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Abstract

We try a Bayesian approach to present neutrino oscillation results. To make
this presentation exercise, we are using data published earlier this year. Two
data samples are treated in a Bayesian approach based on the ratio of likeli-
hoods. The combination of these two samplesis also considered. To be able
to appreciate the case where a signal is observed, we also apply the technique
to a modified sample with added observed events. Bayesian credible intervals
are abtained.

1. INTRODUCTION

It has been pointed out on several occasions that a Bayesian approach would provide a correct and con-
sistent way to report results of searches, when the experiments are at the limit of their sensitivity [1, 2]. In
the field of neutrino oscillation physics, where some experiments are excluding oscillations while others
are claiming to see oscillation signals, areliable technique to compare and interpret the results of various
experiments is mandatory. In this paper, we use the Bayesian approach advocated in Reference [1] to
interpret neutrino oscillation results and to combine them. For this purpose, we use the results presented
during this past year [3] by the CHORUS [4] experiment at CERN. This experiment is searching for
v, — vy oscillations in a v, beam, by looking for tau decays in an emulsion target. We use this ex-
periment as an example because it has two separate data samples that we can combine, corresponding
to two channels of the tau decay: the muon channel 7= — p~ v, v, (Which we denote 7 — 1) and the
single charged hadron channel 7~ — h™ (nh°)v, (which we denote 7 — h). The details of the analyses
of these samples are described in Reference [4]. For the present exercise, it suffices to recall that due
to a higher efficiency of the tau detection, the - — p sample is more sensitive to oscillations than the
T — h sample in spite of the fact that the - — h branching ratio is larger than the - — p branching
ratio. The r — p sample also has less expected background than the = — h sample, although in both
cases the expected number of background eventsis below unity. CHORUS has reported no candidate so
far. The subject of this paper is restricted to the presentation of neutrino oscillation results, and not to the
results themselves. After recalling afew Bayesian notions that we have used, we will first present each
sample separately, and we will afterwards combine them. We will close the discussion by considering
the Bayesian credible intervals.

2. BAYESIAN PRESENTATION OF RESULTS

Given a process having an unknown rate of occurrence, Bayes's theorem states that the probability that
this rate has a given value r is related to the observed rate n by the following relation:

f(nlr) fo(r)
rin) = , 1
Jrin) = 5 fnl) folr)ar @
where f,(r) is the prior; the probability attributed to r before the actual measurement. For a Poisson
process in the presence of background, we have:

e )L ((r 41y L)
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f(rln) o« fo(r), (2)
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where ry, is the background rate. We write the equation in terms of a luminosity factor £, which relates
the total number of events expected by the experiment to the rate of events: nexpected = (7 + 75) L.
According to Bayes's theorem, we cannot infer any probability about » from the observation n without
taking into account the prior knowledge f,(r) we have about . A convenient way of presenting the
experimental results without having to infer such probabilitiesis to present the ratio of likelihoods

. o f(n|7", Tb)
R(r;n,ry) = —f(n|7“ —0.m)"

3)

Thisis the ratio of the probability to observe n given the background r, and a hypothetical signa r, to
the probability to observe n given the background r;, aone. Thisratio tends to unity in the region where
the experiment has no sensitivity (where the signal » would be too weak) and zero in the region where the
signal isexcluded (where the expected signal would be too large to be compatible with the observations).
For a Poisson process with background, we have

Rr;n,r) = e ¢ (1 + i) . 4
Tp

By introducing a prior f,(r), thisratio can be related to a probability about . In particular, for the case

of a constant prior f,(r) = constant with a null observation n = 0, the credible interval for a 90%

confidence level limit can be retrieved by putting R = 0.1.

To take into account the systematic errors on the number of events expected, the likelihoods
f(n|r,m) can be convoluted with the probability distribution of the number of events expected given
the oscillation parameters and the systematic error. In the present case, we assumed the 17% systematic
error presented by the CHORUS Collaboration.

3. PRESENTATION OF INDIVIDUAL SAMPLES

Neutrino oscillations are described by two parameters. amixing angle ¢ and the squared mass difference
Am? between the neutrino mass states. The oscillation probability is given by

P, v, ~sin*20sin*(1.27Am*L/E,)), (5)

where L isthe flight length of the neutrinos and £, their energy. Therefore, the expected rate of events
will depend on thesetwo variables (r = r[sin? 20, Am?]), and sowill theratio R (r[sin? 20, Am?]; n, ).

According to recent data, the CHORUS experiment would expect to observe a maximum of
NIZF = 4003 eventsin its 7 — 1 sample assuming complete conversion of the v, neutrinos from
the beam into v neutrinos (P,,—.,, = 1). This expected number of events will vary with the oscil-
lation parameters according to equation 5. It will also be further modified by the change in detection
efficiency as afunction of the energy, so as afunction of Am? which modifies the energy distribution of
the oscillated neutrinos. In the present exercise, we assumed a constant detection efficiency as a func-
tion of energy . For the 7 — u sample, CHORUS expects an average background of ny " = 0.1
event. Taking into account the dependence of the expected number of events on the oscillation param-
eters, the energy spectrum of the neutrinos and the flight length of the neutrinos, one obtains values of
R(r[sin? 20, Am?];n,73,) for the full oscillation parameter space. Figure 1 shows a 3-D representation
of R as a function of sin? 20 and Am?. The value of R varies from unity in the region where the
CHORUS experiment is insensitive, to zero in the region it excludes. The gradient of colour indicates
the change from the excluded region to the region of insensitivity. The region in-between is the one for
which CHORUS has difficulties concluding about the existence of neutrino oscillations.

1The information about the variation of the detection efficiency in CHORUS as a function of the energy is not available
publicly at present.
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Fig. 1: Tri-dimensional representation of R asafunction of the oscillation parameters for the CHORUS 7 — i sample.

Figure 2 presentsthe same kind of information for the - — h sample. The region where CHORUS
excludes neutrino oscillationsisin this case smaller than with the 7 — 1 sample, which reflects the fact
that the 7 — h sample is smaller and has more expected background. CHORUS expects to observe a
maximum of N7 = 1149 eventsin this sample for P, ., = 1, with an average expected background
of n] =" = 0.5 event.
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Fig. 2: Tri-dimensional representation of R as afunction of the oscillation parameters for the CHORUS 7 — h sample.
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4. PRESENTATION OF COMBINED SAMPLES

The R function for the combination of several samplesis given by the multiplication of the R functions
of the different samples:
R(r; N samples) = IIN R (r; sample 7). (6)

Figures 3 and 4 show the kind of plots presented in the preceding section, for the combination of the
T — pand 7 — h samples of CHORUS. Sincethe 7 — h sample is statistically less significant, the
overal result is very similar to the one of the - — u sample.

Having presented the recent CHORUS results in a Bayesian way, we can turn to the question of
what would happen in the case of an observation different from zero for one of the samples. For instance,
let us consider the hypothetical case of an observed number of eventsinthe r — h sampleof n.-_,;, = 3.
In this particular case, without taking into account the energy of thetau candidates, Fig. 2 would look like
Fig. 5. We now see arise above unity of R for certain values of the oscillation parameters, corresponding
to the region where the observation of n.._,;, = 3 is more probable in the case of neutrino oscillations
than in the case of the absence of neutrino oscillations. The actual interpretation of this rise of R in
terms of neutrino oscillations will depend on our knowledge of the problem, so on the prior. In this
particular example, further information can be obtained by combining the 7 — h samplewithther — u
sample. For the casewherea ™ — p samplewithn,._,, = 0 andar — h samplewithn._,;, = 3 would
be combined, Fig. 6 would be obtained. We clearly see that the observed riseinthe 7 — h sampleis
attenuated by the null result of the 7 — 1 sample, which is more sensitive to oscillations.

To better appreciate the effect of combining two samples, Figs. 7, 8 and 9 show the value of R as
afunction of sin? 26 for a given value of Am?. We arbitrarily chose Am? = 3.6 eV2. The transition
between exclusion and insensitivity for the 7 — 1 sample with n._,, = 0 is clearly seen in Fig. 7,
whereas the indication of signal inthe  — h sample withn,_,;, = 3 isseen in Fig. 8. Figure 9 shows
the attenuation of the evidence obtained as we combine the 7 — h sample with the 7 — p sample.
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Fig. 3: Tri-dimensional representation of R as afunction of the oscillation parameters for the combined CHORUS sample.
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Fig. 4: Bi-dimensional representation of R as a function of the oscillation parameters for the combined CHORUS sample.
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Fig. 5: Tri-dimensional representation of R as a function of the oscillation parameters for the modified CHORUS 7 — h

sample with added observed events.
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Fig. 6: Tri-dimensional representation of R as a function of the oscillation parameters for the combined modified CHORUS
sample.
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Fig. 7: R asafunction of sin® § for Am? = 3.6 eV? for the CHORUS + — 1 sample.
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Fig. 8: R asafunction of sin® § for Am? = 3.6 eV? for the modified CHORUS = — h sample.
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Fig. 9: R asafunction of sin? § for Am? = 3.6 eV for the combined modified CHORUS sample.

5. BAYESIAN CREDIBLE INTERVALS

Given the observations of a single experiment, the probability distribution of the true rate of events r of
the process we are searching for is given by equation 2. For auniform prior, this equation becomes

e " ((r+m)L)"

°o = = — — 7
f(rin,rp, fo = constant) e (r + ) L) dr (7
Inthe case of n = 0, thisequation is simplified to

f(rin = 0,ry, fo = constant) = Le™ ™ = LR, (8)

so that credible intervals are easily recovered in terms of R. For instance, in Fig. 7, the values of sin? 260
are excluded at 90% confidence level between unity and the value crossing the horizontal lineat R = 0.1.

In general, one must compute the value of r¢r, for which the integral of f(r|n,r, f5) between
zero and ¢y, gives the desired confidence level. The corresponding value of R at » = r¢r, can then be
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obtained from equation 4. As an example, the 90% confidence level exclusion in the case of Fig. 8 isthe
region between unity and the point on the right where R crosses the horizontal lineat R = 4.9.

The relation between the R distribution and the credible intervalsis slightly more involved when
several experiments are combined. For two experiments, equation 7 now becomes

e (1 41y L1)™ e (1 4 1) £2)™

bra. fo = constant) — (o
f(r‘n17n2arb17 b2>f constan ) fooo e_rﬁl ((T+Tb1)£1)n] G_TE2 ((T‘ +71b2)»62)n2 dr ( )

where the indices correspond to the two experiments. In this case, we define the probability f of the
true rate r of the process, which is common to both experiments. Each experiment nonethel ess expects
adifferent number of eventsfor a particular value of r, given by »L;. The factorization of the number of
expected eventsinto arate and aluminosity isarbitrary up to a constant factor. It the present case, we can
for example choose to define the luminosity relative to the number of eventsin the - — u channel, so
that £, = 1and £,_j, = Ni /NI # = 1149/4003. The background rates should then be scaled
accordingly: r; # =n] " =0.1andr] " = n] hNI /NI = 1.7. Therate r isthen defined as
r= Ny t'Py—v,-

Integrating equation 9 on r, one can calculate credible intervals and in turn the corresponding
limit values of R. Figure 10 shows the resulting 90% confidence level exclusion contour for the case of
CHORUS. The value of R(r¢r,) in this case is 0.10. The exclusion contour of Fig. 10 is comparable to

the combined exclusion contour shown by the CHORUS Collaboration [4].
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Fig. 10: 90% confidence level exclusion contour for the CHORUS data.

6. CONCLUSIONS

We havetried the Bayesian approach advocated in Reference[1] to present the neutrino oscillation results
of CHORUS. The results of two different samples from the experiment were presented. These two
samples were combined, both for the actual CHORUS results and for modified results having observed
events. The relation between the presentation of the ratio of likelihoods (R) and the credible intervals
was discussed for a uniform prior. Combining different samples, at least in the present case, is an easy
task. For a prior-less presentation of the results, the ratio of likelihoods need only to be multiplied. No
additional information is required.
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Discussion after talk of Mathieu Doucet. Chairman: Peter 1go-Kemenes.

H. Prosper

Just a comment. | very much liked these arguments which are very intuitive, but | should note
that it's only priorlessif in fact you know everything exactly, you know the background and so on, but
if you've other parameters that are not known very well then you have to basically integrate over those
unknown parameters and then the ratio becomes dependent on the prior.

M. Doucet

That isthe case if you have systematic errors for example. Thisiswhat I've actually done.

H. Prosper

...but still | think the presentation of R is rather useful.

J. Linnemann

Seeing the two talks together I'm still alittle bit puzzled. Do the two prescriptions really suggest
a different normalization for the likelihood function? That might be a problem if we want to publish
likelihood functions. The previous speaker talked about the difficulty in combining the two experiments.

M. Doucet

The normalization is a little different from what was done by Eitel. Here, for each sample, |
normalized to the probability of seeing what you see assuming no oscillation signal. | don't see any
problem in using different normalisations.

G. D’Agostini

As you said, the overall normalization is not relevant. It's only if you rescale to 1 that you get
this function which has intuitive interpetation which we explained in our paper, we even give it a name,
now | don't go into detail. What isimportant is the use we make of the function. Mathieu has used it to
eval uate some confidence regions - | would rather call them credibility probability intervals - assuming
some priors. What | now prefer, for example, it is not to give these probability intervals anymore, just
sensitivity bound, and from this plot you see what is the sensitivity bound; you have awall. You say:
There | don’'t know, here | am and I’ve seen nothing, and here is the wall, so we just need to report the
position of thewall. There isno problem of prior dependence or of interpretation.

W. Murray

Just continuing that discussion, | think there is a problem when the wall has some thickness.
When in your plot the wall is rather narrow, it doesn't really matter what you do, you only get a band
that is rather the same. When we went through this problem in the Higgs working group we did not use
the Bayesian integral, but rather the classical confidence level construction, because it moves the wall
dightly further down and left, and excludes alarger part of the areathan in the frequentist definition. It's
asmall effect but why be conservative?
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M. Doucet

Actualy, in the present case, the wall is not that narrow. It has a width of about an order of
magnitude. Thisfigure has alogarithmic scale.

G. D’ Agostini

You have aninfinite order of magnitude to your left, so it’svery narrow. [Laughter] Anyhow, there
is no problem to have this function somewhere in aweb page, parametrized with wavelets, as you like.
Then just for the purpose of saying to your friends what roughly has been seen, we can report the result
with asingle number. But the complete result is that.
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