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1. HYPOTHESIS TESTING

Modern statistics dates back to the beginning of the 20th century. It developed in response to questions
raised in two important new areas:� Biometrics — thequantitativemeasurement of living things, as pioneered by Darwin and Galton.� Production Control — process monitoring in industrial mass production.

In both these areas, a starting point for scientific enquiry is usually the formulation and testing of
a null hypothesis, the hypothesis of no change. In agricultural trials, for example, the null hypothesis
would assert that anew fertiliser had no effect on wheat yield. For an industrial production line it would
assert that theprocess isunder control.

Faced with growing numbers of enthusiastic data gatherers, early statisticians saw benefits in de-
vising simple rules for testing the null hypothesis. Pressure of work dictated expediency: “ time is pre-
cious– analyse thedataand moveon to thenext client” . Thestatistician’sperspectivewasmadeexplicit
by Neyman. Heargued that:

Theensemble= a life-timeof statistical advice.

Neyman’s advice was to control the frequency of Type I error within this ensemble. In other words,
in your career as a statistician, arrange that the frequency of rejecting null hypotheses incorrectly is no
more than, say, 5%. Naturally, you should also try to maximise thepower within thisconstraint, i.e., you
should try to makesure that you reject null hypotheses as often as possiblewhen they are false.

2. CONFIDENCE INTERVALS

In many applications, the statistical model is determined by a real-valued parameter
�
. To obtain an

interval estimate for
�
, Neyman suggested testing each value of

�
individually as a null hypothesis; the

confidence region is then theset of
�

that arenot rejected. For asuitableclassof tests, the region will be
an interval. If all of the testshavea5% Type I error then a95% confidence interval is obtained.

By constructing intervals in this way, you can ensure that in your lifetime as a statistician you
will successfully cover the true value of the parameter 95% of the time (no matter what the true value
of the parameter is). In other words the coverage probability is 95% on average. From the statistician’s
perspective, this ishighly satisfactory!

So how does this work in practice? A client collects data, � , and wants to test the null hypothesis
that themean of thesampled population issomespecified number

�
. Theclient goes to astatistician and

asks for a ruling. Hereare thestrategies of two statisticians who specialise in controlling Type I error.

Statistician A No matter what � or
�

is, reject
�

when �����	��
	� , where � is a newly simulated
random variable from auniform distribution on 
��	���	� .

Using this procedure, Statistician A will reject the null hypothesis 5% of the time. The Type I
error probability is5%. Thepower is also 5%.

Statistician B When ��������� � ���������	���	� don’t reject it, otherwise reject
�

when �����	��
	� ,
where � isanewly simulated random variablefrom auniform distribution on 
��	���	� . Heretheprobability
of Type I error is bounded aboveby 5%.
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What will the confidence intervals look like? For Statistician A the confidence interval will be
empty 5% of the time and it will be the whole real line 95% of the time. The statistician is happy
because the coverage probability is 95%. For Statistician B, 5% of the time the confidence interval will
be 
��������	�����������	���	� i.e., some arbitrary small interval, and the rest of the time the confidence interval
will again be the whole real line. The coverage probability is now slightly larger than 95%. Again the
statistician is happy.

Now look at thingsfrom theclient’sperspective. From Statistician A they get either thewhole line
or the empty set. This is clearly unacceptable to the client. So they go to Statistician B, and luckily get
the interval 
������������������	���	��� . Now the client is happy too, because the interval is small. Does this make
sense?

A similar situation ariseswhen constructing confidence intervals for aparameter constrained to be
positive. In thesimplest case, themodel is that theobservation  issampled from aGaussian distribution
with mean ! and known variance "$# , where !&%'� . Thetwo-sided test of thehypothetical value ! rejects
when (  *)+!,( ��" is larger than ����-�. . The -	� % confidence interval /0
1 2� associated with this family of
tests is given by

/0
3 2�54

1 6)7�	��-	.�"8�9 6:7�	��-	.�";� if  <%=�	��-	.�"6�

��	�9 6:7�	��-	.�">� if  <%=)?�	��-	.�" ,
empty if  <�=)?�	��-	.�">�

(1)

From thepoint of view of coverageprobability thereisnothing particularly wrong with this family
of intervals. They do cover the unknown value of ! with the right frequency. However, they are not
necessarily asatisfactory summary of our beliefsabout ! . For example, if "@4=� and  5:0�	��-	.�"@4=�	���	���	� ,
theconfidence interval for ! is 
��	���	���	���	��� , an unconvincingly preciseconfidence interval.

Neyman would say: “a bad test has led to a bad confidence interval” . In Neyman’s view a good
system for constructing confidence intervals is one which minimises the chance of the intervals contain-
ing false values of the parameter. This relates directly to the notion of uniformly most powerful (UMP)
tests. Unfortunately, UMP tests don’t often exist. Neyman’s suggested compromise is to use tests and
hence confidence intervals based on the maximised likelihood ratio (i.e., the recently rediscovered “uni-
fied approach”).

3. PROBLEMS WITH CONFIDENCE INTERVALS

3.1 Discreteness

In discreteproblems, i.e., problem involving counts, coverageprobabilities for confidence intervals can-
not be fixed precisely at -	� %. This is because the associated tests of null hypotheses have discrete
probability distributions. The usual practice is to construct conservative intervals, i.e., intervals whose
coverage probability is no smaller than -	� %. Various methods have been proposed to obtain coverage
probabilities closer to thenominal value.

3.1.1 Randomisation

Suppose that the test statistic AB
1 2� � � for thehypothetical value
�

rejectswhen AC%'D . Thecritical value
D has to be chosen so that the probability of rejection is � % under the null hypothesis

�
. If A has a

discrete distribution, then it may turn out, for example, that D*4E� is too large and D<4'� is too small,
i.e., F?
1ACG=�	�H�'�����	� and F?
3ACGI���5%=�	����� . Onesuggestion is to reject when AJG=� and when AC4I� ,
reject when

�'� �	���	�K)7F?
3ACG'���
F?
1AC4L��� �

where �'M Unif 
��	���	� .
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The rejection probability is now exactly � % and so the confidence interval constructed from this
typeof test will haveexact coverageprobability

Another possibility is to convert thediscretevariable into acontinuous one, e.g.,

AN:7� where �CM Unif 
��	�������
These ideasaremathematically interesting, but they are rarely used in practice. It should benoted

however that randomised intervals are always shorter than conservative intervals constructed without
randomisation.

Yet another technique is to use mid-p values. In this approach, tail probailities are calculated with
theconvention that

F?
3AJGL���5O �

$PRQ : PRS :7�������

Intervals obtained in thismanner may havegood averagecoverageprobabilities.

3.2 Post-data conditioning

Mathematical statisticians have devoted a great deal of energy to the study of Neyman’s approach to
hypothesis testing and confidence intervals in the past 70 years. Many disturbing aspects of the method
have been exposed, despite its widespread acceptance in applications. Important questions are raised
by the possibility of post-data conditioning and various illustrative examples have been devised and
discussed.

3.2.1 Two measuring devices

Suppose that you need to measureaphysical quantity, and two portablemeasuring devicesareavailable,
both measuresubject to experimental error. Thefirst hasstandard deviation � and thesecond hasstandard
deviation ��� . On any particular day, only one of the devices will be in the laboratory and there’s a �	� %
chance it is theaccurateone. Neverthelessyou plan to usewhichever device is there. From a frequentist
viewpoint, your average standard error will then be T	���	� . So when you make a measurement  , you can
report a -	� % confidence interval 
1 6)7�	U	��-��9 V:7��U	��-	� .

However, when you arrive in the laboratory, you see that the the accurate device is there. Now it
seems sensible to report a confidence interval 
3 V)W����-�.	�X V:W�	��-�.	� . In other words, when you are given
information about which device is available, you construct a different confidence interval. This is an
exampleof post-dataconditioning.

3.2.2 Estimating themiddleof an interval

Another example of this type is as follows. Suppose that a sample 
3 HY����������X [Z�� is taken from a uniform
distribution on the interval 
 � )7�	��
	� � :7���	
�� , where

�
is an unknown parameter.

Thesufficient statistics are  ]\2^`_ and  �\ba�c . A simpleestimateof
�

is

d e4  \2^`_ :e \ba�c

so that


 d 6)7f9Z�� d V:7f9Z�� where 
	f9Zg4=�K)7
h�������	� Y1ihZ
is a 95% confidence interval for

�
. Notice that the width of the interval is fixed at 
	f Z , regardless of the

values in thesample 
1 bY����������9 ]Z�� . When j&4=��� , for example, thewidth is ����
�. .
Now consider the range k<4l
1 \2ahc )m \2^`_ � . If k<4l�	��-	- say, we know for sure that

�
is within

�	����� of 
1 �\b^ _n:I �\ba�co���	
 . However, when jp4���� , for example, the confidence interval is certain to
cover the truevalueof

�
. In fact theconfidence interval is 26 times wider than it need be.
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In the statistical literature  ]\2a�c0)m �\b^ _ is said to be an ancillary statistic. It is a function of the
sufficient statistics that hasadistribution that doesnot involve theunknown parameter

�
. It is reasonable

to condition on the value of the range k and construct a conditional confidence interval based on
d .

Intervals obtained in this way will have a width which depends on k . The coverage probability will be
right for each value of the conditioning variable and since the distribution of the conditioning variable
does not depend on

�
, thecorrect coverageprobability is guaranteed universally.

3.2.3 Poisson count data with background

For Poisson count datawith aknown background f , theprobability that j events areobserved is

F?
hqr4Lj5�54tsvu
wyxhz${�| 
�fb: � � Z

j5} � where f�� � %=�	�
Thesufficient statistic for

�
is j .

Conceptually, the random variable q can be written as q~4���:N� where ��M Poisson( f ) and
�JM Poisson(

�
), although neither of thesecomponent variables areobservable.

Since
q��Ij implies ���Lj��

it is tempting to condition on theevent ���Lj . However, thesufficient statistic j isonedimensional and
there is no non-trivial function of j with a distribution not involving

�
. In particular, the event ���Ij is

not ancillary. Becauseof this there is no guarantee that thecoverageprobability of intervals obtained by
conditioning on ���Ij will becorrect. It is also worth noting that

qr�Lj also implies ���Lj@:W���
and it is not clear whether thereareadvantages in conditioning on ���Lj�:7� rather than ���Lj .

3.2.4 Thestandard � -interval

Finally, there are still surprises in even the most standard problems. Suppose that 
1 Y ���������9 Z � are
sampled from a Gaussian with mean

�
and variance " # , both unknown. The usual ���	��
h�K)7�2�h� C.I. for�

is

/?
  2�����54  V)e�9� i #
�� j �  V:e�9� i #

�� j
where  and � # are the sample mean and sample variance and � � is the ���	��
h��)��2� percentile of the �
distribution with j�)7� degrees of freedom.

For j�4'
 , �<4=�	��� , we thus have for all
�
, " # ,

F {�� ��� 
 ��� /0
  2���v���54=�����
However, Brown (Ann. Math. Stat. 38, 1967, 1068-1071) showed that

F {�� � � 
 �?� /?
  2������(8(  K( �	���=�K: � 
	�HG 

U

In general, aset � issaid to beanegatively biased relevant subset for a ���	�	
��2)<�2� % confidence interval
/H� if thereexists ��%=� with

F { 
 �?� / � (� � �,�5�=�K)7�6)7�
for every

�
, and said to bepositively biased relevant subset if

F { 
 �?� /H�@(� � �,�5G=�K)7�6:7�
for some ��%=� . In this example,  �
1 Y ���������9 Z �5¡¢(  £( ���,�=�K: � 
�¤ is apositively biased relevant subset.
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3.3 Inadmissibility

Even the most obvious confidence regions may turn out to have unacceptable properties. This is par-
ticularly so for higher dimensional regions. Suppose that you have P quantities !�Y����������9!¦¥ of interest
and measurements  bY����������9 ]¥ on each. For simplicity assume the measurements all have a Gaussian
distributions with standard deviation � . Theobvious confidence region for 
3!�Y����������9!;¥�� is

/0
§�b�54= �!&¡
¥
¨ª© Y 
1 

¨ )e! ¨ � # �L« #¥ 
�-	���¬�h¤

where « # ¥ 
�-	���¬� is the -	� -percentileof the « # distribution with P degrees of freedom.

Thecoverageof theconfidence region is exactly -�� %. However, when P %'
 the region

/ JS
­�b�54= �!&¡
¥
¨1© Y 
3�

¨ )e! ¨ � # �L« #¥ 
�-	���¬��¤

where � ¨ 4E� if  �#¨ � P )®
 and � ¨ 4' ¨ 
���)�
 P )�
��h�  �#¨ � otherwise, has the same volume but a
higher coverageprobability.

4. BAYESIAN METHODS

Bayesian methods predate the frequentist approach of Neyman and his co-authors. It can be argued that
they are the ‘ right’ way to do statistical inference, i.e., the right way to modify one’s beliefs in the face
of uncertain information. A stumbling block is thequestion of thechoiceof prior, sinceposterior beliefs
areareflection of prior beliefsand the likelihood function. A number of suggestionshavebeen madefor
an ‘objective’ choiceof prior. Foremost among these is Jeffreys prior.

4.1 Jeffreys priors

Consider  WM Binomial 
3j�� P � . A plausible ‘non-informative’ prior for P is the uniform prior on 
��	���	� ,
expressing ‘ ignorance’ about the value of P . Note, however, that if P M Unif 
��	���	� , the square root of Phas a non-uniform distribution with higher density near 1 than 0. Thus, ignorance about p translates to
knowledgeabout theparameter

�
P .

In somesettings, it might beargued that thereisasingle‘Natural’ or ‘ important’ parameterisation,
so that a specification of ignorance for that parameterization is natural. In others, priors which are non-
informative for someparameterisations but not others may beundesirable.

For amodel with parameter space ¯=°W± , theFisher information is

² 
 � �54=³ { ´,µ ¶	· 
�¸[
1 I( � �h�
´ �

#

where ¸[
3 �( � � is the sampling distribution and the expectation is taken over ¸>
3 ®( � � . Under regularity
conditions,

² 
 � �H4')�³ { ´ # µ ¶�· 
h¸[
3 7( � ���
´ � # �

In such a setting, the Jeffreys Prior for
�

is defined by ¹�
 � �£º ² 
 � � Y1i # , to be proportional to the square
root of the Fisher Information at

�
. Note that in general the Jeffreys prior may be improper (i.e., it may

not haveafinite integral).

Note that by thechain rule, ² 
 � �H4 ² 
�»�
 � ���
¼ »¼ � # �
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If
�

has the Jeffreys prior and » is a monotone differentiable function of
�
, the prior induced on »�
 � � by

theJeffreys prior on
�

is

¹�
�»�
 � ���54L¹�
 � ��(
¼ »¼ � ( u

Y º ² 
 � � Yªi # (
¼ »¼ � ( u

Y 4 ² 
�»�
 � ��� Y1i # �
Thus theJeffreys priors are invariant under reparameterisation.

Recall the interpretation of
² 
 � � as the ability of the data to distinguish between

�
and

� : ¼ � .
If the prior favours values of

�
for which

² 
 � � is large, the effect is to minimize the effect of the prior
distribution relative to the information in thedataand hence to beuniformativeabout

�
.

4.1.1 Jeffreys prior for count data

TheJeffreysprior for asignal
�

withPoissondata j andbackground f isinversely proportional to
� � :7f .

Theposterior density of
�

is then proportional to

�� � :7f svu
wy{�z�x�| 
 � :Wf�� Z

j5} � for
� %=���

The -�� % highest posterior density (HPD) credible interval, is the interval of
�

values that contains -	� %
of theposterior density, with theproperty that any valueof

�
outsidethe interval hasa lower density than

any value inside.

5. SUMMARY

Increasingly, Bayesian methodsarebeing used in theanalysisof complex datasets, wheretypically there
is � ahigh dimensional parameter space� a reservoir of wisdom from which prior beliefs can bedistilled (at least approximately)� willingness to usecomputer intensivemethods for simulation and model-sensitivity analysis.

Modern statistical practice distinguishes between routine problems, where standard frequentist
methods are used (small consultancy fee!), and elaborate problems, where computer-intensive Bayesian
methodsareincreasingly popular. Examplesare: imageprocessing, large-scaleclinical trialsinmedicine,
mixturemodelling, non-parametric regression, etc. Thetechniquesinvolvesampling the(high-dimensional)
parameter

�
from aposterior density proportional theproduct of the likelihood and theprior density. The

Metropolis algorithm (Markov chain MonteCarlo) is used to provide thesamples.

It should be noted that Bayesian methods are used routinely in engineering applications. Signal
processing and control engineering depend heavily on the Kalman filter, a Bayesian updating formula
applicable to linear Gaussian systems. There has been recent interest in extending these techniques to
non-Gaussian signal processing problems. The new computer-intensive techniques are known generi-
cally as particlefilters.

5.1 The individual and the collective

Neyman devised confidence intervals as amethod for analysing mass-produced statistical problems:� no need to elicit prior information (or build an expert system)� simple to construct (for naivepractioners)� good for theensemble (not necessarily good for the individual)

Thereisan analogy with thepopularity of certain computer algorithms. For example, QUICKSORT

is the most commonly used method for sorting q numbers. It is a randomised algorithm, with an ex-
pected running time of ��Y�q µ ¶�· 
�q<� . The worst case running time is of order q # ; this can happen by
chanceon any particular occasion.
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Thealgorithm isgood for theensemble, but you might betheunlucky one! What to do about it? It
turns out that there is a different (non-randomised) algorithm which runs in � # q µ ¶	· 
�q<� time, but with
� # %'�,Y . If you only had onevery largeset of numbers to sort in your life, it would bea ‘safer’ strategy
to use this algorithm.

The lesson for dataanalysis is that if you aregoing to spend a lot of timeand money on collecting
and analysing a particular set of data, you may not be interested in how a particular statistical technique
performsfor theensemble. It makesmoresenseto adopt aselfish approach and build personal confidence
in your knowledge. In such circumstances, Bayesian methods areappropriate.

5.1.1 Reading

The italicised terms in the text are defined and placed in a historical context in: The Encyclopaedia of
Statistical Science.

There is still a great deal of interest in comparing various methods of constructing frequentist
confidence intervals.

Newcombe(1998) Two-sided confidence intervals for a single proportion: comparison of seven
methods. Statistics in Medicine

Newcombe(1998) Two-sided confidence intervals for differences between two proportions: com-
parison of eleven methods. Statistics in Medicine

Bayesian methodology is covered in
� TheBayesian Choice. Christian Robert� Bayesian Methods: Kendall’s Theory of Statistics, Tony O’Hagan� Bayesian Statistics, many volumes edited by Bernardo and Smith.� Bayesian computation via Gibbs and related Markov chain Monte Carlo methods (with discus-

sion), Journal of theRoyal Statistical Society (B), Vol 55, pp 3 – , 1988.
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Discussion after talk of Peter Clifford. Chairman: David Cassel.

Giulio D’Agostini

Can you please comment about the physicist’s point of view, which has been essentially oriented
to induction and inference? You haveshown thestatistician’s point of view, and I am happy, it was nice,
but thephysicist’spoint of view wasalways induction. We try to understand something about thenature
of making statements about truevalues, about theories and so on.

Peter Clifford

Well, maybe I didn’t spell it out, but before I came here I assumed that all physicists were
Bayesians. Physicistsare interested in induction, they want to modify their beliefsabout the truestateof
natureon thebasisof thedata that they’veobserved. When you arebusy integrating out parameters, in a
sense, you keep slipping into a Bayesian mode of operating. What I’ve been seeing at this meeting is a
sort of flip-flop phenomenon between Bayesian and classical ways of thinking. People in the workshop
who I assumed wereavowedly Bayesians, arenow saying: ‘Well classical methods aremaybeOK’ .

My training is as a frequentist, I was a student of Neyman’s, but I would say that nowadays
since we have the computing resources available, in specific problems where we’ve got the time and the
manpower to really analyze theseproblems, Bayesian methods are thebest way forward.

Michael Woodroofe

I was interested in your statement that the prior doesn’t matter too much in high-dimensional
problems. That’snot universally true. Weknow exampleswhere it’s false, for exampleorder parameters.
Could you give us a little idea of when and where it will be true that the prior doesn’t matter in high-
dimensional problems?

P. Clifford

I may have appeared to say it. What I meant to say was that Bayesian methods are being used in
high-dimensional problems, and that it appearsthat they’regetting away with it, not becausetheproblems
are high-dimensional, but because in the examples which work, there’s sufficient data to swamp the
priors. So what I wanted to say was that the methods which are being used successfully in practice, are
methods where the data are really telling you what’s going on. The prior is really there as a support for
your inference, but it’s asupport which gradually you’reable to remove, as thedatastarts to dominate.

F. James

I think we should be careful not to confuse two different situations. One is where there is a
prior probability, a phase space or something, and that’s the case for Kalman filtering, the maximum
entropy method and so forth, and there everyone uses those methods. You don’t have to be a Bayesian,
that’s because the idea of using a prior probability makes sense because there is a prior probability. The
problem is, do you want to put in aprior probability for something likethemassof theHiggswherethere
is no prior probability? I define a Bayesian as somebody who uses a prior probability that he pulls out
of ahat, for example. Thephysicist who tries to beobjectivedoesnot want to put in hisprior feelings in
thosecases.
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P. Clifford

Let mejust say that in signal processing thereisno prior when you’relooking at atracking problem
and you don’t know where some object of interest is. You’re attempting, by radar scanning or some
other means, to work out where the object is. The object actually starts off at a fixed position. This
position is not random but when you use the Kalman filter for the problem, you expediently put in some
representation of your beliefs about where the object might have been initially. What happens is that as
the data flows in, the initial belief is modified by real data, using Bayes formula. It doesn’t really matter
that you might have got things wrong for the first few observational steps because the data starts to
swamp the prior. It’s not true that there’s a natural prior in Kalman filtering. The prior is just something
convenient and vague.

F. James

That’s just the case where it doesn’t matter. If it doesn’t matter what prior you put in, then that’s
fineaswell. Theproblem iswhen it doesmatter, and you don’t want to put aprior in, and that’s thecase
that we’reworried about here.

P. Clifford

Right, but theBayesian response to that would be that you do asensitivity analysis. Let’sseehow
sensitive theconclusions are to theprior that you put in.

H. Prosper

My comment was somewhat similar to Fred’s. Of course I’m quite happy to use these methods,
but the difficulty that I always find is that my colleagues will say ’well, but our result changes if one
changes the prior because we have seen no events’ , and the question is what should be the response. I
agree with you, the response should be that if in fact your answer depends very much on the prior, then
theconclusion should be that you have insufficient data to say anything sensible.

P. Clifford

I think that’sabsolutely right, but if you’re in asituation with high prior sensitivity, where thedata
is really not telling you awhole lot, then that’s an important pieceof information too.
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