn’t show the plot, but | did draw the contour that | get by using
only that formula, and the band that | get by forcing the general requirement, and | see that they are
different.

F. James

In answer to Harrison's question. | think that what is interesting here is that you have a principle
of local scale invariance which is apparently meaningful to theoreticians, perhaps less to us, and it's
very difficult to calculate computationally because there are all these subsets, but at least there is a
unifying principle behind it. On the other hand you claim it’s classical in the sense that it doesn’t use
Bayesian reasoning, but usually we think of classical as having particular coverage. But your method
is over-covering. Now you can do that if you want conditional coverage, for example, and conditional
coverage we know over-covers unconditionally. If you don’t like the fact that these limits get smaller as
the expected background goes up, you can simply set them equal to a constant as expected background
goes up, and that would give you a conditional coverage which is correct, but unconditional coverage
which over-covers. And that one can do with other principles | think, that are easier to calculate.

G. Punzi

OK. It istrue that this method sometimes over-covers. Not al the time, it depends on the pdf. But
| think that the essential classical feature is not just in having exact strict coverage, but in having a way
that doesn’t make any assumption of what the parameter value is, or whether the parameter has, or nat,
aprobability distribution. | think thisis the thing that prevents classical statistics from even saying some
things that Bayesians do, just because in classical statistics the concept of a distribution for the param-
eter is not allowed. Actually it is completely invariant with respect to the metric in the parameters, as |
said. Of course you get some of the time some overcoverage, but my proposal looks even more classical
becauseit's also invariant in observable space, since classical methods are invariant in all changes of the
parameter. Thisis aso invariant for all changes in the observed space, which looks like actually nice
properties. So that’swhy | think it’'s better than just adjusting things in a way. Besides that, you are not
really forced to use the band which has strong confidence of 95%. This depends on your choice. You can
still decide, since they are both classical concepts, you have no problem in deciding. OK, you want to
use a 95% confidence band, but among all possible bands, | choose the one which has the highest strong
confidence and | impose that this be higher than some threshold. This is the important thing, because
what happens is that among all possible bands with the correct coverage at a given confidence level, the
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ones which are bad for intuition all have very small values of strong confidence. So in away you can
take strong confidence as a measurement of whether your band is reasonable or not, and you may still
decide to use the regular coverage criteriafor deciding which one to use. Thisis still a possibility.

R. Cousins

| just wanted to address this point about the empty regions, because we have claimed that there are
no empty regions, and you and somebody else claim there are empty regions. As you've shown in your
table, the point arises when you have atie when you're constructing the acceptance region. In our paper
we do not give instructions as to what to do; the people who claim that there are empty null sets choose
not to include al the ties. However, we can go to the book [shows transparency of beginning of Chapter
23 of Kendall’s Advanced Theory of Statistics, in the new edition by Stuart and Ord], which actually
defines this method. It defines the critical region for the test statistic by the condition with aless than or
equal sign. So the textbook way isto include all the regions that have atie. Then our understanding is
that you will not have any empty regions.

G. Punzi

OK, | agree that thisis a solution to that, thisis an example where you have atie between several
values where you have the possibility of requiring this thing and solving this anyway, but what | wanted
to show with that example was that the likelihood ratio ordering itself does not easily tell you what is
good from what is bad. You get to the point where two things, one of which is reasonable and the other
very bad, are put very very close at the same level and you need some special change to be able to
distinguish between them. So, this point was made to try to convey these kinds of things, but there is
also a stronger point. It is possible to make examples where you don’t even have atie. | don't know if
you read this example in my paper. | didn’t mention that because it's a bit more complicated, but | can
make you adrawing. [Draws diagram of = against uj].

If you have read it, you aready know, but suppose thisis i and thisis the observable x. Suppose
you have basically any pdf here; then you can do this trick, | admit it's not very natural but it doesn’t
matter. Thisis p and thisis x. Take this probability distribution and add a very narrow distribution with
negligible area, like aridge but made in thisway. Thisis not very natural. Suppose this ridge has maybe
some Gaussian distribution which is a very narrow peak of negligible area, and | superimpose on this
plot here, where there is a pdf staying behind. Also, in addition to this complication, let me complicate it
even more. Suppose that the height of theridgeisincreasing in going towards infinity, while still keeping
the same area. You can make it squeeze this region which is wiggling, you squeeze and you bring it to
infinity with an ever increasing height. So if you look at any = here and if you look at the likelihood plot,
there is some distribution with, superimposed on it, a series of narrow spikes which becomeincreasingly
high. The maximum of the likelihood is at infinity, if x has an infinite range. So what happensis that all
of these points get arank according to the likelihood ratio ordering which is zero, including the point of
the spike, because for every spike there is another which is much higher.

It is arather mathematical example, and in thisway al the points are of zero rank, so al pointsin
this region with this spike here get zero rank, so they are considered last in the likelihood ratio ordering.

So what happens is that this region here is a small region which should not require you to take it
into account, because of reasons of tolerance, so if you make 95% by integrating outside this band, these
points are taken last in the likelihood ratio ordering, so al of this band isleft out. So al of this band will
give empty confidence bounds.
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M. Woodroofe

Kendall and Stuart weren’t always super-careful about stating their mathematical assumptions, but
they meant to exclude pathological cases like that.

J. Bouchez

Actually you do not need to resort to these funny examples. When you said there was atie, it is
only for the value of the parameter which is bound. For higher values of the parameter there is no tie,
and so you can define unambiguously the interval you choose. So it is only a question when you are
at the boundary for the parameter that you can have atie. When you go to this limit, you just do it by
continuity. Or else you do what you said: There is atie, so you take al the points. But it is no use,
because instead of getting a narrow result, you will say that the value of the parameter isthe value of the
limit.

G. Punzi

It is true that if you use the strong confidence definition, whether you like it or not, this is also
handled correctly.

G. Feldman

Even though thisis pathological, | don’'t even understand why this fails, because even in this case
the point with 1 equal to infinity includes x in itsregion, so the region is not null.

G. Punzi

| assume that ;» = oo isnot avalue. In my mathematical example, the maximum of the likelihood
does not exist for any real u. It isasuperior limit which exists. Infinity is not a real number. If you
use the likelihood ratio ordering, whenever the maximum of the likelihood exists, then that value is
aways included. It still does not help you so much, even if you include the point at infinity. You are
completely altering the previous confidence band because of a nhegligible probability perturbation of the
pdf, which should actually be ignored completely. A reasonable man should not run after something that
isnegligibly small.

C. Giunti

Your last figures were most interesting. What happens to the lower limit, in the Poisson case?
What is the difference of your method, as compared with other methods?

G. Punzi

Remember that strong confidence gives you arange of possible bands, not always a unique band.
It is something similar to a new way of getting limits. It is not a single choice. In redlity, for the case
of a Poisson with background, the variation is very limited. However in most cases, both the lower and
the upper limits are wider, for most values of the background, if you compare the same confidence level
for strong confidence and for the usual one. Thisisaway of comparing them, because they are kind of
different things. Thisis not a choice within the usual framework, it isreally a different way of thinking.

217



B. Roe

It seems to me that we should express thingsin terms of real coverage. When you say 90%, itisa
sort of artificial parameter. You should compare what your real coverage is with, for example, Feldman
and Cousins, or with Roe and Woodroofe. Somehow we've got to compare apples and oranges, and we
should try to get into the same ball-park.

G. Punzi

OK, but you should not use bands with very low strong confidence. If you have a band with very
low strong confidence, that is bad.

B. Roe

Coverage is an important concept.

G. Punzi

| agree, | just think it is not everything.

Chairman

Let’s stop on apoint of agreement.
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