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Abstract

I discuss a number of issues which arise when computing confidence limits by
frequentist or Bayesian methods. | begin with areminder why P(hypothesis|data)
cannot be determined if the only input is the ‘objective’ data. | then dis-
cuss confidence intervals, with emphasis on the ‘unified approach’ based on
likelihood-ratio ordering, and related methods. A number of issues arise,
including conditioning, nuisance parameters, and robustness. For Bayesian
methods, important issues are the prior and goodness-of-fit. | conclude with a
list of items on which | think physicists from many points of view can agree.

1. PROLOGUE

For most of this talk®, | assume familiarity with the ‘required reading’ for this workshop. But first, let’s
review the root of the problem as | often explain it to students. (Imagine an oral exam.)

Suppose you have a particle ID detector. You take it to atest beam and measure;

P(counter says 7 | particleis w) = 90%

P(counter says not 7 | particleis ) = 10%

P(counter says r | particleisnot w) = 1%

P(counter saysnot 7 | particleis not ) = 99%

Then you put the detector in your experiment. You select tracks which the detector says are pions.
Question: What fraction of these tracks are pions?

Answer: Cannot be determined from the given information!

The missing information is the pion fraction in the particles incident on the detector: the initial P(r).
Bayes's theorem then tells us that

P(particleis 7 | counter says ) o P(m) x P(counter says | particleis ).
All this makes total sense with the frequentist definition of P. Now suppose you look for a Higgs
boson (H) at LEP and you do all the work to know:
P(H signature | thereis H) = 90%
P(no H signature | thereis H) = 10%
P(H signature | thereisno H) = 1%
P(no H signature | thereis no H) = 99%

There is no problem defining these P's with the frequentist definition of P. Then you do the experiment,
and you have a Higgs signature.

Question: What is the probability that you found the Higgs?
Answer: Cannot be determined from the given infor mation!
The missing information is the analog of P(r): the *prior’ probability that thereisaHiggs. P(H). Again
Bayes's theorem then tells us that
P(particleisH | H signature) o« P(H) x P(H signature | particleis H).

* E-mail address: cousins@physics.ucla.edu
1| attempt to preserve the conversational nature of the talk in this writeup.
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But what isP(H)? It is problematic to define it with the frequentist definition of P. I think the most
compelling definition of P to use here is subjective degree of belief.

So suppose with your subjective prior, you compute P(particle isH | H signature) = 98%. Now
you must make a decision whether or not to announce the discovery of the Higgs.

Question: What decision logically follows from the above?
Answer: Cannot be determined from the given information!

The missing information is the utility function: How do you personally weigh a) wrongly announcing
a discovery, versus b) failing to announce a real discovery. | think this utility function is indisputably
subjective.

The oral exam concludes. Making a decision requires two subjective inputs. the prior and the
utility function.

[An aside: While on the subject of the utility function, | mention that | think it is the preferred
place to put conservativism, if one so desires. The analog with confidence intervalsis the following: if
one wants to avoid wrong statements more than 10% of the time, the proper way is not to compute 90%
C.L. intervalsin some ‘conservative' way; the proper way isto compute intervals using ahigher C.L. ]

| think that this subjective Bayesian model of decision making is a good one for a scientific
decision-making process?. In fact, to focus this workshop’s discussion, let’s stipul ate that the best model
for the scientific way to determine P(hypothesis|data) is to define P as degree of belief and invoke a
subjective prior3.

However, | think the question before us today is. How should we experimenters publish the num-
bers from our experiments? And how should the Particle Data Group (PDG) list them? | think that
compromises are inevitable, because it is unlikely that the PDG will be asked to list the ‘right’ answers:
subjective Bayes decisions.

My personal view is that:

e Subjective priors will not be accepted as the basis for reporting of experimental results. Therefore
subjective priors are not the answer to today’s question.

e ‘Non-informative priors do not exist'4, and the whole ‘ objective prior’ search is not particularly
useful.

e We should quote numbers based on the frequentist definition of P,

e That limits us to confidence intervals and the likelihood function.

e That means our published numbers will not be P(hypothesis|data) !
This last point is the lesson from the ‘oral exam’ questions of this prologue: without a prior, you

cannot extract P(hypothesis|data). It is critically important to keep thisin mind. It follows that what we
publish will be a‘halfway house’, incomplete but useful if not misinterpreted.

2. FELDMAN-COUSINSAND AFTERMATH

It has been over two years since Gary Feldman and | advocated a‘ Unified Approach’ [1] to confidence
intervals, where unity refers to one-sided limits and two-sided limits. For frequentists, we quantified
what alot of people felt intuitively: The discussion of setting confidence limits cannot be separated from
the discussion of setting two-sided intervals. In particular, we showed that * flip-flopping’ between upper
limits and two-sided intervals, based on the observed data, leads to undercoverage.

Ciampolillo [2] has pointed out that he earlier understood this and found a (different) unified set
of confidence intervals.

2Due to faulty reasoning, humans may not really act like Bayesians even if they intend to, but that is not my point today.

3There are also issues of goodness of fit, which | discuss below.

#] do not claim to understand completely this phrase, whichisfound in the professional statistics literature, but | am sceptical
of attempting to represent absence of prior degree of belief.
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I think the need for an approach which unifies one-sided limits (typically upper limits) and two-
sided limitsis now indisputable. (In Bayesian statistics, coverage does not exist, so theissue is different.
To be coherent, one must use the same prior for upper limits as for two-sided intervals. For the Poisson
mean case, this leads to undercoverage when evaluated by frequentist criteria; see Section 9.)

Asnoted ‘in proof’ inthe Feldman—Cousins (FC) paper, the ‘new’ likelihood-ratio ordering princi-
plein our unified approach followed naturally from the classical theory of hypothesistestsin the classic
text by Kendall and Stuart, (now Stuart and Ord [3]). In fact, the whole program, including nuisance
parameters, istersely laid out in apage and a half at the beginning of Chapter 23! Thisis of course good
news, since as physicists we would prefer to adopt well-established statistical procedures.

Positive features of this method are:

e Theintervals are unified: no flip-flopping.

e Theordering for building the acceptance intervalsis based on the likelihood ratio (LR), now known
to be the ‘standard’ ordering in Stuart and Ord.

e It givesanimprovement over old classical intervalsfor both Poisson-with-background and Gaussian-
with-boundary cases.

e It can be applied to more genera problems. We illustrated this with neutrino oscillations.
e It wasimmediately applied by several groups, so it is doable.
e One can add nuisance parameters a la Stuart and Ord (see below).
e |t can be used to combine experiments.
A drawback for now isthat these last two features are not widely known, and have subtleties. They have

been implemented approximately (by G. Feldman and A. Geiser) in the NOMAD [4] neutrino oscillation
experiment.

Finally, some consider it positive and some consider it negative that the method produces confi-
dence intervals. Confidence intervals have a well-defined meaning in terms of the frequentist definition
of P. The method does not use a prior, but that also means that the results must not be interpreted as
P(hypothesis|data)!

2.1 The‘Karmen problem’: mean background 2.8, see no events.
One of the first applications of the unified approach was by the Karmen Collaboration, which saw no
events while expecting 2.8 background events. Our recommendations for a situation like this were:

¢ To educate the world that confidence intervals are not statements about P(hypothesis|data).

e Toinsist that people show a sensitivity curve [1] if their limit isfar fromiit.
Nonetheless, the most common criticism of the unified approach is that ‘it makes no sense’ for Karmen
to have atighter upper limit than an experiment with no events and no expected background.

Please don’t fall into the following common trap:
1. Assume the confidence intervals are statements about P(parameter|data).

2. Observethat unified confidence intervals violate al sensibility in the Karmen problem when inter-
preted as P(parameter|data).

3. Conclude that the confidence intervals make no sense.

What makes no sense is assuming that confidence interval s are statements about P(parameter|data). They
are statements derived from P(dataparameter) without invoking a prior, and hence necessarily cannot be
P(parameter|data). In the Karmen problem, the probability of observing no eventsislessfor b = 2.8 than
itisfor b = 0. That'swhat the confidence intervals are reflecting. 1 come back to this point in discussing
conditioning bel ow.
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2.2 LRordering ‘failures

It iswell-known that maximum likelihood estimation doesn’t work in certain cases. That hasn't prevented
it from being generally useful. Similarly, exceptions for LR ordering for confidence intervals have been
claimed by G. Zech [5], and more recently by G. Punzi [6], and J. Bouchez [7]. It remains to be seen if
these represent problemsin practice.®

2.3 The Roe-Woodroofe modification: conditioning

Of all the post-FC papers, the one | found most enlightening was by Roe and Woodroofe [8]. They invoke
a standard idea from the theory of statistics, namely conditioning. The ideais to restrict the ensemble
used to define frequentist coverage, based on the data observed. Their application stretches the usual
conditioning beyond well-known precedents, but gives intervalsin the Poisson case which do not depend
on the expected background for the n = 0 case (zero events observed). For n = 0, the idea is that
one knows that there are no background events, so the chosen ensemble consists of experiments with no
background events rather than the larger ensemble in which the number of background events fluctuates
with known mean®.

Conditioning can make confidence intervals behave more like P(parameter|data). This quantity
only existsin Bayesian theory’, and is proportional to P(dataparameter) evaluated only using the actual
data set observed. Confidence intervals are based on P(data|parameter) for all possible data sets in an
ensemble, and do not always behave similarly to P(parameter|data). Confidence intervalswill in general
behave more like P(parameter|data) if the ensemble is restricted to data sets more like the one observed.
Traditionally this restriction is made using ancillary statistics; see Ref. [8] for more discussion and
references.

Owing to the promising, yet somewhat unfounded, appearance of the approach of Roe and

Woodroofe, | recently worked out and posted [9] the application of their method, as| understand it, to the
other prototype problem of the FC paper: a Gaussian variable near a physical boundary. The result was
disappointing: while the upper curve on the confidence belt is moved in the desirable direction, the lower
curve on the confidence belt is also moved significantly, in an undesirable manner. We are currently
studying the situation further.

3. THEMETHOD CALLED THE OLD ‘PDG METHOD’ OUTSIDE THE PDG
This non-unified method, for upper limits only, is based on the formula

e ) 00 i+ N)" !

l—e=1—
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Helene [10] derived this result (not in this tidy form) using Bayesian statistics with uniform prior. We
emphasize again that this prior is not the preferred prior in objective Bayes theory. Attempts have been
made to put this formula on a frequentist footing, notably by Zech [11], who was criticized by Highland
[12], with areply by Zech. Theissue hasto do with the conditional probabilities. Highland showed that a
standard conditional probability calculation does not lead to the Helene formula. 1t turns out that Zech's
calculation refersto an ensemble which isknown in aMonte Carlo simul ation but which isunknowablein

5Some of these counter-examples assumed that some points could be excluded from the acceptance region while including
some other points with the same LR. Thisissue was not explicitly addressed in Ref. [1], but Ref. [3] makes clear that all points
which ‘tie’ for the ordering-L R cutoff should be included.

5Note added in proof: After the CLW, | realized that the Roe/Woodroofe conditioning was basically the same as that used
by Zech [11], and differed from that of Highland [12]. See my writeup for the Fermilab CLW in March, 2000.

"In Bayesian theory, it can make sense to talk about the probability associated with a constant of Nature, since probability
is defined as degree of belief, not frequency.
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experimental data; Highland says, “It is difficult to see what physical experiment this would correspond
to”.

As a method for computing upper limits, Helene's formula overcovers (more than required by
Poisson discreteness) for the usual ensemble. However, as discussed in Section 9, the same uniform
prior leads to lower limits which undercover a Poisson mean. There is no fundamental basis for this
formulain the classical theory of confidence intervals, and, as noted above, the uniform prior is not the
preferred objective Bayesian prior for a Poisson mean. Hence it is an ad hoc adaptation which gives
upper limits that some people find to be reasonable.

A. L. Read [13] further discussesthis formulaand its generalization in one of the required reading
articles for this workshop. | believe that one must still ask what is the fundamental basis (in the profes-
sional statistics literature) for this method? Does the Neyman—Pearson lemma, which Read cites as the
reason hisintervalsare‘optimal’, really imply his conclusion? Or isthere aleap from event classification
to these intervals, especidly if flip-flopping is properly treated? In fact, Stuart and Ord [3] cite the same
Neyman—Pearson lemma as the justification for the LR ordering principle used by FC.

In my opinion, confidence interval s with extra over-coverage must be justified on grounds of either
robustness or conditioning®.

4. NUISANCE PARAMETERS

Nuisance parameters are parameters such as the detector efficiency, integrated luminosity, mean back-
ground, etc., which are not known exactly but must be estimated, even though they are not the parameters
of physicsinterest.

Thisisan areathat could benefit from more work. If one strictly follows the traditional definition
of confidence intervals, one must not under-cover for any value of the nuisance parameter. The resulting
table of intervals typically causes over-coverage for any given value.

Historically, thiswas an even bigger problem because of the computing resources needed to check
coverage for more than a few values of the nuisance parameters; even today, thisis a challenge. There-
fore, it has been the practice to obtain approximate intervals by covering for estimated values of the
nuisance parametersinstead of all values [3]. Nowadays, computing is more tractable, so one can check
coverage for other values, but it is still typically impossible to obtain an exact solution when there are
many nuisance parameters.

Again, a‘problem’ arises when confidence intervals don’'t aways behave like P(hypothesis| data).
(Because they are not P(hypothesis|data)!) This occursin avery simple, common prototype case, which
Virgil Highland and | [14] wrote about some years ago: Suppose you see no events, and you have a 10%
uncertainty in luminosity. How does the usual 90% C.L. upper limit on the Poisson mean (2.3 before the
Unified Approach) change because of the luminosity uncertainty? Surprisingly, the true upper confidence
limit is more restrictive than if luminosity is perfectly known!® This seemed so ‘ unacceptable’ that we
resorted to a Bayesian-inspired technique, namely integrating out the nuisance parameter. This has no
justification at all in Neyman's construction; in fact, it causes over-coverage. Ye, it is very popular in
HEP (and was already in use; see the referencesin Ref. [14]).

Thus, there isfood for thought in this problem. It is disturbing that the classical method gives the
‘wrong’ sign to the effect. One of the lessons, however, is that the effect of a 10% uncertainty is quite
small, so in many practical cases, thisis not really an issue.

Nuisance parameters are straightforward to handle in Bayesian theory except it seems that priors
in high dimensions are potentially an issue. Asfar as| know, thisis not explored well yet in HEP. The
professional statistics literature shows that high-dimension priors are not obvious.

8Note added in proof: At the time of the CERN CLW, | thought that Highland and Roe/Woodroofe handled conditioning
similarly, which is not the case. See my writeup for the Fermilab CLW in March 2000.
9This can be demonstrated with a simple Monte Carlo program. Why it happens s briefly described in Ref. [15]
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4.1 Related issue: systematicerrors

In the frequentist approach, systematic errors are necessarily treated using the frequentist definition of
P. This is sometimes conceptually hard to swallow, but doesn’t seem to be a problem in practice. (The
problem in practice, for both Bayesians and frequentists, is attaching any sensible uncertainty at all to
certain theoretical calculations!)

5. PRIORS

For me, the issue is not really ‘prior anxiety’ [16]. | am perfectly comfortable with subjective priors.
However, | do not think that they are the answer to the question of what to publish. To see this, consider
some experiments in the field of rare K decays, afield in which | worked for a number of years, and
which provided the original motivation for my interest in the theory behind upper limit calculations. |
have selected three frontier (in their day) experiments which reported results in Physical Review Letters
regarding searches for, respectively, K9 — putpu= [17], KO — p*eT [18], and K9 — 7w [19].

In each experiment, the experimenters observed no candidate signal events (after cuts deemed rea-
sonable), and each team calculated its Sngle-Event Sensitivity (SES): that value of the decay branching
ratio (BR) for which the experiment would have observed on average one signal event. The known un-
certainties in the SES were negligible. So, how is the 90% C.L. upper limit on BR related to the SES?
The classical answer (which the experimentsin fact reported) issimple: BR< 2.3 x SES.

Recadll that the subjective Bayes posterior pdf is the product of the prior pdf and the likelihood.
The posterior pdf in these three cases depends very much on the experiment, since the priors were so
different:

1. A search for K) — p*pu~ [17] had SES of 8 x 10710, | think a typical subjective prior pdf
at the time very firmly put the believed BR at greater than about 48 x 10719, This was because
K? — ~+ had been measured, and it was avery plausible QED calculationtoadd onyy — utpu~,
to obtain the so-called ‘unitarity bound’ on K9 — p*u~. When the experiment saw no events,
this subjective prior was so strong that one could still believe, with 90% certainty, that the BR was
greater than the unitarity bound, afactor of 6 greater than the SES!

2. A searchfor K9 — p%eT [18] had SES of 1.4 x 10711, When the experiment began, the previous
upper limits were severa orders of magnitude higher, and there was some plausible beyond-the-
Standard-Mode! speculationthat K9 — 1% eT might exist within the sensitivity of the experiment.
My personal subjective belief gave us a few per cent chance of a discovery. Thus, after seeing
nothing, my degree of belief was changed significantly by the experiment, for values of BR above
the SES.

3. A search for K — 7%vw [19] had SES of 2.5 x 10°. Although this was a new experimental
range, the Standard Model prediction was many orders of lower (1019 — 10~!1) and | knew of no
plausible way to get a BR as high as the SES. Hence, after this experiment, | believed with 90%
certainty that the BR was several orders of magnitude lower than the SES!

These examples show that subjective priors for real experiments can be very different, and that they are
not uniform in obvious metrics. They really do represent degree-of-belief. Hence there is no ‘typical’
subjective prior which resultsin a‘typical’ relationship between the SES and the posterior belief. This
iswhy | do not see subjective Bayes statistics as a useful way to communicate experimental data, even
though | think it is agood model of how we scientists update our beliefs.

For related reasons, | find objective priors to be not particularly useful, except as calculational

tools to get answers whose properties can be studied and justified post hoc on other (even frequentist)
grounds.



5.1 An under-appreciated advantage of Bayesian statistics

A very nice feature of Bayesian statistics is that it provides an appealing way to formulate a ‘sharp
hypothesis’, one which gives specia significance to a particular parameter value. For example, one can
formulate atest on x = 2 versus x # 2 in anatural way, using a subjective prior with a Dirac §-function
(times a subjective factor) at x = 2 and the rest of the probability spread out (according to your degree-
of-belief) over = # 2.

Ironically, thisvery nicefeature of Bayesian statisticsistypically lost in ‘ objective’ priors. For me,
it's another indication that proposed objective priors throw away too much of the essence of Bayesian
dtatistics.

6. GOODNESSOF FIT

In my opinion, thisisalittle-known but critical issue for Bayesian statistics. In HEP, we frequently want
to test the correctness of the functional form used in afit.

We recall that the Bayesian posterior obeys the Likelihood Principle: al the information from the
experiment isin £ for your experiment. The frequentist ensemble does not exist. Therefore, in Bayesian
statistics, our usual way of formulating goodness-of-fit does not exist!

As | understand Bayesian statistics, the model error must be incorporated into the prior and L.
This appears to be very difficult for the simple question, “Is my chosen functional form a good fit to the
data?’ In HEPR, such issues are till at a very early stage of exploration; see Ref. [20] for an example
combining discrepant data.

7. ROBUSTNESS

Robustness (relative insensitivity to departures from assumptions) isan important issuein HEP. The PDG
knows that historically, systematic errors are often under-estimated. Therefore they use the famous scale
factor S, which has demonstrated robustness at reasonable cost (F. James, private communication.)

Chanowitz [21] has proposed an analogy for confidence limits. | think it is worth investigating
doing something similar in the Unified Approach. In the ‘Karmen problem’, for example, one could
inflate the uncertainty on background until the goodness-of-fit (in this case, the probability of obtaining
no events) is decent. Then put that uncertainty into the limit calculation.

Whatever one uses, of course, one must be clear on where robustness enters, since thisislikely to
be a contentious issue.

8. WHAT ISTHE ENSEMBLE?

In an interesting chapter entitled “ Comparative Statistical Inference”, Stuart and Ord [3] note on p. 1227
that “Two of the difficulties facing the frequency approach in practice are the specification of the sample
space and the need to ensure random sampling”.

HEP is no exception. Specifying the ensemble (the sample space within which frequencies are
calculated) has typically not not been a big practical problem in my experience, but it is easy to imagine
caseswhereit can arise. For example, if your experiment sees 77 top-quark events'®, should theimagined
ensemble contain experiments which also saw 77 events, or a larger ensemble in which this number
undergoes Poisson fluctuations? The issue is once again conditioning (encountered in Section 2.3 in
the context of the Roe-Woodroofe proposal for modifying the Unified Approach). For an example with
references to some literature on the debate, see Ref. [22].

In discovery-oriented experiments, it seems that it will always be a problem (even in Bayesian
statistics) to calculate probabilities starting from unusual events. There is the old story (I heard it at-

Harrison Prosper offered this example from the DO experiment in e-mail circulated before this conference.
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tributed to Feynman) about the license plate: “That car's license plate number is GMZ356. Do you
realize how unlikely that is?’ | seem to recall that early 7 — eTe™v eventsin 1983 had similar issue:
what’s the ensemble? In practice, the data set analysed at the end of one run is often used to define the
hypothesis for the next run. Real signals gain in significance with more running.

Certainly, we can agree that when one quotes coverage, one should define the ensemble used for
the coverage calculation, if it isan issue. In many cases, for example NOMAD v oscillations, thisis not
asubtlety, it seems.

9. NON-COVERAGE OF BAYESIAN INTERVALS

There is along history of comparing Bayesian intervals with confidence intervals'?, since the issue of
which to use is mitigated to the extent that the numerical answers are the same. Unfortunately, since
each type is based on a different definition of P, the math does not ensure that intervals from one realm
make sense in the other realm. We have seen above how confidence intervals can ‘make no sense’
when interpreted as degree of belief. Similarly, Bayesian intervals can ‘ make no sense’ when interpreted
according to the frequentist definition of confidence intervals.

As an example [15], let's suppose that one makes a ‘ measurement’ of the mean p of a Poisson
process by performing a single experiment and obtaining n = 3 events. The classical central’? 68%
confidence interval for u is

e (1.37,5.92). [Central intervals with frequentist coverage.]
The Bayesian intervals depend of course on the prior. If one naively uses a prior uniform in g, then the
68% credibleinterval is

e (2.09, 5.92). [Bayesian with prior uniformin p.]
If one uses one of the ‘objective’ priors advocated for the Poisson mean by Jeffreys, P(u) o 1/, then
the 68% credibleinterval is

e (1.37,4.64). [Bayesian with prior 1/u.]
Such Bayesian interval s are shorter, and undercover the unknown true value. Note that the right endpoint
of the Bayesian interval with uniform prior is the same as for the frequentist interval, while the |eft
endpoint for the 1/ prior is the same as for the frequentist interval. Thisis always true for these priors
in this Poisson problem, so that: 90% C.L. upper limits are the ‘same’ for classical and uniform prior,
while 90% C.L. lower limits are the ‘same’ for classical and 1/ prior. | am completely convinced that
our community’s infatuation with uniform prior for the Poisson mean is a consequence of the fact that
we are normally interested in upper limits! If the nature of our work were such that lower limits on
Poisson means were the norm, then the 1/ prior would be the ‘ obvious' one, and one would even enjoy
the luxury of being more consistent with the objective Bayesian literature!®.

10. WHAT MIGHT WE AGREE ON? 14

| have mentioned many areas in frequentist and Bayesian statistics where there are issues for debate. In
spite of the wide range of points of view at thisworkshop, | think we can agree on anumber of statements
which are not controversial among people who have learned about them, but which are non-trivial in that
| see papers which make assumptions to the contrary.

1. First of all, civility. The debates in the professional statistics community seem to have departed
from civility more than one might hope. We physicists have our own role models, in particular
Bohr and Einstein in their quantum mechanics debate, for handling serious disagreement.

1Ref. [15] has some references.

2This assumes that flip-flopping is not an issue. The unified confidenceinterval is (1.10, 5.30) [1].

However, aprior for 1 based on more general ‘objective’ arguments is yet another one, P() o 1/./f.

14 revised this section slightly after my talk, so that | think it now really does have agreement from a number of knowledge-
able speakers with whom | discussed it.
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10.

11.

12.

The likelihood function £ is not a pdf in the unknown parameters. ‘Integrating the likelihood
function’ is not a concept in either Bayesian or classical statistics: it is not well-defined because
one gets a different answer upon reparametrizing the integration variable. (Since £ is not a pdf in
the parameters, there is no Jacobian in them to give consistent integral s upon change-of-variable.)
Answers based on integrating the posterior pdf with a ‘uniform prior’ depend on the metric in
which the prior is uniform. Uniform priors should be explicitly stated, not hidden.

Bayesian intervals typically do not have frequentist coverage. This is not surprising, since the
Bayesian formulation makes no reference to an ensemble: it uses the likelihood function for the
particular data set observed.

Publishing enough information to reconstruct an approximate likelihood function should be strongly
encouraged. This allows one to specify one's own prior and calculate a posterior pdf, and it allows
approximate classical confidence intervals to be computed.

Our usual goodness-of-fit tests do not exist in Bayesian statistics. The Bayesian analog requires a
reformulation which extends the space of P to include functional forms.

P(hypothesis|data) cannot be calculated without a prior.

The confidence interval construction does not use a prior. It uses P(dataltheory), and requires the
ensemble to be specified. Priors enter when going from P(dataltheory) to P(theory|data), which
confidence intervals do not do.

Regardless of your opinion about priors, a subjective utility function is needed to make a decision,
so any argument for totally objective decisionsis highly suspicious.

If a method is frequentist, one must understand the frequentist coverage. If the coverage differs
materially from the stated C.L ., then an explanation should be provided. If a method is Bayesian,
then it can aso be enlightening to look at the frequentist coverage, if only to educate ourselves
about the difference between degree-of-belief P and frequentist P!

If one uses a method which implicitly or explicitly invokes a prior, then one should understand the
sensitivity of the result to the choice of prior.

When used without a qualifier, the words ‘ confidence interval’ imply the frequentist definition of
P, and at least approximate coverage at the stated C.L. Intervals not having this property should
be qualified or called something else; for Bayesian intervals, some prefer ‘Bayesian confidence
intervals', while others prefer ‘ credible intervals'.

...and remember: All thisisirrelevant if you tune the cuts in order to eliminate candidate events

in order to get a better limit (unless, of course you are willing to put that tuning into your coverage
calculation .. .that leads to loss of power, even if it covers, however).

11. CONCLUSION

Inthistalk | havetried to highlight some of the most troublesome areasin classical and Bayesian statistics
calculations. The LR ordering for confidence intervals, possibly with conditioning added, provides a
well-founded general framework for a consistent treatment of one-sided and two-sided intervals. The
Bayesian method most closely associated with scientific reasoning, namely using a subjective prior, is
hard to imagine asthe answer to “What number to publish?’ Progresswill be madeif people use methods
with understood properties, and if statements about P(datalparameter) are not interpreted as statements
about P(parameter|data).
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Discussion after talk of Bob Cousins. Chairman: Jim Linnemann.

Michael Woodroofe

Again | have really more comments than questions, the first of which is to reinforce the call for
civility. | have experienced what the lack of civility can lead to, and you don’t want to go there.

R. Cousins

I might add that this is particularly important to us because we are amateurs in statistics, so we
are going to make mistakes. We are physicistsin our ‘day jobs’, so when we do statistics let’s be kind to
each other.

M. Woodroofe

About the reluctance to publish subjective distributions. In the derivation of the Bayesian theory
there is an assumption that the person who iswriting down the priors is a so the person who is incurring
the losses or the gains in the utility function. Now that’s true in some situations. If you're trying to
decide ‘what | should do with my life in the next two years, which experiment | should pursue’, that's a
personal decision and it's true. In other parts of science | think it may not be true. If you're sitting on a
panel that's trying to decide which of severa different experiments should be funded, you're not paying
the losses for that, and | think that’s related to the reluctance to publish subjective distributions.

The goodness-of-fit problem for Bayesians is very hard. A simple goodness-of-fit problem is to
test whether data is normal, and that problem was solved recently from a Bayesian perspective by Jim
Berger. It's avery clever solution, it's a nice solution, it’s not easy. It was 1999 when that very basic
problem was first worked out, and that’s how hard it is.

Harrison Prosper

This flip-flop problem that you solved. Was the problem the fact that people are flip-flopping or
was the problem the fact that the ensemble in which this flip-flopping was embedded didn’t cover? |
can imagine for example, designing an algorithm for limits which allows the experimenter to choose to
flip-flop which also covers.

R. Cousins

You could do that, but people certainly were not doing that. You can even imagine an extreme
case where you adjust your cuts specifically to get rid of all the candidate signal events you see, and then
you do a Monte Carlo of such an ensemble of experiments to see what upper limit should be quoted in
order to have coverage. The resulting upper limits are valid in the sense of correct coverage, but have
very poor power; in fact the mean upper limit is infinity, as| once mentioned in a NIM paper devoted to
something better (NIM A337 (1994) 557).

H. Prosper

But the point isthat in Neyman'sinitial paper, he puts no restrictions whatsoever on the ensemble,
he simply states “this is what we should satisfy”, and so in principle we have complete freedom.
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R. Cousins

That’sright, and what's happened since Neyman as | understand it, isthis business of conditioning.
You know, we lump Fisher and Neyman as classical buddies together opposing the Bayesians, but in fact
they were at each other’s throats because Fisher for instance insisted on conditioning and figuring out
what the ensembleis. That's why | quoted Kendall and Stuart. This is a problem you've got to worry
about where it matters, and if you get different results depending on what you use for it, | think you
should say that too.

H. Prosper

Just one last comment. In the same volume in which Kendall and Stuart described this likelihood
ratio test, they also point out that getting rid of the dependence on nuisance parametersis avery difficult
problem, so | think even for the case of the likelihood ratio, the calculation of that ratio still depends on
those parameters, if the data set size istoo small.

R. Cousins

That’sright. The advantage we have today is much more computational power, although it can till
be insufficient for an exact calculation. Kendall and Stuart make the approximation that you calculate
coverage only for values of nuisance parameters equal to their maximum likelihood estimates. With
today’s computers, one can check coverage for other values of the nuisance parameters, although it is
still not practical to do the construction directly in a high-dimensional space.

61



