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1 INTRODUCTION
Most of the currently proposed ion cancer therapy facilities in Europe plan to install an ion

gantry equipped with a ‘pencil-beam’ scanning system [1-4].  A gantry can improve the dose-
to-target conformity, but it also increases considerably the requirements imposed on the beam
transport accuracy.  Usually, sub-millimetre accuracy at the gantry iso-centre is specified when
treating tumours in the vicinity of critical organs, which is one of the main domains of ion
therapy.  So far, experience exists only for proton gantries using passive [5-7] or hybrid [8]
beam delivery systems, or for the fixed beam line at GSI using the pencil-beam scanning [9,
10].  Because of the higher magnetic rigidity of ion therapy beams (three times higher than
protons), the construction principles applied to existing proton gantries cannot be directly
‘scaled’ to ion gantries and, for this reason, several novel ion-gantry concepts have recently
been proposed [11-13].  One of these proposals, the so-called ‘Riesenrad’ gantry has been
investigated from the point of view of sensitivity to various beam transport errors and the
results are reported in this paper.

2 RIESENRAD GANTRY
2.1 Principle and mechanical concept of the Riesenrad gantry

The principle of the Riesenrad gantry is shown in Figure 1.  A 90° dipole magnet is placed
at the end of the transfer line and rotated mechanically around the horizontal axis.
Consequently, the beam deflected by the dipole magnet is directed to any angle corresponding
to the angle of the dipole rotation.  The patient must be in this case placed eccentrically and
must follow the dipole rotation.  One could say that the Riesenrad gantry is an extreme case of
the eccentric gantry concept [14].  There are several technical concepts of this principle [15].
The one, which is currently considered for the Med-AUSTRON facility [3], is based on
independent support systems for the dipole magnet and the patient.  The patient positioning
system is mounted on a platform capable of vertical and horizontal translations. A desirable
patient position is achieved as a combination of these two translations as it is shown in Figure
2.  This approach reduces the overall gantry weight, makes it possible to increase the rigidity
of the dipole magnet support structure and provides essentially more space around the patient
compared to the situation when the patient cabin and the dipole magnet are integrated into a
common support structure.  In addition, routine and emergency access to the patient becomes
easier and faster.

2.2 Beam transport system of the Riesenrad gantry
The beam transport to and in the Riesenrad gantry is rather special since the beams

extracted from a synchrotron are expected to have significantly different emittances in the two
transverse planes [16].  In order to match such non-symmetric beams to a rotating gantry, a
special matching section called ‘rotator’ must be used [17].  The rotator is a bending free
quadrupole lattice with a special transfer matrix, which is positioned upstream of the gantry
and which is rotated by half the gantry angle around the horizontal axis [18, 19].  The beam
transport system of the Riesenrad gantry including the rotator is shown in Figure 3 and the
betatron amplitudes corresponding to the horizontal position of the gantry (α=0°) are shown in
Figure. 4.  The betatron amplitudes in the iso-centre in two transverse planes are, in general,
different, because of different beam emittances in the transverse planes. Neither the gantry nor
the rotator is involved in the control of the beam size at the iso-centre.  This task is
accomplished by dedicated modules in the transfer line upstream of the rotator [20].  This
means that the optical settings of the rotator and gantry are independent of the beam size
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required at the iso-centre.  However, the overall transfer matrix from the rotator entrance to
the iso-centre becomes a function of the gantry angle α, because an angle α/2 appears between
the exit of the rotator and the entrance of the gantry.

T h e  9 0 °  d i p o l e  m a g n e t

                   

(a)  Exo-centric Riesenrad gantry                         (b)  Conventional iso-centric gantry

Figure 1 Principle of the Riesenrad gantry
[(a) A 90° dipole is placed at the end of the transfer line and rotated mechanically around the horizontal

axis. An eccentrically located patient follows the dipole rotation and can be irradiated from any
direction.   (b) For comparison, a ‘classical’ isocentric gantry is schematically shown as well.]

  Gantry supporting
   ring

± 90°

5,6 m

± 5,6 m

The 90° dipole

Treatment platform capable
of horizontal and vertical
translations

Output beam

Input beam Magnet aperture

Figure 2  The Riesenrad gantry with movable treatment platform.
[The patient position corresponding to a particular angle of the dipole magnet is achieved by a

combination of vertical and horizontal translations of the treatment platform. In this case, the dipole is
rotated from -90° to +90° (0° is defined to be the horizontal position of the magnet) and the patient table

can be rotated 360° around its vertical axis in order to achieve effectively any treatment angle
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Figure 3  Beam transport system of the Riesenrad gantry including the rotator.
[The rotator consists of seven quadrupoles (Q1-Q7), the gantry consists of four quadrupoles (Q8-Q12),
scanning magnets (S1, S2, S3) and the 90° dipole magnet.  Global (room) and local (beam-transport)

coordinate systems are indicated as well.]

Figure 4  Betatron amplitude functions in the rotator and gantry beam transport system for α = 0°
[Solid line: bending plane of the dipole, dashed line: non-bending plane of the dipole]

3 ERROR ANYLYSIS
3.1 General considerations

The present analysis has been restricted to errors leading to a wrong beam position at the
gantry iso-centre, which is the most critical aspect of the gantry beam transport system.  The
effects causing focusing errors like deviations from an exact beam size or deformations of an
ideally round beam spot have been neglected.  Only the misalignment of beam transport
elements that causes a deviation of the beam from the optical axis has been considered.  The



4

beam transport elements are assumed to be perfectly manufactured, correctly powered, having
an ideal field quality, but displaced along and/or rotated about each of the local coordinate
system axes x, y, and z (see Figure 3).

The misalignments have been classified into two categories: systematic and random.
Systematic misalignments are caused by deformations of the gantry and rotator support
structure.  The main feature of systematic misalignments is their short-term reproducibility as a
function of the gantry angle.  Long-term effects like building or ground movements are not
considered and must be compensated by periodic re-alignment of the whole system.  Random
misalignments represent all possible effects with no reproducibility as a function of the gantry
angle.  A source of random misalignments could be temperature fluctuations, fabrication
imperfections of the gantry supporting ring*, bearings, final precision of an original alignment,
etc.  These misalignments are expected to have a gaussian distribution which is superimposed
on the systematic misalignments.  The position of each beam transport element is therefore
characterised by a particular value of the systematic misalignment (element-specific) and a
standard deviation of the random misalignment distribution.  The situation is illustrated in
Figure 5.

Probability

Position
Designed
position
(optical axis)

Systematic
misalignment

Distribution of the
random
misalignments

Figure 5  Position probability distribution of a beam transport element showing the systematic and
random misalignment components

3. 2 EFFECTS OF MISALIGNMENTS
A misaligned quadrupole causes a transverse ‘kick’ to the beam, which can be calculated

from the transfer matrix of the quadrupole:
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for a quadrupole which focuses in the (x, z) plane, where x0, x0′, y0, y0′ are the particle
                                               
*  It is assumed that the support rollers and ring will not have the same relative positions each time a particular
gantry angle is set.
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coordinates at the entrance, x1, x1′, y1, y1′ are the coordinates at the exit, L is the quadrupole
effective length [m] and k is the strength [m-2] defined as k = g/(Bρ) where g is the gradient
[T/m] and Bρ is the magnetic beam rigidity [Tm].  For a transverse misalignment ∆x, ∆y one
gets for the kick, by putting x0 = −∆x, x0′ = 0, y0 = −∆y and y0′ = 0 (see Figure 6a):

( ) xLkkxx ∆⋅=′−′ sin01 (2)(a)
for the focusing plane and

( ) yLkkyy ∆⋅−=′−′ sinh01 (2)(b)

for the defocusing plane of the quadrupole.  Note that the misalignment of a magnet which is
positive in the local beam coordinate system causes the reference particle to be negatively
displaced with respect to the optical axis of the misaligned magnet, hence x0 = −∆x and
y0 = -∆y.

When tilting the magnet by angles Rx (about x-axis) and Ry (about y-axis), then x0=0, x0′=−
Ry, y0 = 0 and y0′ = +Rx (see Fig. 6b).  The kicks are given:

( ) yyy RLkRRLkxx ⋅−=−−⋅−=′−′ )cos1()(cos01 (3)(a)

for the focusing plane and

( ) xxx RLkRRLkyy ⋅−=−⋅=′−′ )1(coshcosh01 (3)(b)

for the defocusing plane (3).  Similarly, the effects of dipole misalignments, which are basically
geometrical focusing and/or trigonometric transformations between the local coordinate
systems at the dipole entrance and the dipole exit, can be calculated.

Systematic and random misalignments must be treated differently.  The systematic
misalignments represent the situation when all elements are misaligned by a known amount.
For each gantry angle, the elements have definite positions different from the ideal design
positions and the whole beam line represents a certain particular combination of element
misalignments.  The position of the beam in the gantry iso-centre is obtained by tracing the
beam through this misaligned beam line by a dedicated computer code.

The random misalignments are interpreted as an uncertainty of the actual element position.
In other words, the element position is given a certain probability distribution, which is
assumed to be gaussian.  All misalignments in all elements are assumed to be independent and
their individual contributions to the beam displacement are added quadratically.  If the
parameters of the element misalignment are taken as representing one standard deviation of the
misalignment distribution, then the calculated beam position represents one standard deviation
of a beam position probability distribution.
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(a)  Transverse shift                                                   (b)  Transverse tilt
Figure. 6  Effects of a misaligned quadrupole lens

[Note that the outputs given by the transfer matrix of the quadrupole are in fact related to the optical
axis of the misaligned element and have to be properly converted to the coordinate system following a

design trajectory.]

4 BEAM TRANSPORT CALCULATIONS
The beam transport calculations were performed independently with the computer codes

TRANSPORT [21] and WinAGILE [22] and the results were consist.

4.1 Systematic misalignments
Typical and probably the dominating component of the systematic misalignments are the

elastic deformations of the gantry support structure.  The elastic deformations were calculated
by the dedicated computer code CUBUS [23] and converted from the global (room)
coordinate system to the local (beam-transport) coordinate system that follows the bends and
rotations of the beam line.  In the local coordinate system, the z axis always points in the beam
direction and the [x, z] and [y, z] planes at the dipole exit are identical with the bending and
non-bending planes, respectively, independent of the angle of gantry rotation (see Figure3).
The global (room) coordinate system is fixed and does not follow the gantry rotation.

The results of the beam transport calculations showing the response of the system to the
elastic deformation misalignments are shown in Figure 7.  The position of the beam-centre in
the gantry iso-centre is given in the local (beam-transport) co-ordinate system for different
angles of gantry rotation from –90° to +90° in 10° steps.  Three sets of data are presented
corresponding to the misalignment of the quadrupoles alone, the gantry dipole alone and all
elements together.
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Fig. 7  Beam position in the gantry isocentre for different angles of gantry rotation

4.2 RANDOM MISALIGNMENTS
It is difficult to assess the random misalignments in the same way as the systematic ones

and a different strategy has been chosen.  The sensitivity of the gantry beam transport system
has been investigated thus giving the possibility to specify “backwards” the necessary
tolerances on the element positions.  For this purpose, some approximations have been
introduced into the model.  The first approximation is to express the effect of a misaligned
quadrupole as an angular kick with zero displacement at the exit to the quadrupole (thin-lens
approximation).  The angular kicks are given by (2) and (3) in Section 3.2.  The kicks then
cause beam displacements at the gantry iso-centre according to the transformation:
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where x, x′, y, y′ are parameters of the reference trajectory (beam centre) in the gantry iso-
centre, x0 , x0′, y0 , y0′ are parameters of the reference trajectory at the exit to the misaligned
element and tij are elements in the transfer matrix from the exit of the misaligned element to the
gantry iso-centre.  The thin-lens approximation gives x0 = y0 = 0 and x0′ and y0′ will be called
Hkick and Vkick for the horizontal and vertical planes, respectively.  Note that there is a coupling
between the horizontal and the vertical planes due to the fact that the gantry is rotated by an
angle α/2 with respect to the rotator, α being the angle of gantry rotation.  The terms in the
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off-diagonal sub-matrices are therefore not zero.  The final beam displacement due to the
quadrupole shift is:

kick14kick12 VtHtx ⋅+⋅=  (horizontal plane)

kick34kick32 VtHty ⋅+⋅=  (vertical plane) (5).

After evaluating the kicks using (2), one obtains:

yCxCyLkktxLkktx ∆+∆=∆⋅⋅−∆⋅⋅= 211412 sinhsin

yCxCyLkktxLkkty ∆+∆=∆⋅⋅−∆⋅⋅= 433432 sinhsin (6)

where C1, C2, C3 and C4 are constants depending only on the angle of gantry rotation.  For
analysis of random errors, the misalignments ∆x and ∆y are taken as representing a standard
deviation of the position probability distribution of a misaligned element and their effects –
supposing independent random misalignments in any direction − must be added quadratically:

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )22
2

22
1

22 ,00, yiCxiCyxxyxxi H ∆+∆=∆=∆+=∆∆=σ

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )22
4

22
3

22 ,00, yiCxiCyxyyxyi V ∆+∆=∆=∆+=∆∆=σ (7)

where σ(i)H and σ(i)V now represent a standard deviation of the beam position probability
distribution corresponding to the misalignment of the i-th quadrupole and indexes H and V
assign the horizontal and vertical planes, respectively.

The second approximation in the model is a physically reasonable assumption that the
position uncertainty for all quadrupoles in all directions is the same, i.e. ∆x = ∆y = ∆z ≡ ∆shift

where ∆shift is now introduced as representing the random misalignment of a quadrupole in any
direction. Equation (7) then looks like:

( ) ( ) ( ) ( ) shiftHshiftH iCiCiCi ∆=∆⋅+=σ 2
2

2
1

( ) ( ) ( ) ( ) shiftVshiftV iCiCiCi ∆=∆⋅+=σ 2
4

2
3 (8)

Equation (8) demonstrates that the beam displacement in the gantry iso-centre caused by a
random quadrupole shift is simply proportional to the shift. The proportionality constants are
different in the horizontal and vertical plane C(i)H ≠ C(i)V.  If all quadrupoles are independently
misaligned, the standard deviation of the beam position probability distribution in each plane
will be given by:

( )( ) ( )( ) ( )( ) shiftshift
ii

shift
i

shift iCiCi ∆∝∆⋅=∆=σ=σ ∑∑∑ 2222 (9)

where indexes for horizontal and vertical planes are no longer indicated keeping in mind that
equation (9) differs for the different planes by only the proportionality constant.
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The same strategy can be applied for effects of quadrupole tilting, dipole shift and dipole
tilt yielding the final expression for the standard deviation of the beam position probability
distribution in a given plane, σtotal:

( )( ) ( )( ) ( )( ) ( )( )2
tilt

2
shift

2
tilt

2
shifttota dipoledipolequadsquads σ+σ+σ+σ=σ l (10)

where each contributing effect is proportional with a different proportionality constant to the
corresponding misalignment.  This enables a proportional scaling of results and to specify
“backwards” the tolerable misalignments from the requirements on the beam position accuracy.
In principle, calculations have to be done for all gantry angles, because the proportionality
constants depends on the angle of gantry rotation.

The input data used in the random misalignment analysis were 3σshift = 0.1 mm and 3σ
tilt = 0.1 mrad for all quadrupole and dipole magnets.  Specifying the 3σ-value means
practically that the elements are expected to be kept within -3σ to +3σ tolerances.  The
calculations have been done for gantry angles from -90° to +90° with 10° step.  Figure 8
shows the results for two significant angles of gantry rotation +90° and 0°.  The values for
other gantry angles were in-between these two extreme cases. The individual contributions
listed in (10) were (horizontal plane/vertical plane) 3σ(quads)shift = 0.93/1.23 mm, 3σ
(quads)tilt = 0.16/0.22 mm, 3σ(dipole)shift = 0.1/0.06 mm and 3σ(dipole)tilt = 0.14/0.63 mm for 
α = 90°.  The 3σ-regions of the beam position probability distribution corresponding to the
above values are depicted in Figure 9.  The maximum overall values 3σtotal = 0.96/1.4 mm were
obtained for α = 90°.

The misalignments due to temperature fluctuations, which are considered as random
misalignments, were investigated with the aid of the CUBUS code and the following results
have been obtained:

• A uniform temperature rise by 1 K in the gantry room lifts the centre of the gantry
front ring by approximately 0.05 mm, the iso-centre rises about one third of this value.

• A temperature gradient of 2 K from the lower (-1 K) towards the upper part (+ 1 K) of
the gantry room.  Depending on the gantry angle the effects vary, however they are in
the same order of magnitude as for the uniform temperature rise (maximum shift of
0.03 mm, maximum tilt of 0.01 mrad).

• A heating of 1 K of the dipole relative to the gantry structure.  The effect is very
sensitive to the design of the dipole supports. Maximum values, 0.02 mm, 0.005 mrad.

• The above values were converted into the misalignments of the beam transport
elements and the response of the beam position in the gantry iso-centre was calculated.
The results are shown in Figure 10.  It can be seen that the contribution of the
temperature fluctuations to the beam position uncertainty is about 0.4/0.5 mm (3σ,
horizontally/vertically).
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5 SUMMARY AND DISCUSSION
The systematic misalignments caused by elastic deformations of the gantry structure lead

to excursions of the beam from the gantry iso-centre less than 0.2 mm, which is within the
required precision.  However, there will be other components of the systematic misalignments,
for example fabricating errors, which are presently not included in the calculations because
their exact values are not known yet.  Nevertheless, the systematic errors are considered not to
be critical for routine gantry operation.  By virtue of their reproducibility as a function of the
gantry angle, they can be compensated by a set of fixed corrections realised, for example, as an
off-set of the scanning magnets or as a kick of dedicated corrector magnets.  The second
alternative is likely to be preferred in order to keep the scanning and the corrections as two
orthogonal functions.

The sensitivity of the beam position accuracy to random misalignments has been calculated
using the ‘reference’ values of 0.1 mm and 0.1 mrad for misalignments in all elements
independently.  The response of the beam position can now be scaled proportionally to
correspond to other input misalignment values.  In the case of different values for different
effects (quadrupole-shift, quadrupole-tilt, dipole-shift, dipole-tilt), the scaling must be done
separately for each effect and the resulting contributions must be added quadratically.

The random misalignment effects have been particularly assessed for temperature
fluctuations and finally a contribution from the Patient Positioning System, PPS, (3σ= 0.3 mm)
was added (see Figure. 11).  The main results are collected in Table 1.
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Source of error 3σ-region of the beam position
probability distribution for the

reference misalignments 0.1 mm
and 0.1 mrad, H/V plane

[mm]

3σ-region of the beam position
probability distribution for the

misalignments due to temperature
fluctuations H/V plane

[mm]

Dipole-shift 0.10 / 0.06 0.09 / 0.06
Dipole-tilt 0.14 / 0.63 0.02 / 0.11
Dipole 0.17 / 0.64 0.10 / 0.12
Quadrupole-shifts 0.93 / 1.23 0.37 / 0.49
Quadrupole-tilts 0.16 / 0.22 0.01 / 0.02
Quadrupoles 0.94 / 1.25 0.37 / 0.49
Beam transport,
i.e. quadrupoles + dipole

0.95 / 1.40 0.38 / 0.51

Beam transport + PPS 1.00 / 1.43 0.48 / 0.59

Table 1.  Summary of the effects of random misalignments
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Figure 11  Beam position uncertainty due to temperature fluctuations AND resolution of the patient
positioning system

The results show that the sensitivity of the beam transport to the element misalignments is
rather high.  In order to achieve the sub-millimetre precision, the misalignments should be kept
below 0.1 mm and 0.1 mrad.  However, not all misalignments are that critical.  The dominating
contribution comes from the shifting of quadrupoles, which is equally true for the reference
situation as well as for the temperature effects.  A precision of ±0.08 mm would be required
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for transversal position of the quadrupoles.  The effect of quadrupole tilt is about a factor of 6
lower and can be practically neglected.  For the dipole, the angular misalignments are more
critical compared to the shifts, especially in the vertical plane.  The tolerances 0.1 mm and
0.1 mrad are acceptable.

It would also be possible to reduce the quadrupole contribution by steering magnets
located downstream of the gantry quadrupoles and upstream of the scanning magnets. These
correctors would be to direct the beam into the centre of the scanning system and hence
remove the position and angular errors of the incoming beam caused by the upstream
misalignments.  These corrector magnets could be controlled on-line by a permanent beam
position monitoring system at the entrance to the scanning dipoles.  A similar strategy is
applied at the GSI fixed therapy beam-line, where the correction action is performed directly
by the scanning system [10].

The final conclusion of the study is the fact that the angular dependence (gantry angle) of
the beam position uncertainty at the iso-centre is practically negligible, which reduces
drastically the amount of calculations which have to be done in the future for refinement
studies of the gantry.  There are two reasons for this very weak angular dependence. The first
reason is that the width of the overall beam position probability distribution is given as a
quadratic sum of many contributions, namely three independent shifts and tilts of each element,
all elements being further independently misaligned with respect to each other.  Each individual
contribution has its own angular dependence which may be decreasing or decreasing with the
gantry angle, so that in the quadratic sum the decrease of one contribution is well balanced by
an increase of the other one. The second reason is that there are also contributions from
elements that are downstream of the rotator-to-gantry coupling point.  These contributions are
independent of the angle of gantry rotation.  The situation is illustrated in Figure 12, that
shows the response of the beam position at the gantry iso-centre as a function of the gantry
angle separately for horizontal and vertical misalignments (0.1 mm) of the first quadrupole.
The quadratic sum of these two effects are indicated as “Sum I” while “Sum II” is a quadratic
sum of these effects AND contributions from the elements downstream of the rotator-to-
gantry coupling point.  The overall angular dependence becomes practically negligible.

Most of the calculations were done by two computer codes using different strategies for
simulating the misalignment effects.  TRANSPORT [21] calculates first all individual
contributions for all elements and then sums them.  WinAGILE [22] generates many lattices
each representing a certain particular combination of misalignments and traces the beam
through each lattice.  The beam positions at a specified point of interest are collected and
statistically evaluated.  An excellent agreement between both computer codes has been
observed.
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Figure 12  Demonstration of the summation of different random misalignment contributions leading to
‘vanishing’ of the angular dependence of the beam position accuracy
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