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Abstract
We try a Bayesian approach to present neutrino oscillation results. To make
this presentation exercise, we are using data published earlier this year. Two
data samples are treated in a Bayesian approach based on the ratio of likeli-
hoods. The combination of these two samples is also considered. To be able
to appreciate the case where a signal is observed, we also apply the technique
to a modified sample with added observed events. Bayesian credible intervals
areobtained.

1. INTRODUCTION

It has been pointed out on several occasions that a Bayesian approach would provide a correct and con-
sistent way to report resultsof searches, when theexperimentsareat thelimit of their sensitivity [1, 2]. In
thefield of neutrino oscillation physics, wheresomeexperimentsareexcluding oscillationswhileothers
areclaiming to seeoscillation signals, areliable techniqueto compareand interpret theresultsof various
experiments is mandatory. In this paper, we use the Bayesian approach advocated in Reference [1] to
interpret neutrino oscillation resultsand to combine them. For thispurpose, weuse the resultspresented
during this past year [3] by the CHORUS [4] experiment at CERN. This experiment is searching for����� ��� oscillations in a ��� beam, by looking for tau decays in an emulsion target. We use this ex-
periment as an example because it has two separate data samples that we can combine, corresponding
to two channels of the tau decay: the muon channel ��� �
	 ������
��� (which we denote � �
	 ) and the
singlecharged hadron channel � � ��� ����� ������� � (which wedenote � ��� ). Thedetails of theanalyses
of these samples are described in Reference [4]. For the present exercise, it suffices to recall that due
to a higher efficiency of the tau detection, the � ��	 sample is more sensitive to oscillations than the
� � � sample in spite of the fact that the � � � branching ratio is larger than the � ��	 branching
ratio. The � ��	 sample also has less expected background than the � ��� sample, although in both
cases the expected number of background events is below unity. CHORUS has reported no candidate so
far. Thesubject of thispaper is restricted to thepresentation of neutrino oscillation results, and not to the
results themselves. After recalling a few Bayesian notions that we have used, we will first present each
sample separately, and we will afterwards combine them. We will close the discussion by considering
theBayesian credible intervals.

2. BAYESIAN PRESENTATION OF RESULTS

Given a process having an unknown rate of occurrence, Bayes’s theorem states that the probability that
this ratehas agiven value � is related to theobserved rate � by the following relation:

� � ��� � �! 
� �"� � � � � � � � �� ��� � � � � � � � �$# �&% (1)

where
� � � � � is the prior; the probability attributed to � before the actual measurement. For a Poisson

process in thepresenceof background, wehave:

� � ��� � �&')( �+*-,�./,103254 �$� �768�:9 �";<�>=�@?
� � � � � % (2)
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where �A9 is the background rate. We write the equation in terms of a luminosity factor ; , which relates
the total number of events expected by the experiment to the rate of events: �CB>D1EFB>G3HIB>J  � �K6L�A9 ��; .
According to Bayes’s theorem, we cannot infer any probability about � from the observation � without
taking into account the prior knowledge

� � � � � we have about � . A convenient way of presenting the
experimental results without having to infer such probabilities is to present the ratio of likelihoods

M � �ON � % �A9 �! 
� ��� � � % �A9 �� ��� � �  QP % � 9 �SR

(3)

This is the ratio of the probability to observe � given the background �A9 and a hypothetical signal � , to
theprobability to observe � given the background �A9 alone. This ratio tends to unity in the region where
theexperiment hasno sensitivity (wherethesignal � would betoo weak) and zero in theregion wherethe
signal isexcluded (wheretheexpected signal would betoo largeto becompatiblewith theobservations).
For aPoisson processwith background, wehave

M � �TN � % �A9 �& ( �/,U4 V 6 �
�A9

=
R (4)

By introducing a prior
� � � � � , this ratio can be related to a probability about � . In particular, for the case

of a constant prior
� � � � �W YX[Z �@\�][^F�_] with a null observation �  YP , the credible interval for a 90%

confidence level limit can be retrieved by putting
M  `P R V .

To take into account the systematic errors on the number of events expected, the likelihoods� ��� � � % �A9 � can be convoluted with the probability distribution of the number of events expected given
the oscillation parameters and the systematic error. In the present case, we assumed the 17% systematic
error presented by theCHORUS Collaboration.

3. PRESENTATION OF INDIVIDUAL SAMPLES

Neutrino oscillationsaredescribed by two parameters: amixing angle a and thesquared massdifferenceb<ced
between theneutrino mass states. Theoscillation probability is given by

f�g�hAijg[k<lnmAo p d!q a mAo p d � V R qsr b<c dStvuSw g � % (5)

where
t

is the flight length of the neutrinos and
w g

their energy. Therefore, the expected rate of events
will dependon thesetwovariables(�  ��x mAo p d q a %

b<c d�y
), andsowill theratio

M � ��x mAo p d q a %
b<c d[y N � % �:9 � .

According to recent data, the CHORUS experiment would expect to observe a maximum ofz � i �{�| D  )}
PsPS~ events in its � � 	 sample assuming complete conversion of the ��� neutrinos from
the beam into � � neutrinos (

f�g�hFi�g[k  V ). This expected number of events will vary with the oscil-
lation parameters according to equation 5. It will also be further modified by the change in detection
efficiency asa function of theenergy, so asa function of

b<ced
which modifies theenergy distribution of

the oscillated neutrinos. In the present exercise, we assumed a constant detection efficiency as a func-
tion of energy 1. For the � � 	 sample, CHORUS expects an average background of � �

i �9  �P R V
event. Taking into account the dependence of the expected number of events on the oscillation param-
eters, the energy spectrum of the neutrinos and the flight length of the neutrinos, one obtains values ofM � ��x mAo p d q a %

b<c d�y N � % �A9 � for the full oscillation parameter space. Figure 1 shows a 3-D representation
of
M

as a function of
mAo p d q a and

b<ced
. The value of

M
varies from unity in the region where the

CHORUS experiment is insensitive, to zero in the region it excludes. The gradient of colour indicates
the change from the excluded region to the region of insensitivity. The region in-between is the one for
which CHORUS has difficulties concluding about theexistenceof neutrino oscillations.

1The information about the variation of the detection efficiency in CHORUS as a function of the energy is not available
publicly at present.
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Fig. 1: Tri-dimensional representation of � as a function of theoscillation parameters for theCHORUS �7��� sample.

Figure2 presentsthesamekind of information for the � ��� sample. Theregion whereCHORUS
excludes neutrino oscillations is in this case smaller than with the � ��	 sample, which reflects the fact
that the � � � sample is smaller and has more expected background. CHORUS expects to observe a
maximum of

z � ij�{�| D  VSV }
� eventsin thissamplefor
f�g�hAijg[k  V , with an averageexpected background

of � � i��9  QP R�� event.

Fig. 2: Tri-dimensional representation of � as a function of theoscillation parameters for theCHORUS �7��� sample.
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4. PRESENTATION OF COMBINED SAMPLES

The
M

function for the combination of several samples is given by the multiplication of the
M

functions
of thedifferent samples: M � �ON�� mA�S�<��� ��m �! Q�v�� M � �ON mA�S�<��� ��� � R (6)

Figures 3 and 4 show the kind of plots presented in the preceding section, for the combination of the
� ��	 and � � � samples of CHORUS. Since the � � � sample is statistically less significant, the
overall result is very similar to theoneof the � �Y	 sample.

Having presented the recent CHORUS results in a Bayesian way, we can turn to the question of
what would happen in thecaseof an observation different from zero for oneof thesamples. For instance,
let usconsider thehypothetical caseof an observed number of events in the � �
� sampleof � � ij�  `~ .
In thisparticular case, without taking into account theenergy of thetau candidates, Fig. 2 would look like
Fig. 5. Wenow seeariseaboveunity of

M
for certain valuesof theoscillation parameters, corresponding

to the region where the observation of � � i��  �~ is more probable in the case of neutrino oscillations
than in the case of the absence of neutrino oscillations. The actual interpretation of this rise of

M
in

terms of neutrino oscillations will depend on our knowledge of the problem, so on the prior. In this
particular example, further information can beobtained by combining the � �
� samplewith the � ��	
sample. For thecasewherea � �Y	 samplewith � � i �  QP and a � �
� samplewith � � i��  Q~ would
be combined, Fig. 6 would be obtained. We clearly see that the observed rise in the � � � sample is
attenuated by thenull result of the � ��	 sample, which is moresensitive to oscillations.

To better appreciate the effect of combining two samples, Figs. 7, 8 and 9 show the value of
M

as
a function of

mAo p d q a for a given value of
b<ced

. We arbitrarily chose
b<ced  �~ R�� eV

d
. The transition

between exclusion and insensitivity for the � � 	 sample with � � i �� �P is clearly seen in Fig. 7,
whereas the indication of signal in the � ��� sample with � � i��  �~ is seen in Fig. 8. Figure 9 shows
theattenuation of theevidenceobtained as wecombine the � ��� samplewith the � �Y	 sample.

Fig. 3: Tri-dimensional representation of � as a function of theoscillation parameters for thecombined CHORUS sample.
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Fig. 4: Bi-dimensional representation of � as a function of theoscillation parameters for thecombined CHORUS sample.

Fig. 5: Tri-dimensional representation of � as a function of the oscillation parameters for the modified CHORUS �8���
samplewith added observed events.
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Fig. 6: Tri-dimensional representation of � as a function of the oscillation parameters for the combined modified CHORUS

sample.

Fig. 7: � as a function of  ¢¡-£O¤�¥ for ¦�§W¤+¨e©�ª5« eV ¤ for theCHORUS �7��� sample.
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Fig. 8: � as a function of  ¢¡-£ ¤ ¥ for ¦�§ ¤ ¨e©[ª¬« eV ¤ for themodified CHORUS �­��� sample.

Fig. 9: � as a function of  >¡¬£T¤�¥ for ¦�§W¤C¨e©[ª¬« eV ¤ for thecombined modified CHORUS sample.

5. BAYESIAN CREDIBLE INTERVALS

Given the observations of a single experiment, the probability distribution of the true rate of events � of
theprocess wearesearching for is given by equation 2. For auniform prior, this equation becomes

� � ��� � % � 9 %
� �  QX�Z �@\�][^F�+] �! ( �/,U4®�$� �76¯�A9 �";7�¢=°± ( �/,²4 �$� �768�A9 �";<�>=³# � R (7)

In thecaseof �  QP , this equation is simplified to
� � ��� �  QP % �:9 %

� �  QX�Z �!\�]�^��+] �! n; ( �/,²4  n; M % (8)

so that credible intervalsareeasily recovered in termsof
M

. For instance, in Fig. 7, thevaluesof
mAo p d q a

areexcluded at 90% confidencelevel between unity and thevaluecrossing thehorizontal lineat
M  QP R V .

In general, one must compute the value of �µ´·¶ for which the integral of
� � ��� � % �A9 %

� � � between
zero and �µ´S¶ gives the desired confidence level. The corresponding value of

M
at �  �µ´·¶ can then be
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obtained from equation 4. Asan example, the90% confidence level exclusion in thecaseof Fig. 8 is the
region between unity and thepoint on the right where

M
crosses thehorizontal lineat

M  n} R � .
The relation between the

M
distribution and the credible intervals is slightly more involved when

several experiments arecombined. For two experiments, equation 7 now becomes

� � ��� �v¸ % � d % �A9 ¸ %
¹ 9 d %

� �  QX[Z �!\º][^F�_] �& ( �/,²4�» ��� �76¯�A9 ¸ ��; ¸ �>= » ( �µ,U4 ¤ �$� �768�:9 d ��; d �>= ¤°± ( �/,U4 » �$� �768�A9 ¸ �"; ¸ �¢= » ( �/,U4 ¤ �$� �­68�A9 d �"; d �¢= ¤ # �&% (9)

where the indices correspond to the two experiments. In this case, we define the probability
�

of the
true rate � of the process, which is common to both experiments. Each experiment nonetheless expects
adifferent number of events for aparticular valueof � , given by � ; � . The factorization of thenumber of
expected events into arateand aluminosity isarbitrary up to aconstant factor. It thepresent case, wecan
for example choose to define the luminosity relative to the number of events in the � ��	 channel, so
that ; � i �  V and ; � ij�  z � ij�{�| D u z �

i �{�| D  VsV }¼� u }
PsPs~ . The background rates should then be scaled
accordingly: � �

i �
9  � �

i �
9  QP R V and � �

i �
9  � � ij�9 z � ij�{�| D u z �

i �{�| D  V R r . The rate � is then defined as
�  z � i �{�| D f�g[hAi�g�k .

Integrating equation 9 on � , one can calculate credible intervals and in turn the corresponding
limit values of

M
. Figure 10 shows the resulting 90% confidence level exclusion contour for the case of

CHORUS. The value of
M � �µ´·¶ � in this case is 0.10. The exclusion contour of Fig. 10 is comparable to

thecombined exclusion contour shown by theCHORUS Collaboration [4].

Fig. 10: 90% confidence level exclusion contour for theCHORUS data.

6. CONCLUSIONS

Wehavetried theBayesian approach advocated in Reference[1] to present theneutrino oscillation results
of CHORUS. The results of two different samples from the experiment were presented. These two
samples were combined, both for the actual CHORUS results and for modified results having observed
events. The relation between the presentation of the ratio of likelihoods (

M
) and the credible intervals

was discussed for a uniform prior. Combining different samples, at least in the present case, is an easy
task. For a prior-less presentation of the results, the ratio of likelihoods need only to be multiplied. No
additional information is required.
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Discussion after talk of Mathieu Doucet. Chairman: Peter Igo-Kemenes.

H. Prosper

Just a comment. I very much liked these arguments which are very intuitive, but I should note
that it’s only priorless if in fact you know everything exactly, you know the background and so on, but
if you’ve other parameters that are not known very well then you have to basically integrate over those
unknown parameters and then the ratio becomes dependent on theprior.

M. Doucet

That is thecase if you havesystematic errors for example. This is what I’veactually done.

H. Prosper

...but still I think thepresentation of
M

is rather useful.

J. Linnemann

Seeing the two talks together I’m still a little bit puzzled. Do the two prescriptions really suggest
a different normalization for the likelihood function? That might be a problem if we want to publish
likelihood functions. Thepreviousspeaker talked about thedifficulty in combining the two experiments.

M. Doucet

The normalization is a little different from what was done by Eitel. Here, for each sample, I
normalized to the probability of seeing what you see assuming no oscillation signal. I don’t see any
problem in using different normalisations.

G. D’Agostini

As you said, the overall normalization is not relevant. It’s only if you rescale to 1 that you get
this function which has intuitive interpetation which we explained in our paper, we even give it a name,
now I don’t go into detail. What is important is the use we make of the function. Mathieu has used it to
evaluate some confidence regions - I would rather call them credibility probability intervals - assuming
some priors. What I now prefer, for example, it is not to give these probability intervals anymore, just
sensitivity bound, and from this plot you see what is the sensitivity bound; you have a wall. You say:
There I don’t know, here I am and I’ve seen nothing, and here is the wall, so we just need to report the
position of thewall. There isno problem of prior dependenceor of interpretation.

W. Murray

Just continuing that discussion, I think there is a problem when the wall has some thickness.
When in your plot the wall is rather narrow, it doesn’t really matter what you do, you only get a band
that is rather the same. When we went through this problem in the Higgs working group we did not use
the Bayesian integral, but rather the classical confidence level construction, because it moves the wall
slightly further down and left, and excludesa larger part of thearea than in the frequentist definition. It’s
asmall effect but why beconservative?
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M. Doucet

Actually, in the present case, the wall is not that narrow. It has a width of about an order of
magnitude. This figurehas a logarithmic scale.

G. D’Agostini

You havean infiniteorder of magnitudeto your left, so it’svery narrow. [Laughter] Anyhow, there
is no problem to have this function somewhere in a web page, parametrized with wavelets, as you like.
Then just for the purpose of saying to your friends what roughly has been seen, we can report the result
with asinglenumber. But thecomplete result is that.

197


