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Abstract
A new way of defining limits in classical statistics ispresented. This isanatu-
ral extension of the original Neyman’s method, and has the desirable property
that only information relevant to the problem is used in making statistical in-
ferences. The result is a strong restriction on the allowed confidence bands,
excluding in full generality pathologies as empty confidence regions or unsta-
ble solutions. The method is completely general and directly applicable to all
problemsof limits. Someexamplesarediscussed. In thewell-known problem
of Poisson processes with background it gives limits that do not depend on
background in thecaseof no observed events.

1. INTRODUCTION

I belong to that classof physicistswhich prefer aclassical approach to statistical inferencesfrom physics
experiments. I will not discuss in this contribution my motivations for this preference, since they are
very eloquently described by other contributors to this workshop (see [5]).

However, I do believe that several difficulties with the current methods for setting confidence
limits pointed out by critics of Bayesian inclination are reasons for real concern. This is because I am
convinced that any method for quoting limits, in order to have interest for a physicist, must have some
minimally good intuitiveproperties (for instance, better experimentsshould beable to set tighter limits).
Wejust can’t help thesimplefact that classical limitsarenot statementson p(parameter

�
data) (see[5] for

avery clear explanation of thispoint). But I think weshould try to makesure they are indeed statements
about something related to the parameter. I do believe that the coverage requirement is a very important
property: I am very reluctant to accept any method for summarizing the information under the form of
an accepted region per the parameters that does not guarantee a minimum rate of correct results. It is
simply too good aproperty to give it up.

Unfortunately, we all know that coverage is not sufficient. It does not prevent paradoxical results
to beobtained, otherwisetherewould havebeen no motivation for developing so many different methods
for choosing limits. If onehad to taketheattitudethat thecoverageproperty issufficient reason to justify
any limit, however counterintuitive, then therewould beno reason for not simply accepting an empty set
as a possible result of a measurement. As a matter of fact, most physicists do not accept that, because
that kind of results tells them nothing about theparameter.

Luckily, the range of methods allowed in classical statistics is potentially much wider than the
currently explored solutions, so there is ample space for looking for better behaved confidence bands. I
havedescribed in [2] therationalefor anovel classical method for setting confidencelimitsthat addresses
all concerns I had with classical limits. I will briefly summarize here the proposed method and argue
that its properties are better than that of all other known methods, referring the reader to [2] for a more
completediscussion. I also apply themethod to thenow famous problem of Poisson plus background.

2. DEFINITION OF ‘STRONG CONFIDENCE LEVEL’

Theessenceof theproposal is to quote limitsby replacing (or supplementing) theusual CL asdefined by
Neyman[1] with a similarly formulated, but much more restrictive concept, which I called ”strong CL” .
�
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The strong CL is by construction always smaller than plain CL, therefore a band at a given sCL is also
a legal band at the corresponding CL, so the standard Neyman’s coverage is guaranteed, possibly with
someovercoverage. Onecan view it either as just another way of choosing aparticular band in theample
set of possibility left by Neyman’s requirement of correct coverage, or as a radically different idea, that
still preservesthestandard coveragerequirement. Asadifferencewith other proposed methods, theband
is not necessarily uniquely identified.

Thedefinition runsas follows: aconfidenceband issaid to havestrong ConfidenceLevel equal to
sCL if it complieswith the following requirement[2]:

for every possiblevalueof theparameters � and every subset of possiblevalues for theobservable� (� ):

���	��
 ������
����	��� � � �������� ������
 � � � � � �"!$#&%('*) (1)

whenever thedenominator isnon–zero. Here �����+� represents theaccepted region for � , given the
observed � .

For comparison, thestandard definition of CL, when written in thesame form is:

for every possiblevalueof theparameters � :

��� ���
������+� � � � � �"!$%('*) (2)

Thedefinition of strong CL is graphically illustrated in Fig. 1.
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Fig. 1: Graphical illustration of thestandard definition of CL (upper) and thenew concept of “strong CL” (lower). Theproperty

illustrated for strong-CL must hold for every possibleset 4 of observablevalues.
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It is interesting to note that this condition can be seen simply as the application of a generalized
Neyman condition to every possible subsets of the observable space. As the standard CL, strong CL
also hasan intuitive interpretation in termsof expected frequency of reporting wrong conclusions: if one
focuseson any particular subset of observablevalues, the frequency of wrong results is limited to a small
fraction (1-sCL) of themaximum expected rateof results in that category.

The interesting novelty here is the guarantee that inferences from all possible experimental out-
comes will have the same quality: the possibility of “unlucky results” is ruled out. This uniformity of
treatment of all possibleexperimental outcomesisthebasisof many good propertiesof confidencebands
that satisfy thismore restrictive requirement, which justify theadditional computational effort.

3. PROPERTIES

Since it is not possible to explain in detail and formally prove the properties of strong CL in a single
short talk, I will limit here just to list and quickly illustrate them with the help of a single very simple
example, referring the interested reader to ref. [2] for details.

The example I will use is that of a trivial pdf that does not depend on the value of the unknown
parameters. More precisely, let’s consider the case of a parameter � having only two possible discrete
values, and an observable � also having only two possiblediscretevalues, and let thepdf begiven by the
following table:

� � �*5� � 0.95 0.95� 5 0.05 0.05
(3)

Surprisingly, this trivial exampleallows many interesting considerations to bedone.

3.1 Conceptual pur ity

Strong CL isa100% pureclassical method: it doesnot makeany useof theconcept of probability of an
unknown parameter. Of course this is good to some, bad to others.

I think however that purity in itself should beappreciated by most people. Classical and Bayesian
methods rest on very contrasting views of the very basic concepts, starting from the definition of prob-
ability itself, and it is difficult to avoid the suspect that any constructions made by a mix of the two (of
which thereareseveral examples) will eventually meet with contradictions and paradoxes.

3.2 Empty confidence regions are forbidden

Suppose one wants to find a 95% Confidence band for the above trivial pdf (3). Intuitively one expects
not to be able to draw any conclusion, since the value of the parameter is irrelevant to the outcome of
the experiment. In this simple case one can easily list all possible bands satisfying Neyman’s definition
of CL. They are four and shown in Fig 2. All but the first have some “overcoverage” , that is they
cover a larger region than strictly required by thedefinition of CL. Overcoverage isgenerally considered
negatively, asa lossof power, therefore thefirst solution (a) is themost attractive from thepoint of view
of its greater “discriminating power” . Unfortunately, that is far from being intuitively satisfactory: if � 5
is observed theabsurd conclusion is that both values of theparameter areexcluded.

Bandsb) and c) arealso intuitively repugnant. They imply onecan draw astatistical conclusion at
95% on some parameter by measuring a totally unrelated quantity (I like to call those “Voodoo” bands).
From thepoint of view of Neyman’s requirement, they are just asgood asany other band. This isaclear
demonstration that merecoverage is not sufficient to ensureonewill obtain meaningful limits.
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Fig. 2: The set of all possible bands at 95% CL for a very simple “ indifferent” pdf. The accepted region in each case is shown

in grey.

If one looks at sCL, however, it is easy to verify that sCL is zero for band a), b) and c), while
sCL=CL=100% for band (d), the intuitively correct conclusion. It can actually be proved rigorously[2]
that theprobability of an empty region is zero when using astrong band, whatever thepdf.

Are there other classical methods capable of avoiding this pitfall ? The most commonly used
construction[10] looks explicitly for the narrowest band, so it yields (a) as the solution. If one looks at
Likelihood Ratio ordering, one sees that all cells of the table get assigned the same rank in the ordering.
If one had to follow exactly the prescription of ref. [3], one would start adding cells at random until
attaining proper coverage: thisyields randomly to any oneof the four results. If one takes theattitudeof
ref. [4] then he is forced to add all cells together, and correctly finds (d).

Whilethis iscorrect, it isavery near missof paradoxical conclusions, compared with theclear cut,
black-or-white answer provided by the strong CL. This difficulty in reaching the correct conclusion in
a so simple case, should make one suspect that LR-ordering is not addressing the issue of empty region
correctly. Indeed, it can be shown with more complex examples that LR ordering can actually yield
empty confidence regions for wide ranges of observablevalues[2].

I feel that the RW modification of LR[9], based on removing ancillary variables, does correctly
address the substance of this problem, but unfortunately it is not clear, to me at least, how it can be
extended to morethan afew specific cases. Incidentally, notethat Bayesmethod isalso exempt from this
problem.

3.3 Thequestion of correct sensitivity

We can learn even more by adding an infinitesimal perturbation to this simple pdf, as shown in Fig. 3.
Band a) and c) arediscarded by Neyman’s condition since they now undercover and one is left just with
options b) and d).

Now, both the narrowest band[10] and the LR criteria (whatever their flavor) choose solution b)
without ambiguity ! (I am not sureabout how to apply method [9] to this case).
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Fig. 3: The set of all possible bands at 95% CL for a slightly perturbed indifferent pdf. The accepted region in each case is

shown in grey.
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This band is still very close to the “Voodoo” paradox of previous case. While now there is indeed
asmall sensitivity of � to thevalueof � , it isworth reflecting on the fact that this result will bequoted at
95% CL, however small A is.

Conversely, strong CL followsperfectly the intuitiveperception of thesituation: sCL is infinitesi-
mally small for band b)1 , while it is still BDCFEHG for band d) (it is actually 100%).

I think this isaprototypecasewhere thesensitivity of theexperiment isnot correctly reflected by
the usual ways of quoting limits, just as it happens in the problem of Poisson with background. I think
that criticisms as those raised by [6, 9] must be given proper attention if we wish classical methods to
keep their current popularity. In my view, a limit that requires additional information about sensitivity
to be quoted is lacking something: it is hard for a physicist to be happy with a limit figure that does not
correctly account for theresolution of theexperimental setup. ThesCL doesthejob correctly and without
the need for a separate parameter to represent the sensitivity of the experiment. This works also for the
Poisson case (see below). A general statement requires a precise definition of the term ‘sensitivity’ , but
it is seen from the definition of sCL that a parameter value cannot be excluded unless its likelihood is
small relative to themaximum.

3.4 Stability

It is worth noting the instability of all methods other than strong CL: if one changes the sign of A in
the above example, all probabilities change by infinitesimal quantities, but the decision on � in case of
observing � 5 is suddenly reversed, however small A is, and the conclusion is in both cases claimed at
95% CL !

Limits obtained from Strong CL are always stable for small perturbations of the pdf. This robust-
ness isvery important from aphysicist point of view, and isdue to the fact that sCL isbased on integrals
of probabilities. Conversely, the LR quantity depends on the maxima of the Likelihood function, which
aresensitive to narrow local peaks and other possiblesmall irregularities of thepdf.

3.5 Invar ianceunder changeof var iable in theobservable

This is another good property, since it removes an important element of arbitrariness. I think it is an
important advantage of the classical methods that they are invariant under a change of variable in the
parameter, and it is even better to have the same property in the observable space. The only classi-
cal methods I know of that have this property are the “unified method” [3] and the strong confidence
described here.

3.6 Exclusion of ‘ ir relevant information’ and theLikelihood Pr inciple

Strong CL has the following property:

Take a subset of observable values. The set of all possible sCL limits for � inside this subset
depends only on the Likelihood functions for values of � within that same subset (actually, even up to a
multiplicativeconstant) (formal proof found in [2] )

This isamoreabstract, but I think highly significant property, probably theultimate reason for all
other good propertiesof Strong CL. It isremarkably closeto theLikelihood Principle, and it isvery good
and far from obvious that this property can be attained simultaneously with the seemingly contrasting
requirement of correct coverage. Note that the Bayesian method obviously has this good property, but
no classical method other than strong CL has it (also proved in [2]).

It might seem at first sight that this property means that knowledge of the ensemble is not neces-
sary to set sCL limits. Of course, this cannot be true, since sCL guarantees correct coverage. What is
determined by the Likelihood function is a set of limits. A choice must be made, and the choices for

1It is exactly sCL= IKJLNM LPOKQ J
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different regions of � cannot be made independently, therefore knowledge of the ensemble is necessary.
If one ignores the ensemble and simply makes a random choice based on the likelihood of the actual
observation, the result is theeffect called “flip-flopping” in ref. [3].

4. APPLICATION TO POISSON+BACKGROUND

An immediate consequence of the last mentioned property of strong CL is that the limits obtained when
no eventsareobserved cannot depend on expected background: this isbecausethe likelihood function atRTS U is independent of V , up to aconstant factor.

I have explicitly calculated some strong bands for this distribution using the method outlined in
[2] and compared with other choices. Fig. 4 shows a 90% sCL band for an expected background of 3.0
events, compared to FC[3] and RW[9] bands at 90% CL. It appears that the strong band is somewhat
wider than both, even if it is not very different from RW for small R . The sCL band in case of no
background isalso shown, and it isseen to coincideat RTS U with thesCL band for V S W ) U , asexpected.
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Fig. 4: Comparison of some bands at 90% CL for Poisson with mean expected background of 3.0 events. A strong band is

shown together with FC and RW bands. The strong CL result for the zero-background case is also shown. It can be seen that

the limits for Z�[]\ are thesame for the two cases of ^_[]\H` \ and ^_[bac` \ .

Figure5 shows that thestrong band at 90% sCL isnot too different from theFC band at 95% CL.
Larger deviations at R$SdU must of course be expected at higher background levels, since the FC upper
limit will approach zero.

5. CONCLUSIONS

The strong CL is a classical method for constructing confidence bands with very good properties. I
suggest that whenever a confidence band is constructed using any method, one always evaluates its sCL
as away to check that the limits obtained will bephysically sensible.
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Fig. 5: Comparison of strong band at 90% sCL with FC band at 95% CL. The shapes are similar, with the exception of the

point at Z�[]\ .
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Discussion after talk of Giovanni Punzi. Chairman: Peter Igo-Kemenes.

H. Prosper

Just a couple of comments and a question. You made a comment that one of the reasons why you
criticized the likelihood ratio method is that – I’m quoting apaper – ‘ the resultscan becounter-intuitive,
and hard to interpret’ . I’m just trying to imagine, two years from now, we’re looking for the Higgs, and
I try to use this method, and I try to explain to my colleagues what this means. It seems to me that we
are already finding it very difficult to understand even the current methods, they’re simply at a level of
complexity that I think many peoplewould find difficult. Thereason you reject theBayesian approach, I
gather, is because it’s subjective and you do not know what prior to use, and since you don’t know what
prior to use, you have to pick one out of a hat - that’s subjective. However, reading your paper, it’s quite
clear that your reason for rejecting other confidence intervals is that you don’t like their behaviour. Do
you regard that as subjective? And if so why do you reject another method that’s subjective? Are your
motivations for doing what you do that basically you do not like the behaviour of the confidence limits
calculated by, say, the likelihood ratio method or other methods (yes, yes - reply by Punzi); whatever
you do not like, that’s your motivation? You then invent a new method, and my question is, why is your
method in that sense less subjective than any other method?

G. Punzi

Less subjective? Well, I don’t know if it’s less subjective, I think it has some good properties.
Within classical methods, there are no other methods with such good properties, this at least is what
appears to me. If one likes to do classical statistics, it looks like thisgivesyou thebest you can have. I’m
not arguing Bayesian versus classical, I’m just saying ‘ if you want to be classical, this looks like a good
way’ .

H. Prosper

My problem with all these methods is this. Today we have very powerful computers, so I can
imagine, I can say ‘ I don’t like this particular set of limits.’ It would be very easy to take the likelihood
ratio limits, and then by brute forcemodify them until they behave theway I want, and I’m beginning to
get very worried that we’re moving in that direction. That is, we say: we don’t particularly like this, but
we modify them in some way so that I’m now happy, and I know how to do it. You could just take any
sort of limitswhatsoever and just perturb them, run my computer many many timesuntil they behavethe
way I want. Why is that different from what you’redoing?

G. Punzi

But this method I am proposing is general, Here you don’t have to do any special treatment. You
do thesame thing every time.

H. Prosper

But your method requires, as I understand it, looking at every subset of the data, and therefore
this is computationally intensive, so if I’m going to use a computer to do this, I might as well do it in a
straightforward way, as I’vesuggested.
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G. Punzi

Yes, it is possible. It is true that it takes more CPU, but, I don’t know if this is your point, it is
possible to write a program that automatically gives you the limit without having to worry case by case.
This is possible. It’s not something that you have to look at case by case, but it’s a general requirement
that you can run a program, maybe a CPU-heavy program, but it will automatically give you the limits,
it doesn’t requireyour judgement.

G. Zech

You give in your paper a corrolary which eventually says you have to fulfil a likelihood limit. Is
this formulaanecessary condition only, or is it also sufficient?

G. Punzi

No it is not sufficient. In fact I didn’t show the plot, but I did draw the contour that I get by using
only that formula, and the band that I get by forcing the general requirement, and I see that they are
different.

F. James

In answer to Harrison’s question. I think that what is interesting here is that you have a principle
of local scale invariance which is apparently meaningful to theoreticians, perhaps less to us, and it’s
very difficult to calculate computationally because there are all these subsets, but at least there is a
unifying principle behind it. On the other hand you claim it’s classical in the sense that it doesn’t use
Bayesian reasoning, but usually we think of classical as having particular coverage. But your method
is over-covering. Now you can do that if you want conditional coverage, for example, and conditional
coverage we know over-covers unconditionally. If you don’t like the fact that these limits get smaller as
the expected background goes up, you can simply set them equal to a constant as expected background
goes up, and that would give you a conditional coverage which is correct, but unconditional coverage
which over-covers. And that onecan do with other principles I think, that areeasier to calculate.

G. Punzi

OK. It is true that thismethod sometimesover-covers. Not all the time, it dependson thepdf. But
I think that the essential classical feature is not just in having exact strict coverage, but in having a way
that doesn’t make any assumption of what the parameter value is, or whether the parameter has, or not,
aprobability distribution. I think this is the thing that preventsclassical statistics from even saying some
things that Bayesians do, just because in classical statistics the concept of a distribution for the param-
eter is not allowed. Actually it is completely invariant with respect to the metric in the parameters, as I
said. Of courseyou get someof the timesomeovercoverage, but my proposal lookseven moreclassical
because it’salso invariant in observablespace, sinceclassical methodsare invariant in all changesof the
parameter. This is also invariant for all changes in the observed space, which looks like actually nice
properties. So that’s why I think it’s better than just adjusting things in a way. Besides that, you are not
really forced to usetheband which hasstrong confidenceof 95%. Thisdependson your choice. You can
still decide, since they are both classical concepts, you have no problem in deciding. OK, you want to
usea95% confidenceband, but among all possiblebands, I choose theonewhich has thehighest strong
confidence and I impose that this be higher than some threshold. This is the important thing, because
what happens is that among all possible bands with the correct coverage at a given confidence level, the
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ones which are bad for intuition all have very small values of strong confidence. So in a way you can
take strong confidence as a measurement of whether your band is reasonable or not, and you may still
decide to use the regular coveragecriteria for deciding which one to use. This is still apossibility.

R. Cousins

I just wanted to addressthispoint about theempty regions, becausewehaveclaimed that thereare
no empty regions, and you and somebody else claim there are empty regions. As you’ve shown in your
table, the point arises when you have a tie when you’re constructing the acceptance region. In our paper
we do not give instructions as to what to do; the people who claim that there are empty null sets choose
not to include all the ties. However, we can go to the book [shows transparency of beginning of Chapter
23 of Kendall’s Advanced Theory of Statistics, in the new edition by Stuart and Ord], which actually
defines this method. It defines the critical region for the test statistic by the condition with a less than or
equal sign. So the textbook way is to include all the regions that have a tie. Then our understanding is
that you will not haveany empty regions.

G. Punzi

OK, I agree that this is a solution to that, this is an example where you have a tie between several
values where you have the possibility of requiring this thing and solving this anyway, but what I wanted
to show with that example was that the likelihood ratio ordering itself does not easily tell you what is
good from what is bad. You get to the point where two things, one of which is reasonable and the other
very bad, are put very very close at the same level and you need some special change to be able to
distinguish between them. So, this point was made to try to convey these kinds of things, but there is
also a stronger point. It is possible to make examples where you don’t even have a tie. I don’t know if
you read this example in my paper. I didn’t mention that because it’s a bit more complicated, but I can
makeyou adrawing. [Draws diagram of � against � ].

If you have read it, you already know, but suppose this is � and this is the observable � . Suppose
you have basically any pdf here; then you can do this trick, I admit it’s not very natural but it doesn’t
matter. This is � and this is � . Take this probability distribution and add a very narrow distribution with
negligiblearea, likea ridgebut made in thisway. This isnot very natural. Suppose this ridgehasmaybe
some Gaussian distribution which is a very narrow peak of negligible area, and I superimpose on this
plot here, where there isapdf staying behind. Also, in addition to thiscomplication, let mecomplicate it
even more. Supposethat theheight of theridgeis increasing in going towardsinfinity, whilestill keeping
the same area. You can make it squeeze this region which is wiggling, you squeeze and you bring it to
infinity with an ever increasing height. So if you look at any � hereand if you look at the likelihood plot,
there issomedistribution with, superimposed on it, aseriesof narrow spikeswhich becomeincreasingly
high. Themaximum of the likelihood is at infinity, if � has an infinite range. So what happens is that all
of these points get a rank according to the likelihood ratio ordering which is zero, including the point of
thespike, because for every spike there is another which ismuch higher.

It is a rather mathematical example, and in this way all thepoints areof zero rank, so all points in
this region with this spikehereget zero rank, so they areconsidered last in the likelihood ratio ordering.

So what happens is that this region here is a small region which should not require you to take it
into account, becauseof reasonsof tolerance, so if you make95% by integrating outside thisband, these
pointsare taken last in the likelihood ratio ordering, so all of thisband is left out. So all of thisband will
giveempty confidencebounds.
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M. Woodroofe

Kendall and Stuart weren’t alwayssuper-careful about stating their mathematical assumptions, but
they meant to excludepathological cases like that.

J. Bouchez

Actually you do not need to resort to these funny examples. When you said there was a tie, it is
only for the value of the parameter which is bound. For higher values of the parameter there is no tie,
and so you can define unambiguously the interval you choose. So it is only a question when you are
at the boundary for the parameter that you can have a tie. When you go to this limit, you just do it by
continuity. Or else you do what you said: There is a tie, so you take all the points. But it is no use,
because instead of getting anarrow result, you will say that thevalueof theparameter is thevalueof the
limit.

G. Punzi

It is true that if you use the strong confidence definition, whether you like it or not, this is also
handled correctly.

G. Feldman

Even though this is pathological, I don’t even understand why this fails, because even in this case
thepoint with � equal to infinity includes � in its region, so the region is not null.

G. Punzi

I assumethat � S e isnot avalue. In my mathematical example, themaximum of the likelihood
does not exist for any real � . It is a superior limit which exists. Infinity is not a real number. If you
use the likelihood ratio ordering, whenever the maximum of the likelihood exists, then that value is
always included. It still does not help you so much, even if you include the point at infinity. You are
completely altering the previous confidence band because of a negligible probability perturbation of the
pdf, which should actually be ignored completely. A reasonableman should not run after something that
is negligibly small.

C. Giunti

Your last figures were most interesting. What happens to the lower limit, in the Poisson case?
What is thedifferenceof your method, as compared with other methods?

G. Punzi

Remember that strong confidence gives you a range of possible bands, not always a unique band.
It is something similar to a new way of getting limits. It is not a single choice. In reality, for the case
of a Poisson with background, the variation is very limited. However in most cases, both the lower and
the upper limits are wider, for most values of the background, if you compare the same confidence level
for strong confidence and for the usual one. This is a way of comparing them, because they are kind of
different things. This is not achoicewithin theusual framework, it is really adifferent way of thinking.
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B. Roe

It seems to me that weshould express things in termsof real coverage. When you say 90%, it isa
sort of artificial parameter. You should compare what your real coverage is with, for example, Feldman
and Cousins, or with Roe and Woodroofe. Somehow we’ve got to compare apples and oranges, and we
should try to get into thesameball-park.

G. Punzi

OK, but you should not use bands with very low strong confidence. If you have a band with very
low strong confidence, that is bad.

B. Roe

Coverage is an important concept.

G. Punzi

I agree, I just think it isnot everything.

Chairman

Let’s stop on apoint of agreement.
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