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Abstract
I discussanumber of issueswhich arisewhen computing confidence limitsby
frequentist or Bayesianmethods. I beginwithareminder why P(hypothesis

�
data)

cannot be determined if the only input is the ‘objective’ data. I then dis-
cuss confidence intervals, with emphasis on the ‘unified approach’ based on
likelihood-ratio ordering, and related methods. A number of issues arise,
including conditioning, nuisance parameters, and robustness. For Bayesian
methods, important issues are the prior and goodness-of-fit. I conclude with a
list of items on which I think physicists from many points of view can agree.

1. PROLOGUE

For most of this talk1, I assume familiarity with the ‘ required reading’ for this workshop. But first, let’s
review the root of theproblem as I often explain it to students. (Imaginean oral exam.)

Supposeyou haveaparticle ID detector. You take it to a test beam and measure:� P(counter says � � particle is � ) = 90%� P(counter says not � � particle is � ) = 10%� P(counter says � � particle is not � ) = 1%� P(counter says not � � particle is not � ) = 99%

Then you put thedetector in your experiment. You select tracks which thedetector says arepions.

Question: What fraction of these tracks arepions?

Answer: Cannot bedetermined from thegiven information!

The missing information is the pion fraction in the particles incident on the detector: the initial P(� ).
Bayes’s theorem then tellsus that

P(particle is � � counter says � ) � P(� ) � P(counter says � � particle is � ).

All this makes total sense with the frequentist definition of P. Now suppose you look for a Higgs
boson (H) at LEP and you do all thework to know:� P(H signature

�
there is H) = 90%� P(no H signature
�
there is H) = 10%� P(H signature

�
there is no H) = 1%� P(no H signature
�
there is no H) = 99%

There is no problem defining these P’s with the frequentist definition of P. Then you do the experiment,
and you haveaHiggssignature.

Question: What is theprobability that you found theHiggs?

Answer: Cannot bedetermined from thegiven information!

The missing information is the analog of P(� ): the ‘prior’ probability that there is a Higgs: P(H). Again
Bayes’s theorem then tellsus that

P(particle is H
�
H signature) � P(H) � P(H signature

�
particle is H).

�
* E-mail address: cousins@physics.ucla.edu

1I attempt to preserve theconversational natureof the talk in thiswriteup.
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But what isP(H)? It isproblematic to define it with the frequentist definition of P. I think themost
compelling definition of P to usehere is subjectivedegreeof belief.

So suppose with your subjective prior, you compute P(particle is H
�
H signature) = 98%. Now

you must makeadecision whether or not to announce thediscovery of theHiggs.

Question: What decision logically follows from theabove?

Answer: Cannot bedetermined from thegiven information!

The missing information is the utility function: How do you personally weigh a) wrongly announcing
a discovery, versus b) failing to announce a real discovery. I think this utility function is indisputably
subjective.

The oral exam concludes: Making a decision requires two subjective inputs: the prior and the
utility function.

[An aside: While on the subject of the utility function, I mention that I think it is the preferred
place to put conservativism, if one so desires. The analog with confidence intervals is the following: if
one wants to avoid wrong statements more than 10% of the time, the proper way is not to compute 90%
C.L. intervals in some ‘conservative’ way; theproper way is to compute intervals using ahigher C.L. ]

I think that this subjective Bayesian model of decision making is a good one for a scientific
decision-making process2. In fact, to focus thisworkshop’sdiscussion, let’sstipulate that thebest model
for the scientific way to determine P(hypothesis

�
data) is to define P as degree of belief and invoke a

subjectiveprior3.

However, I think the question before us today is: How should we experimenters publish the num-
bers from our experiments? And how should the Particle Data Group (PDG) list them? I think that
compromises are inevitable, because it is unlikely that the PDG will be asked to list the ‘ right’ answers:
subjectiveBayes decisions.

My personal view is that:� Subjectivepriorswill not beaccepted as thebasis for reporting of experimental results. Therefore
subjectivepriors arenot theanswer to today’s question.� ‘Non-informative priors do not exist’4, and the whole ‘objective prior’ search is not particularly
useful.� Weshould quotenumbers based on the frequentist definition of P.� That limits us to confidence intervals and the likelihood function.� That means our published numbers will not beP(hypothesis

�
data) !

This last point is the lesson from the ‘oral exam’ questions of this prologue: without a prior, you
cannot extract P(hypothesis

�
data). It is critically important to keep this in mind. It follows that what we

publish will bea ‘halfway house’ , incompletebut useful if not misinterpreted.

2. FELDMAN–COUSINS AND AFTERMATH

It has been over two years since Gary Feldman and I advocated a ‘Unified Approach’ [1] to confidence
intervals, where unity refers to one-sided limits and two-sided limits. For frequentists, we quantified
what a lot of people felt intuitively: Thediscussion of setting confidence limitscannot beseparated from
thediscussion of setting two-sided intervals. In particular, weshowed that ‘flip-flopping’ between upper
limits and two-sided intervals, based on theobserved data, leads to undercoverage.

Ciampolillo [2] has pointed out that he earlier understood this and found a (different) unified set
of confidence intervals.

2Due to faulty reasoning, humans may not really act likeBayesianseven if they intend to, but that is not my point today.
3Therearealso issues of goodness of fit, which I discuss below.
4I do not claim to understand completely thisphrase, which isfound in theprofessional statisticsliterature, but I am sceptical

of attempting to represent absenceof prior degreeof belief.
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I think the need for an approach which unifies one-sided limits (typically upper limits) and two-
sided limits isnow indisputable. (In Bayesian statistics, coveragedoesnot exist, so the issue isdifferent.
To be coherent, one must use the same prior for upper limits as for two-sided intervals. For the Poisson
mean case, this leads to undercoveragewhen evaluated by frequentist criteria; seeSection 9.)

Asnoted ‘ in proof ’ in theFeldman–Cousins(FC) paper, the‘new’ likelihood-ratio ordering princi-
ple in our unified approach followed naturally from the classical theory of hypothesis tests in the classic
text by Kendall and Stuart, (now Stuart and Ord [3]). In fact, the whole program, including nuisance
parameters, is tersely laid out in apageand ahalf at thebeginning of Chapter 23! This isof coursegood
news, sinceas physicists wewould prefer to adopt well-established statistical procedures.

Positive features of this method are:� The intervals areunified: no flip-flopping.� Theordering for building theacceptanceintervalsisbased on thelikelihood ratio (LR), now known
to be the ‘standard’ ordering in Stuart and Ord.� It givesan improvement over oldclassical intervalsfor bothPoisson-with-backgroundandGaussian-
with-boundary cases.� It can beapplied to moregeneral problems. We illustrated this with neutrino oscillations.� It was immediately applied by several groups, so it is doable.� Onecan add nuisanceparameters à laStuart and Ord (seebelow).� It can beused to combineexperiments.

A drawback for now is that these last two featuresarenot widely known, and havesubtleties. They have
been implemented approximately (by G. Feldman and A. Geiser) in theNOMAD [4] neutrino oscillation
experiment.

Finally, some consider it positive and some consider it negative that the method produces confi-
dence intervals. Confidence intervals have a well-defined meaning in terms of the frequentist definition
of P. The method does not use a prior, but that also means that the results must not be interpreted as
P(hypothesis

�
data)!

2.1 The ‘Karmen problem’ : mean background 2.8, seeno events.

One of the first applications of the unified approach was by the Karmen Collaboration, which saw no
eventswhileexpecting 2.8 background events. Our recommendations for asituation like this were:� To educate theworld that confidence intervals arenot statementsabout P(hypothesis

�
data).� To insist that peopleshow asensitivity curve [1] if their limit is far from it.

Nonetheless, the most common criticism of the unified approach is that ‘ it makes no sense’ for Karmen
to havea tighter upper limit than an experiment with no events and no expected background.

Pleasedon’t fall into the following common trap:

1. Assume theconfidence intervalsarestatements about P(parameter
�
data).

2. Observe that unified confidence intervalsviolateall sensibility in theKarmen problem when inter-
preted as P(parameter

�
data).

3. Conclude that theconfidence intervals makeno sense.

What makesno senseisassuming that confidenceintervalsarestatementsabout P(parameter
�
data). They

arestatementsderived from P(data
�
parameter) without invoking a prior, and hencenecessarily cannot be

P(parameter
�
data). In theKarmen problem, theprobability of observing no events is lessfor �	��
��� than

it is for �	��� . That’swhat theconfidence intervalsare reflecting. I comeback to thispoint in discussing
conditioning below.
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2.2 LR order ing ‘ failures’

It iswell-known that maximumlikelihoodestimationdoesn’t work incertaincases. That hasn’t prevented
it from being generally useful. Similarly, exceptions for LR ordering for confidence intervals have been
claimed by G. Zech [5], and more recently by G. Punzi [6], and J. Bouchez [7]. It remains to be seen if
these represent problems in practice.5

2.3 TheRoe–Woodroofemodification: conditioning

Of all thepost-FC papers, theoneI found most enlightening wasby Roeand Woodroofe[8]. They invoke
a standard idea from the theory of statistics, namely conditioning. The idea is to restrict the ensemble
used to define frequentist coverage, based on the data observed. Their application stretches the usual
conditioning beyond well-known precedents, but gives intervals in thePoisson casewhich do not depend
on the expected background for the ����� case (zero events observed). For ����� , the idea is that
one knows that there are no background events, so the chosen ensemble consists of experiments with no
background events rather than the larger ensemble in which the number of background events fluctuates
with known mean6.

Conditioning can make confidence intervals behave more like P(parameter
�
data). This quantity

only exists in Bayesian theory7, and is proportional to P(data
�
parameter) evaluated only using the actual

data set observed. Confidence intervals are based on P(data
�
parameter) for all possible data sets in an

ensemble, and do not alwaysbehavesimilarly to P(parameter
�
data). Confidence intervalswill in general

behave more like P(parameter
�
data) if the ensemble is restricted to data sets more like the one observed.

Traditionally this restriction is made using ancillary statistics; see Ref. [8] for more discussion and
references.

Owing to the promising, yet somewhat unfounded, appearance of the approach of Roe and

Woodroofe, I recently worked out and posted [9] theapplication of their method, asI understand it, to the
other prototype problem of the FC paper: a Gaussian variable near a physical boundary. The result was
disappointing: while theupper curveon theconfidencebelt ismoved in thedesirabledirection, the lower
curve on the confidence belt is also moved significantly, in an undesirable manner. We are currently
studying thesituation further.

3. THE METHOD CALLED THE OLD ‘PDG METHOD’ OUTSIDE THE PDG

This non-unified method, for upper limits only, is based on the formula

����� � ���������! #"%$'&)( *,+*'-#.
/103254�687 *:9 �<;

� �# #" *=+*#-#.
0?> 9 �<; �

Helene [10] derived this result (not in this tidy form) using Bayesian statistics with uniform prior. We
emphasize again that this prior is not the preferred prior in objective Bayes theory. Attempts have been
made to put this formulaon a frequentist footing, notably by Zech [11], who was criticized by Highland
[12], with areply by Zech. Theissuehasto do with theconditional probabilities. Highland showed that a
standard conditional probability calculation does not lead to the Helene formula. It turns out that Zech’s
calculation refersto an ensemblewhich isknown in aMonteCarlo simulation but which isunknowablein

5Some of these counter-examples assumed that some points could be excluded from the acceptance region while including
someother pointswith thesameLR. This issuewasnot explicitly addressed in Ref. [1], but Ref. [3] makesclear that all points
which ‘ tie’ for theordering-LR cutoff should be included.

6Note added in proof: After the CLW, I realized that the Roe/Woodroofe conditioning was basically the same as that used
by Zech [11], and differed from that of Highland [12]. Seemy writeup for theFermilab CLW in March, 2000.

7In Bayesian theory, it can make sense to talk about the probability associated with a constant of Nature, since probability
is defined asdegreeof belief, not frequency.
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experimental data; Highland says, “ It is difficult to see what physical experiment this would correspond
to” .

As a method for computing upper limits, Helene’s formula overcovers (more than required by
Poisson discreteness) for the usual ensemble. However, as discussed in Section 9, the same uniform
prior leads to lower limits which undercover a Poisson mean. There is no fundamental basis for this
formula in the classical theory of confidence intervals, and, as noted above, the uniform prior is not the
preferred objective Bayesian prior for a Poisson mean. Hence it is an ad hoc adaptation which gives
upper limits that somepeoplefind to be reasonable.

A. L. Read [13] further discusses this formulaand itsgeneralization in oneof therequired reading
articles for this workshop. I believe that one must still ask what is the fundamental basis (in the profes-
sional statistics literature) for this method? Does the Neyman–Pearson lemma, which Read cites as the
reason his intervalsare‘optimal’ , really imply hisconclusion? Or istherealeap from event classification
to these intervals, especially if flip-flopping is properly treated? In fact, Stuart and Ord [3] cite the same
Neyman–Pearson lemmaas the justification for theLR ordering principleused by FC.

In my opinion, confidenceintervalswith extraover-coveragemust bejustified on groundsof either
robustness or conditioning8.

4. NUISANCE PARAMETERS

Nuisance parameters are parameters such as the detector efficiency, integrated luminosity, mean back-
ground, etc., which arenot known exactly but must beestimated, even though they arenot theparameters
of physics interest.

This is an area that could benefit from more work. If one strictly follows the traditional definition
of confidence intervals, onemust not under-cover for any valueof thenuisanceparameter. The resulting
tableof intervals typically causes over-coverage for any given value.

Historically, thiswasan even bigger problem becauseof thecomputing resourcesneeded to check
coverage for more than a few values of the nuisance parameters; even today, this is a challenge. There-
fore, it has been the practice to obtain approximate intervals by covering for estimated values of the
nuisance parameters instead of all values [3]. Nowadays, computing is more tractable, so one can check
coverage for other values, but it is still typically impossible to obtain an exact solution when there are
many nuisanceparameters.

Again, a ‘problem’ ariseswhen confidence intervalsdon’t alwaysbehave likeP(hypothesis
�
data).

(Because they arenot P(hypothesis
�
data)!) This occurs in avery simple, common prototypecase, which

Virgil Highland and I [14] wroteabout someyearsago: Supposeyou seeno events, and you havea10%
uncertainty in luminosity. How does theusual 90% C.L. upper limit on thePoisson mean (2.3 before the
Unified Approach) changebecauseof theluminosity uncertainty? Surprisingly, thetrueupper confidence
limit is more restrictive than if luminosity is perfectly known!9 This seemed so ‘unacceptable’ that we
resorted to a Bayesian-inspired technique, namely integrating out the nuisance parameter. This has no
justification at all in Neyman’s construction; in fact, it causes over-coverage. Yet, it is very popular in
HEP (and was already in use; see the references in Ref. [14]).

Thus, there is food for thought in this problem. It is disturbing that the classical method gives the
‘wrong’ sign to the effect. One of the lessons, however, is that the effect of a 10% uncertainty is quite
small, so in many practical cases, this is not really an issue.

Nuisance parameters are straightforward to handle in Bayesian theory except it seems that priors
in high dimensions are potentially an issue. As far as I know, this is not explored well yet in HEP. The
professional statistics literatureshows that high-dimension priors arenot obvious.

8Note added in proof: At the time of the CERN CLW, I thought that Highland and Roe/Woodroofe handled conditioning
similarly, which is not thecase. Seemy writeup for theFermilab CLW in March 2000.

9This can bedemonstrated with asimpleMonteCarlo program. Why it happens is briefly described in Ref. [15]
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4.1 Related issue: systematic errors

In the frequentist approach, systematic errors are necessarily treated using the frequentist definition of
P. This is sometimes conceptually hard to swallow, but doesn’t seem to be a problem in practice. (The
problem in practice, for both Bayesians and frequentists, is attaching any sensible uncertainty at all to
certain theoretical calculations!)

5. PRIORS

For me, the issue is not really ‘prior anxiety’ [16]. I am perfectly comfortable with subjective priors.
However, I do not think that they are the answer to the question of what to publish. To see this, consider
some experiments in the field of rare @ .A decays, a field in which I worked for a number of years, and
which provided the original motivation for my interest in the theory behind upper limit calculations. I
have selected three frontier (in their day) experiments which reported results in Physical Review Letters
regarding searches for, respectively, @ .A8B 0 $ 0 � [17], @ .A8B 0DC �FE [18], and @ .A8B � .G?HG [19].

In each experiment, theexperimentersobserved no candidatesignal events(after cutsdeemed rea-
sonable), and each team calculated its Single-Event Sensitivity (SES): that value of the decay branching
ratio (BR) for which the experiment would have observed on average one signal event. The known un-
certainties in the SES were negligible. So, how is the 90% C.L. upper limit on BR related to the SES?
Theclassical answer (which theexperiments in fact reported) is simple: BRI�
J�LKM� SES.

Recall that the subjective Bayes posterior pdf is the product of the prior pdf and the likelihood.
The posterior pdf in these three cases depends very much on the experiment, since the priors were so
different:

1. A search for @ .A�B 0 $ 0 � [17] had SES of �N� � �J��O . . I think a typical subjective prior pdf
at the time very firmly put the believed BR at greater than about P:�Q� � � ��O . . This was because
@ .A8BSR:R had been measured, and it wasavery plausibleQED calculation to add on RMRTB 0 $ 0 � ,
to obtain the so-called ‘unitarity bound’ on @ .A�B 0 $ 0 � . When the experiment saw no events,
thissubjectiveprior wasso strong that onecould still believe, with 90% certainty, that theBR was
greater than theunitarity bound, a factor of 6 greater than theSES!

2. A search for @ .A8B 0 C � E [18] had SESof
� � PU� � �J��OVO . When theexperiment began, theprevious

upper limits were several orders of magnitude higher, and there was some plausible beyond-the-
Standard-Model speculation that @ .A8B 0 C � E might exist within thesensitivity of theexperiment.
My personal subjective belief gave us a few per cent chance of a discovery. Thus, after seeing
nothing, my degreeof belief waschanged significantly by theexperiment, for valuesof BR above
theSES.

3. A search for @ .A B � . G?HG [19] had SES of 
�LWX� � �J�#Y . Although this was a new experimental
range, theStandard Model prediction wasmany ordersof lower (

� � ��O . �Z� � ��O[O ) and I knew of no
plausible way to get a BR as high as the SES. Hence, after this experiment, I believed with 90%
certainty that theBR was several orders of magnitude lower than theSES!

These examples show that subjective priors for real experiments can be very different, and that they are
not uniform in obvious metrics. They really do represent degree-of-belief. Hence there is no ‘ typical’
subjective prior which results in a ‘ typical’ relationship between the SES and the posterior belief. This
is why I do not see subjective Bayes statistics as a useful way to communicate experimental data, even
though I think it is agood model of how wescientistsupdateour beliefs.

For related reasons, I find objective priors to be not particularly useful, except as calculational
tools to get answers whose properties can be studied and justified post hoc on other (even frequentist)
grounds.
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5.1 An under-appreciated advantageof Bayesian statistics

A very nice feature of Bayesian statistics is that it provides an appealing way to formulate a ‘sharp
hypothesis’ , one which gives special significance to a particular parameter value. For example, one can
formulatea test on \]�^
 versus \�_��
 in anatural way, using asubjectiveprior with aDirac ` -function
(times a subjective factor) at \a�b
 and the rest of the probability spread out (according to your degree-
of-belief) over \�_��
 .

Ironically, thisvery nicefeatureof Bayesian statisticsistypically lost in ‘objective’ priors. For me,
it’s another indication that proposed objective priors throw away too much of the essence of Bayesian
statistics.

6. GOODNESS OF FIT

In my opinion, this isa little-known but critical issue for Bayesian statistics. In HEP, wefrequently want
to test thecorrectness of the functional form used in afit.

We recall that the Bayesian posterior obeys the Likelihood Principle: all the information from the
experiment is in c for your experiment. The frequentist ensembledoesnot exist. Therefore, in Bayesian
statistics, our usual way of formulating goodness-of-fit does not exist!

As I understand Bayesian statistics, the model error must be incorporated into the prior and c .
This appears to be very difficult for the simple question, “ Is my chosen functional form a good fit to the
data?” In HEP, such issues are still at a very early stage of exploration; see Ref. [20] for an example
combining discrepant data.

7. ROBUSTNESS

Robustness(relativeinsensitivity to departuresfrom assumptions) isan important issuein HEP. ThePDG
knowsthat historically, systematic errorsareoften under-estimated. Therefore they use the famousscale
factor S, which has demonstrated robustness at reasonablecost (F. James, privatecommunication.)

Chanowitz [21] has proposed an analogy for confidence limits. I think it is worth investigating
doing something similar in the Unified Approach. In the ‘Karmen problem’ , for example, one could
inflate the uncertainty on background until the goodness-of-fit (in this case, the probability of obtaining
no events) is decent. Then put that uncertainty into the limit calculation.

Whatever oneuses, of course, onemust beclear on where robustnessenters, since this is likely to
beacontentious issue.

8. WHAT IS THE ENSEMBLE?

In an interesting chapter entitled “ComparativeStatistical Inference” , Stuart and Ord [3] noteon p. 1227
that “Two of thedifficulties facing the frequency approach in practiceare thespecification of thesample
spaceand theneed to ensure random sampling” .

HEP is no exception. Specifying the ensemble (the sample space within which frequencies are
calculated) has typically not not been a big practical problem in my experience, but it is easy to imagine
caseswhereit can arise. For example, if your experiment sees77 top-quark events10, should theimagined
ensemble contain experiments which also saw 77 events, or a larger ensemble in which this number
undergoes Poisson fluctuations? The issue is once again conditioning (encountered in Section 2.3 in
the context of the Roe–Woodroofe proposal for modifying the Unified Approach). For an example with
references to some literatureon thedebate, seeRef. [22].

In discovery-oriented experiments, it seems that it will always be a problem (even in Bayesian
statistics) to calculate probabilities starting from unusual events. There is the old story (I heard it at-

10Harrison Prosper offered this example from theD0 experiment in e-mail circulated before this conference.
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tributed to Feynman) about the license plate: “That car’s license plate number is GMZ356. Do you
realize how unlikely that is?” I seem to recall that early d B � $ � � R events in 1983 had similar issue:
what’s the ensemble? In practice, the data set analysed at the end of one run is often used to define the
hypothesis for thenext run. Real signals gain in significancewith more running.

Certainly, we can agree that when one quotes coverage, one should define the ensemble used for
the coverage calculation, if it is an issue. In many cases, for example NOMAD G oscillations, this is not
asubtlety, it seems.

9. NON-COVERAGE OF BAYESIAN INTERVALS

There is a long history of comparing Bayesian intervals with confidence intervals11, since the issue of
which to use is mitigated to the extent that the numerical answers are the same. Unfortunately, since
each type is based on a different definition of P, the math does not ensure that intervals from one realm
make sense in the other realm. We have seen above how confidence intervals can ‘make no sense’
when interpreted asdegreeof belief. Similarly, Bayesian intervalscan ‘makeno sense’ when interpreted
according to the frequentist definition of confidence intervals.

As an example [15], let’s suppose that one makes a ‘measurement’ of the mean
0

of a Poisson
process by performing a single experiment and obtaining �e�fK events. The classical central12 68%
confidence interval for

0
is� (1.37, 5.92). [Central intervalswith frequentist coverage.]

The Bayesian intervals depend of course on the prior. If one naively uses a prior uniform in
0

, then the
68% credible interval is� (2.09, 5.92). [Bayesian with prior uniform in

0
.]

If one uses one of the ‘objective’ priors advocated for the Poisson mean by Jeffreys, g /h0i7 � � 9 0 , then
the68% credible interval is� (1.37, 4.64). [Bayesian with prior

� 9 0 .]

Such Bayesian intervalsareshorter, and undercover theunknown truevalue. Notethat theright endpoint
of the Bayesian interval with uniform prior is the same as for the frequentist interval, while the left
endpoint for the

� 9 0 prior is the same as for the frequentist interval. This is always true for these priors
in this Poisson problem, so that: 90% C.L. upper limits are the ‘same’ for classical and uniform prior,
while 90% C.L. lower limits are the ‘same’ for classical and

� 9 0 prior. I am completely convinced that
our community’s infatuation with uniform prior for the Poisson mean is a consequence of the fact that
we are normally interested in upper limits! If the nature of our work were such that lower limits on
Poisson meanswere thenorm, then the

� 9 0 prior would be the ‘obvious’ one, and onewould even enjoy
the luxury of being moreconsistent with theobjectiveBayesian literature13.

10. WHAT MIGHT WE AGREE ON? 14

I have mentioned many areas in frequentist and Bayesian statistics where there are issues for debate. In
spiteof thewiderangeof pointsof view at thisworkshop, I think wecan agreeon anumber of statements
which arenot controversial among peoplewho have learned about them, but which arenon-trivial in that
I seepapers which makeassumptions to thecontrary.

1. First of all, civility. The debates in the professional statistics community seem to have departed
from civility more than one might hope. We physicists have our own role models, in particular
Bohr and Einstein in their quantum mechanicsdebate, for handling serious disagreement.

11Ref. [15] has somereferences.
12This assumes that flip-flopping is not an issue. Theunified confidence interval is (1.10, 5.30) [1].
13However, aprior for j based on moregeneral ‘objective’ arguments is yet another one, k�lmj:nMoNprqts j .
14I revised thissection slightly after my talk, so that I think it now really doeshaveagreement from anumber of knowledge-

ablespeakers with whom I discussed it.
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2. The likelihood function c is not a pdf in the unknown parameters. ‘ Integrating the likelihood
function’ is not a concept in either Bayesian or classical statistics: it is not well-defined because
one gets a different answer upon reparametrizing the integration variable. (Since c is not a pdf in
theparameters, there is no Jacobian in them to giveconsistent integrals upon change-of-variable.)

3. Answers based on integrating the posterior pdf with a ‘uniform prior’ depend on the metric in
which theprior is uniform. Uniform priors should beexplicitly stated, not hidden.

4. Bayesian intervals typically do not have frequentist coverage. This is not surprising, since the
Bayesian formulation makes no reference to an ensemble: it uses the likelihood function for the
particular dataset observed.

5. Publishingenough information to reconstruct anapproximatelikelihood functionshouldbestrongly
encouraged. Thisallowsoneto specify one’sown prior and calculateaposterior pdf, and it allows
approximateclassical confidence intervals to becomputed.

6. Our usual goodness-of-fit tests do not exist in Bayesian statistics. The Bayesian analog requires a
reformulation which extends thespaceof P to include functional forms.

7. P(hypothesis
�
data) cannot becalculated without aprior.

8. The confidence interval construction does not use a prior. It uses P(data
�
theory), and requires the

ensemble to be specified. Priors enter when going from P(data
�
theory) to P(theory

�
data), which

confidence intervals do not do.

9. Regardlessof your opinion about priors, asubjectiveutility function isneeded to makeadecision,
so any argument for totally objectivedecisions is highly suspicious.

10. If a method is frequentist, one must understand the frequentist coverage. If the coverage differs
materially from the stated C.L., then an explanation should be provided. If a method is Bayesian,
then it can also be enlightening to look at the frequentist coverage, if only to educate ourselves
about thedifferencebetween degree-of-belief P and frequentist P!

11. If oneusesamethod which implicitly or explicitly invokesaprior, then oneshould understand the
sensitivity of the result to thechoiceof prior.

12. When used without a qualifier, the words ‘confidence interval’ imply the frequentist definition of
P, and at least approximate coverage at the stated C.L. Intervals not having this property should
be qualified or called something else: for Bayesian intervals, some prefer ‘Bayesian confidence
intervals’ , whileothers prefer ‘credible intervals’ .

. . .and remember: All this is irrelevant if you tune the cuts in order to eliminate candidate events
in order to get a better limit (unless, of course you are willing to put that tuning into your coverage
calculation . . . that leads to loss of power, even if it covers, however).

11. CONCLUSION

In thistalk I havetried to highlight someof themost troublesomeareasin classical and Bayesian statistics
calculations. The LR ordering for confidence intervals, possibly with conditioning added, provides a
well-founded general framework for a consistent treatment of one-sided and two-sided intervals. The
Bayesian method most closely associated with scientific reasoning, namely using a subjective prior, is
hard to imagineastheanswer to “What number to publish?” Progresswill bemadeif peopleusemethods
with understood properties, and if statements about P(data

�
parameter) are not interpreted as statements

about P(parameter
�
data).

57



      

Acknowledgements

I give great thanks to the co-convenors of this workshop, Fred James and Louis Lyons, for bringing this
group of people together for the first time. The local organizers, Fred James and Yves Perrin, provided
a perfect environment for the talks, meals, and discussions. This talk reflects many years of off-and-on
study with studentsand colleaguestoo numerousto list, but most notably Virgil Highland15, Fred James,
and Gary Feldman. This work is supported by UCLA and theU.S. Dept. of Energy.

References

[1] G.J. Feldman and R.D. Cousins, Phys. Rev. D57 (1998) 3873.

[2] S. Ciampolillo, Il Nuovo Cimento 111 (1998) 1415.

[3] A. Stuart and J.K. Ord, Kendall’sAdvanced Theory of Statistics, Vol. 2, Classical Inferenceand Re-
lationship, 5th Ed. (Oxford University Press, New York, 1991); seealso earlier editionsby Kendall
and Stuart. The LR-ordering principle, including approximate treatment of nuisance parameters, is
given at thebeginning of Chapter 23 (Chapter 24 in theprevious edition).

[4] P. Astier, et al., Phys. Lett. B453 (1999) 169. Many different decay modeswithdifferent proportions
of background (each with errors) arecombined.

[5] G. Zech, physics/9809035. Seealso talk at this workshop.

[6] G. Punzi, hep-ex/9912048. Seealso talk at this workshop.

[7] J. Bouchez, hep-ex/0001036.

[8] B.P. Roe and M.B. Woodroofe, Phys. Rev. D60 (1999) 053009. See also talk by Woodroofe at this
workshop.

[9] R. Cousins, physics/0001031.

[10] O. Helene, Nucl. Instrum. Methods 212 (1983) 319.

[11] G. Zech, Nucl. Instrum. Methods A277 (1989) 608.

[12] V. Highland, Nucl. Instrum. Methods A398 (1997) 429, followed by reply by G. Zech.

[13] A.L. Read, DELPHI 97-158 PHYS 737, 29 October 1997,
http://wwwinfo.cern.ch/ u pubxx/www/delsec/delnote/public/97 158 phys 737.ps.gz
Seealso talk at this workshop.

[14] R. Cousins and V. Highland, Nucl. Instrum. Methods A320 (1992) 331.

[15] R. Cousins, Am. J. Phys. 63 (1995) 398.

[16] G. D’Agostini, physics/9906048.

[17] A.R. Clark, et al., Phys. Rev. Lett. 26 (1971) 1667.

[18] K. Arisaka, et al., Phys. Rev. Lett. 70 (1993) 1049.

[19] M. Weaver, et al., Phys. Rev. Lett. 72 (1994) 3758.

[20] G. D’Agostini, hep-ex/9910036.

15In a widely-read preprint [23] never submitted for publication, Highland gave a critical survey of upper limits methods in
1986.

58



  

[21] M. Chanowitz, Phys. Rev. D59 (1999) 073005.

[22] R. Cousins, Nucl. Instrum. Methods A417 (1998) 391.

[23] V. Highland, TempleUniv. preprint COO-3539-38 (1986).

59



   

Discussion after talk of Bob Cousins. Chairman: Jim Linnemann.

Michael Woodroofe

Again I have really more comments than questions, the first of which is to reinforce the call for
civility. I haveexperienced what the lack of civility can lead to, and you don’t want to go there.

R. Cousins

I might add that this is particularly important to us because we are amateurs in statistics, so we
aregoing to makemistakes. Wearephysicists in our ‘day jobs’ , so when wedo statistics let’sbekind to
each other.

M. Woodroofe

About the reluctance to publish subjective distributions. In the derivation of the Bayesian theory
there is an assumption that theperson who is writing down thepriors is also the person who is incurring
the losses or the gains in the utility function. Now that’s true in some situations. If you’re trying to
decide ‘what I should do with my life in the next two years, which experiment I should pursue’ , that’s a
personal decision and it’s true. In other parts of science I think it may not be true. If you’re sitting on a
panel that’s trying to decide which of several different experiments should be funded, you’re not paying
the losses for that, and I think that’s related to the reluctance to publish subjectivedistributions.

The goodness-of-fit problem for Bayesians is very hard. A simple goodness-of-fit problem is to
test whether data is normal, and that problem was solved recently from a Bayesian perspective by Jim
Berger. It’s a very clever solution, it’s a nice solution, it’s not easy. It was 1999 when that very basic
problem wasfirst worked out, and that’s how hard it is.

Harr ison Prosper

This flip-flop problem that you solved. Was the problem the fact that people are flip-flopping or
was the problem the fact that the ensemble in which this flip-flopping was embedded didn’t cover? I
can imagine for example, designing an algorithm for limits which allows the experimenter to choose to
flip-flop which also covers.

R. Cousins

You could do that, but people certainly were not doing that. You can even imagine an extreme
casewhereyou adjust your cutsspecifically to get rid of all thecandidatesignal eventsyou see, and then
you do a Monte Carlo of such an ensemble of experiments to see what upper limit should be quoted in
order to have coverage. The resulting upper limits are valid in the sense of correct coverage, but have
very poor power; in fact the mean upper limit is infinity, as I once mentioned in a NIM paper devoted to
something better (NIM A337 (1994) 557).

H. Prosper

But thepoint is that in Neyman’s initial paper, heputsno restrictionswhatsoever on theensemble,
hesimply states “ this is what weshould satisfy” , and so in principlewehavecomplete freedom.
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R. Cousins

That’sright, and what’shappened sinceNeyman asI understand it, isthisbusinessof conditioning.
You know, we lump Fisher and Neyman asclassical buddies together opposing theBayesians, but in fact
they were at each other’s throats because Fisher for instance insisted on conditioning and figuring out
what the ensemble is. That’s why I quoted Kendall and Stuart. This is a problem you’ve got to worry
about where it matters, and if you get different results depending on what you use for it, I think you
should say that too.

H. Prosper

Just one last comment. In the same volume in which Kendall and Stuart described this likelihood
ratio test, they also point out that getting rid of thedependenceon nuisanceparameters isavery difficult
problem, so I think even for the case of the likelihood ratio, the calculation of that ratio still depends on
thoseparameters, if thedataset size is too small.

R. Cousins

That’sright. Theadvantagewehavetoday ismuch morecomputational power, although it can still
be insufficient for an exact calculation. Kendall and Stuart make the approximation that you calculate
coverage only for values of nuisance parameters equal to their maximum likelihood estimates. With
today’s computers, one can check coverage for other values of the nuisance parameters, although it is
still not practical to do theconstruction directly in ahigh-dimensional space.
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