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1. HYPOTHESISTESTING

Modern statistics dates back to the beginning of the 20th century. It developed in response to questions
raised in two important new areas:

e Biometrics — the quantitative measurement of living things, as pioneered by Darwin and Galton.
e Production Control — process monitoring in industrial mass production.

In both these areas, a starting point for scientific enquiry is usually the formulation and testing of
a null hypothesis, the hypothesis of no change. In agricultural trials, for example, the null hypothesis
would assert that a new fertiliser had no effect on wheat yield. For an industrial production line it would
assert that the processis under control.

Faced with growing numbers of enthusiastic data gatherers, early statisticians saw benefitsin de-
vising simple rules for testing the null hypothesis. Pressure of work dictated expediency: “timeis pre-
cious — analyse the data and move on to the next client”. The statistician’s perspective was made explicit
by Neyman. He argued that:

The ensemble = alife-time of statistical advice.

Neyman's advice was to control the frequency of Type | error within this ensemble. In other words,
in your career as a statistician, arrange that the frequency of rejecting null hypotheses incorrectly is no
more than, say, 5%. Naturally, you should also try to maximise the power within this constraint, i.e., you
should try to make sure that you reject null hypotheses as often as possible when they are false.

2. CONFIDENCE INTERVALS

In many applications, the statistical model is determined by a real-valued parameter 6. To obtain an
interval estimate for 6, Neyman suggested testing each value of 0 individually as a null hypothesis; the
confidence region is then the set of § that are not rejected. For a suitable class of tests, the region will be
aninterval. If all of the tests have a5% Type | error then a 95% confidence interval is obtained.

By constructing intervals in this way, you can ensure that in your lifetime as a statistician you
will successfully cover the true value of the parameter 95% of the time (no matter what the true value
of the parameter is). In ather words the coverage probability is 95% on average. From the statistician’s
perspective, thisis highly satisfactory!

So how does thiswork in practice? A client collects data, x, and wants to test the null hypothesis
that the mean of the sampled population is some specified number . The client goes to a statistician and
asksfor aruling. Here are the strategies of two statisticians who specialise in controlling Type | error.

Statistician A No matter what x or 6 is, reject § when U < 1/20, where U is a newly simulated
random variable from auniform distribution on (0, 1).

Using this procedure, Statistician A will reject the null hypothesis 5% of the time. The Type |
error probability is 5%. The power is also 5%.

Statistician B When 54.0 < 6 < 54.0001 don’t reject it, otherwise reject  when U < 1/20,
where U isanewly simulated random variable from auniform distribution on (0, 1). Here the probability
of Type | error is bounded above by 5%.
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What will the confidence intervals look like? For Statistician A the confidence interval will be
empty 5% of the time and it will be the whole real line 95% of the time. The statistician is happy
because the coverage probability is 95%. For Statistician B, 5% of the time the confidence interval will
be (54.0,54.0001) i.e., some arbitrary small interval, and the rest of the time the confidence interval
will again be the whole real line. The coverage probability is now dlightly larger than 95%. Again the
statistician is happy.

Now look at things from the client’s perspective. From Statistician A they get either the wholeline
or the empty set. Thisis clearly unacceptable to the client. So they go to Statistician B, and luckily get
the interval (54.0,54.0001). Now the client is happy too, because the interval is small. Does this make
sense?

A similar situation arises when constructing confidence intervals for a parameter constrained to be
positive. Inthe simplest case, the model isthat the observation z is sampled from a Gaussian distribution
with mean . and known variance o2, where 1 > 0. The two-sided test of the hypothetical value 1 rejects
when |z — u|/o islarger than 1.96. The 95% confidence interval C'(x) associated with this family of
testsis given by

(x — 1.960,z 4+ 1.960) if z > 1.960 ,
C(z) = (0,2 + 1.960) if z > —1.960, (1)
empty if z < —1.960.

From the point of view of coverage probability thereis nothing particularly wrong with thisfamily
of intervals. They do cover the unknown value of p with the right frequency. However, they are not
necessarily asatisfactory summary of our beliefsabout .. For example, if o = 1 and z+1.960 = 0.0001,
the confidence interval for p is (0,0.0001), an unconvincingly precise confidence interval.

Neyman would say: “a bad test has led to a bad confidence interval”. In Neyman's view a good
system for constructing confidence intervals is one which minimises the chance of the intervals contain-
ing false values of the parameter. This relates directly to the notion of uniformly most powerful (UMP)
tests. Unfortunately, UMP tests don’'t often exist. Neyman's suggested compromise is to use tests and
hence confidence intervals based on the maximised likelihood ratio (i.e., the recently rediscovered “ uni-
fied approach”).

3. PROBLEMSWITH CONFIDENCE INTERVALS
3.1 Discreteness

In discrete problems, i.e., problem involving counts, coverage probabilities for confidence intervals can-
not be fixed precisely at 95%. This is because the associated tests of null hypotheses have discrete
probability distributions. The usual practice is to construct conservative intervals, i.e., intervals whose
coverage probability is no smaller than 95%. Various methods have been proposed to obtain coverage
probabilities closer to the nominal value.

3.1.1 Randomisation

Suppose that the test statistic 7'(z, 8) for the hypothetical value 6 rejectswhenT" > k. Thecritical value
k has to be chosen so that the probability of rejection is 5% under the null hypothesis 6. If T has a
discrete distribution, then it may turn out, for example, that £ = 5 istoo large and £ = 4 is too small,
i.e, P(T>5)<0.05and P(T > 4) > 0.05. One suggestion isto reject when 7' > 5 and when 7' = 4,
reject when
0.05 — P(T > 5)

P(T=4)

U<

where U ~ Unif(0, 1).
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The rejection probability is now exactly 5% and so the confidence interval constructed from this
type of test will have exact coverage probability

Another possibility isto convert the discrete variable into a continuous one, e.g.,

T+ U where U ~ Unif(0,1).

Theseideas are mathematically interesting, but they are rarely used in practice. It should be noted
however that randomised intervals are always shorter than conservative intervals constructed without
randomisation.

Yet another technique is to use mid-p values. In this approach, tail probailities are calculated with
the convention that

1
P(T24)z§p4+p5+....

Interval s obtained in this manner may have good average coverage probabilities.

3.2 Post-data conditioning

Mathematical statisticians have devoted a great deal of energy to the study of Neyman's approach to
hypothesis testing and confidence intervals in the past 70 years. Many disturbing aspects of the method
have been exposed, despite its widespread acceptance in applications. Important questions are raised
by the possibility of post-data conditioning and various illustrative examples have been devised and
discussed.

3.21 Two measuring devices

Suppose that you need to measure a physical quantity, and two portable measuring devices are available,
both measure subject to experimental error. Thefirst has standard deviation 1 and the second has standard
deviation 10. On any particular day, only one of the devices will be in the |aboratory and there’'s a 50%
chanceit isthe accurate one. Nevertheless you plan to use whichever device is there. From a frequentist
viewpoint, your average standard error will then be 7.01. So when you make a measurement x, you can
report a 95% confidence interval (z — 13.9, z + 13.9).

However, when you arrive in the laboratory, you see that the the accurate device is there. Now it
seems sensible to report a confidence interval (z — 1.96, x + 1.96). In other words, when you are given
information about which device is available, you construct a different confidence interval. Thisis an
example of post-data conditioning.

3.2.2 Estimating the middle of an interval

Another example of thistypeis as follows. Suppose that asample (z1, ..., x,) istaken from a uniform
distribution on the interval (6 — 1/2, 6 + 1/2), where 6 is an unknown parameter.

The sufficient statistics are x i, and zmax. A simple estimate of 6 is

Tmin T Tmax

2

81

so that

(Z — bp, & +by) where 2b, =1 — (0.05)/"
is a 95% confidence interval for . Notice that the width of the interval isfixed at 2b,,, regardless of the
valuesin the sample (z1, ..., z,). When n = 10, for example, the width is 0.26.

Now consider the range r = (Zmax — Tmin)- If 7 = 0.99 say, we know for sure that ¢ is within
0.01 of (zmin + Tmax)/2. However, when n = 10, for example, the confidence interval is certain to
cover the true value of 6. In fact the confidence interval is 26 times wider than it need be.
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In the statistical literature z,.x — Tmin 1S SAd to be an ancillary statistic. It is afunction of the
sufficient statistics that has a distribution that does not involve the unknown parameter 6. It is reasonable
to condition on the value of the range » and construct a conditiona confidence interval based on z.
Intervals obtained in this way will have a width which depends on . The coverage probability will be
right for each value of the conditioning variable and since the distribution of the conditioning variable
does not depend on 4, the correct coverage probability is guaranteed universally.

3.2.3 Poisson count data with background
For Poisson count data with a known background b, the probability that n events are observed is

—(b+6) n
P(N =n) = ﬂ, where b,0 > 0.
n:
The sufficient statistic for 6 isn.

Conceptually, the random variable N can be writtenas N = X + Y where X ~ Poisson(b) and
Y ~ Poisson(d), athough neither of these component variables are observable.

Since
N <n implies X <n,
it istempting to condition on the event X < n. However, the sufficient statistic n is one dimensional and
there is no non-trivial function of n with adistribution not involving 6. In particular, theevent X < n is

not ancillary. Because of this there is no guarantee that the coverage probability of intervals obtained by
conditioning on X < n will be correct. It is also worth noting that

N <n adsoimplies X <n+1,

and it is not clear whether there are advantages in conditioning on X < n + 1 rather than X < n.

3.2.4 Thestandard ¢-interval

Finally, there are still surprises in even the most standard problems. Suppose that (z1,...,z,) are
sampled from a Gaussian with mean § and variance o2, both unknown. The usual 100(1 — )% C.I. for
fis

S

S
C(z,s) = (T - ta/Q%aT + ta/2%>

where 7 and s? are the sample mean and sample variance and t,, is the 100(1 — «) percentile of the ¢
distribution with n — 1 degrees of freedom.

For n = 2, a = 0.5, we thus have for al 0, o2,
Py 2(0 € C(z.s)) =05
However, Brown (Ann. Math. Stat. 38, 1967, 1068-1071) showed that

Pyo2(0 € O(T,8) | [2]/s < 1+V2) >

Wl N

In general, aset A issaid to be anegatively biased relevant subset for a100(1 — «)% confidence interval
C, if thereexistse > 0 with
PleCr|lzeAd)<l—a—c¢

for every 6, and said to be positively biased relevant subset if
PeCp|lzeA)>1—a+e

for some e > 0. Inthisexample,{(x1,...,7,) : [T|/s <1+ /2} isapositively biased relevant subset.
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3.3 Inadmissibility
Even the most obvious confidence regions may turn out to have unacceptable properties. This is par-

ticularly so for higher dimensional regions. Suppose that you have p quantities p, ..., u, of interest
and measurements z1, ..., x, on each. For simplicity assume the measurements all have a Gaussian
distributions with standard deviation 1. The obvious confidence region for (1, ..., fp) iS

p

C(x) = {p: ) (xi — ) < x5 (95%)}

i=1

where x2(95%) isthe 95-percentile of the x? distribution with p degrees of freedom.
The coverage of the confidence region is exactly 95%. However, when p > 2 the region

p

Cyslx) = (= Dot — ) < X3(95%)}
=1

wheret; = 0if Y22 <p—2andt; = z;(1 — (p — 2)/ 3 2?) otherwise, has the same volume but a
higher coverage probability.

4. BAYESIAN METHODS

Bayesian methods predate the frequentist approach of Neyman and his co-authors. It can be argued that
they are the ‘right’ way to do statistical inference, i.e., the right way to modify one's beliefs in the face
of uncertain information. A stumbling block is the question of the choice of prior, since posterior beliefs
are areflection of prior beliefs and the likelihood function. A number of suggestions have been made for
an ‘objective’ choice of prior. Foremost among these is Jeffreys prior.

4.1 Jeffreyspriors

Consider x ~ Binomia(n,p). A plausible ‘non-informative’ prior for p is the uniform prior on (0, 1),
expressing ‘ignorance’ about the value of p. Note, however, that if p ~ Unif(0, 1), the square root of p
has a non-uniform distribution with higher density near 1 than 0. Thus, ignorance about p trandates to
knowledge about the parameter . /p.

In some settings, it might be argued that thereisasingle ‘Natural’ or ‘important’ parameterisation,
so that a specification of ignorance for that parameterization is natural. In others, priors which are non-
informative for some parameterisations but not others may be undesirable.

For amodel with parameter space © C R, the Fisher information is

2
10— iy (2oL D)

where f(z | 6) isthe sampling distribution and the expectation is taken over f(z | €). Under regularity

conditions, )
1(6) = —E, <—a logg;gf | 9”) .

In such a setting, the Jeffreys Prior for 0 is defined by 7(#) ~ 1(#)'/?, to be proportional to the square
root of the Fisher Information at 6. Note that in general the Jeffreys prior may be improper (i.e., it may
not have afinite integral).

Note that by the chain rule,



If 6 has the Jeffreys prior and h is a monotone differentiable function of 6, the prior induced on h(#) by
the Jeffreys prioron 6 is

dh

w(h(0)) = 7(0)| S~ ox T(0)72

7 = I(h(6) 2.

Thus the Jeffreys priors are invariant under reparameterisation.

Recall the interpretation of 7(6) as the ability of the data to distinguish between 6 and 6 + dé.
If the prior favours values of 6 for which I(6) is large, the effect is to minimize the effect of the prior
distribution relative to the information in the data and hence to be uniformative about 6.

4.1.1 Jeffreysprior for count data
The Jeffreysprior for asignal 6 with Poisson datan and background b isinversely proportional to /6 + b.
The posterior density of 6 isthen proportional to
1 e~ 0+ (g 4 p)n
VO +b n!

The 95% highest posterior density (HPD) credible interval, is the interval of 8 values that contains 95%
of the posterior density, with the property that any value of 6 outside the interval has alower density than
any valueinside.

, for 6 >0.

5. SUMMARY
Increasingly, Bayesian methods are being used in the analysis of complex data sets, where typically there
is

e ahigh dimensional parameter space

e areservoir of wisdom from which prior beliefs can be distilled (at |east approximately)

¢ willingness to use computer intensive methods for simulation and model-sensitivity analysis.

Modern statistical practice distinguishes between routine problems, where standard freguentist
methods are used (small consultancy fee!), and elaborate problems, where computer-intensive Bayesian
methodsareincreasingly popular. Examplesare: image processing, large-scaleclinical trialsin medicine,
mixture modelling, non-parametric regression, etc. Thetechniquesinvolve sampling the (high-dimensional)
parameter 6 from a posterior density proportional the product of the likelihood and the prior density. The
Metropolis algorithm (Markov chain Monte Carlo) is used to provide the samples.

It should be noted that Bayesian methods are used routinely in engineering applications. Signal
processing and control engineering depend heavily on the Kalman filter, a Bayesian updating formula
applicable to linear Gaussian systems. There has been recent interest in extending these techniques to
non-Gaussian signal processing problems. The new computer-intensive techniques are known generi-
caly as particlefilters.

5.1 Theindividual and the collective

Neyman devised confidence intervals as a method for analysing mass-produced statistical problems:
e no need to dlicit prior information (or build an expert system)
e simpleto construct (for naive practioners)
e good for the ensemble (not necessarily good for the individual)

Thereisan analogy with the popularity of certain computer algorithms. For example, QUICK SORT
is the most commonly used method for sorting N numbers. It is a randomised agorithm, with an ex-
pected running time of A;N log(NN). The worst case running time is of order N2; this can happen by
chance on any particular occasion.
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The agorithmisgood for the ensemble, but you might be the unlucky one! What to do about it? It
turns out that there is a different (non-randomised) algorithm which runsin A; N log(N) time, but with
Ag > Aj. If you only had one very large set of numbersto sort in your life, it would be a*safer’ strategy
to use this algorithm.

Thelesson for data analysisisthat if you are going to spend alot of time and money on collecting
and analysing a particular set of data, you may not be interested in how a particular statistical technique
performsfor the ensemble. It makes more sense to adopt a selfish approach and build personal confidence
in your knowledge. In such circumstances, Bayesian methods are appropriate.

5.1.1 Reading
The italicised terms in the text are defined and placed in a historical context in; The Encyclopaedia of
Satistical Science.

There is till a great deal of interest in comparing various methods of constructing frequentist
confidence intervals.

Newcombe(1998) Two-sided confidence intervals for a single proportion: comparison of seven
methods. Satisticsin Medicine

Newcombe(1998) Two-sided confidence intervals for differences between two proportions. com-
parison of eleven methods. Satisticsin Medicine

Bayesian methodology is covered in

The Bayesian Choice. Christian Robert

Bayesian Methods: Kendall’s Theory of Satistics, Tony O’ Hagan
Bayesian Statistics, many volumes edited by Bernardo and Smith.

Bayesian computation via Gibbs and related Markov chain Monte Carlo methods (with discus-
sion), Journal of the Royal Satistical Society (B), Vol 55, pp 3 —, 1988.
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Discussion after talk of Peter Clifford. Chairman: David Cassdl.

Giulio D’ Agostini

Can you please comment about the physicist’s point of view, which has been essentially oriented
to induction and inference? You have shown the statistician’s point of view, and | am happy, it was nice,
but the physicist’s point of view was always induction. We try to understand something about the nature
of making statements about true values, about theories and so on.

Peter Clifford

Well, maybe | didn't spell it out, but before | came here | assumed that all physicists were
Bayesians. Physicists are interested in induction, they want to modify their beliefs about the true state of
nature on the basis of the data that they’ve observed. When you are busy integrating out parameters, in a
sense, you keep slipping into a Bayesian mode of operating. What |'ve been seeing at this meeting isa
sort of flip-flop phenomenon between Bayesian and classical ways of thinking. People in the workshop
who | assumed were avowedly Bayesians, are now saying: ‘Well classical methods are maybe OK'.

My training is as a frequentist, | was a student of Neyman's, but | would say that nhowadays
since we have the computing resources available, in specific problems where we've got the time and the
manpower to really analyze these problems, Bayesian methods are the best way forward.

Michael Woodroofe

| was interested in your statement that the prior doesn’t matter too much in high-dimensional
problems. That’s not universally true. We know exampleswhereit’sfalse, for example order parameters.
Could you give us a little idea of when and where it will be true that the prior doesn’'t matter in high-
dimensional problems?

P. Clifford

I may have appeared to say it. What | meant to say was that Bayesian methods are being used in
high-dimensional problems, and that it appearsthat they’re getting away with it, not because the problems
are high-dimensional, but because in the examples which work, there's sufficient data to swamp the
priors. So what | wanted to say was that the methods which are being used successfully in practice, are
methods where the data are really telling you what's going on. The prior isreally there as a support for
your inference, but it’s a support which gradually you're able to remove, as the data starts to dominate.

F. James

I think we should be careful not to confuse two different situations. One is where there is a
prior probability, a phase space or something, and that’'s the case for Kalman filtering, the maximum
entropy method and so forth, and there everyone uses those methods. You don't have to be a Bayesian,
that’s because the idea of using a prior probability makes sense because there is a prior probability. The
problem s, do you want to put in aprior probability for something like the mass of the Higgs where there
is no prior probability? | define a Bayesian as somebody who uses a prior probability that he pulls out
of ahat, for example. The physicist who tries to be objective does not want to put in his prior feelingsin
those cases.
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P. Clifford

Let mejust say that in signal processing thereisno prior when you’relooking at atracking problem
and you don’'t know where some object of interest is. You're attempting, by radar scanning or some
other means, to work out where the object is. The object actually starts off at a fixed position. This
position is not random but when you use the Kalman filter for the problem, you expediently put in some
representation of your beliefs about where the object might have been initialy. What happensis that as
the dataflowsin, theinitial belief is modified by real data, using Bayes formula. It doesn't really matter
that you might have got things wrong for the first few observational steps because the data starts to
swamp the prior. It's not true that there’s a natural prior in Kalman filtering. The prior is just something
convenient and vague.

F. James

That's just the case where it doesn’'t matter. If it doesn’t matter what prior you put in, then that's
fine aswell. The problem iswhen it does matter, and you don’t want to put aprior in, and that's the case
that we're worried about here.

P. Clifford

Right, but the Bayesian response to that would be that you do a sensitivity analysis. Let’s see how
sensitive the conclusions are to the prior that you put in.

H. Prosper

My comment was somewhat similar to Fred’s. Of course I’'m quite happy to use these methods,
but the difficulty that | always find is that my colleagues will say "well, but our result changes if one
changes the prior because we have seen no events', and the question is what should be the response. |
agree with you, the response should be that if in fact your answer depends very much on the prior, then
the conclusion should be that you have insufficient data to say anything sensible.

P. Clifford

| think that’s absolutely right, but if you're in asituation with high prior sensitivity, where the data
isrealy not telling you awhole lot, then that’s an important piece of information too.
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