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Abstract

The gplicaion d the method d finite dements to computing the
magnetostatic field due to a given current density distribution in the
presence of ferromagnetic mediais reviewed with the high predasion reeded
for the analysis of LHC magnets taken into account. Various formulations
in terms of either a magnetic scdar or vedor patential are described. The
basic concepts of the method d finite dements are presented using bah
node based and edge based elements. The formulation in terms of a reduced
magnetic vedor patential is shown to be the best chaice It can be redized
with the ad of node based finite dements for two-dimensional models but
edge based elements are necessary when analyzing threedimensional
arrangements.

1 INTRODUCTION

The magnetic field occurring in supercondicting magnets including ferromagnetic iron parts can ony
be computed numericaly. Several potential formulations have been propaosed in the past to serve &
the underlying boundry value problem [1-3]. These use dther areduced magnetic scdar potential or
a magnetic vedor potential. Their merits and shortcomings will be discussed in the paper. The
conclusion arrived at is that, if highly permeéable iron perts are present, the predsion d formulations
based onavedor potential is higher.

The most versatile numericd tedhnique for computing magnetic fields is the method d finite
elements (FEM). As pointed ou below, nock based o edge based finite dements can be employed
depending uponthe patential formulation wsed. The scdar patential is best approximated with the ad
of nodal elements asis the single-comporent vedor potential in two-dimensional problems. However,
if the vedor potential is used in threedimensiona arrangements, the question d gauging arises. The
best methodturns out to be to use an ungauged vedor potential redized by edge dements [4].

Since the magnetic field in supercondiwcting magnets such as the LHC dipdes has to be
computed with extremely high predsion, it is desirable that the part of the field dwe to the
supercondicting condwctors be cmputed analyticdly using the Biot-Savart Law and orly the part
due to theiron ke obtained numericdly with the ad o the method d finite dements. This means that
a reduced vedor potential has to be used. This formulation, which ensures the high pedsion
required, will be presented in detail .

2. MAGNETOSTATIC FIELD

The diff erential equations of magnetostatic fields are the foll owing Maxwell equations:
curl H=1J (1)

divB=0 @)

where H is the magnetic field intensity, B is the magnetic flux density and J is the known current
density. Thefield quantities satisfy the foll owing constitutive equations:
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B=u(H)H o H=v (B) B 3)

where u is the permedbility and v the reluctivity, the redprocd of the permeability. Due to the
saturation d iron, these material parameters depend onthe magnetic field. For isotropic soft magnetic
media, wherein hysteresis is negligible, they can be assumed to be scdar quantities and monovalued
functions of the magnitude of the field. The dosed damain in which the magnetic field is to be
cdculated will be denoted by Q.

The field quantities B and H satisfy boundry condtions on the boundry of Q. Two types of
boundry conditions cover al pradicd cases. They are prescribed ontwo dsgunct parts ', and I", of
the boundiry with the union d ', and I, forming the entire boundry.

On the part ', of the boundhry, the normal comporent of the magnetic flux density is known.
In many casesthisvalueis zero, as on symmetry planes parall €l to the field. Since in order to employ
the method d finite dements, a dosed danain Q has to be asumed, artificial far boundxries are
frequently introduced. These far boundiries may aso be part of I, with the normal comporent of B
vanishing. In some speda problems, the distribution d B, can be estimated along a physicd
surface As an example, it can often be asaumed that no flux leases the outer boundary of an iron
structure completely surrounded by air or that the flux distribution in the dr gap of an eledricd
machineis snusoidal. All these boundiry condtions can be written in the form

Bh=-b onl, (4)

where n is the outer unit normal vedor on I, and b can interpreted as a fictitious magnetic surface
charge density. (The negative sign in (4) implies that paositive values of b correspond to pasitive
surface targes.)

On the part ', of the boundiry, the tangential comporent of the magnetic field intensity is
known. In many cases this value is zero, as on symmetry planes perpendicular to the field. Far
boundbries may aso be part of I, with the tangential comporent of H vanishing. In some spedal
problems, the distribution o H,, .., can be estimated along a physica surface For example, it can
often be assumed that the field enters highly (infinitely) permeable iron structures at right angle or
that the tangential comporent of H is determined by a surface arrent flowing onthe surfaceof an
infinitely permeéble magnetic pale. All these boundary condtions can be written in the form

Hxn=K onf, ()

where n is the outer unit normal vedor on I',, and K can interpreted as a red or fictitious eledric
surface arrent density.

The interface ondtions on any surfacebetween two regions with dff erent magnetic properties
are the oontinuity of B, , and o H_ .. Denating the outer unit normal vedors of the two abutting

reglons Q,and Q, by n, and n, and wsing theindices 1 and 2 to dencte the field guentities in the two
regions, thelnterface «:)ndtlons ontheinterfacel”,, can be written as

B,h,+B, M, =0 O 6a
1 1 2 2 Donrlz- ( )
H,xn, +H,xn, =07 (6b)

In case I, is a onreded surface no further condtions are necessary to define the static
magnetic field. If however, I, consists of n,+1 dgunct parts,,, I",,,, ..., .., then either the n,
magnetic voltages of between F r,.and F , must be defined as

"17 HnH

HnH?
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where C, isan arbitrary curve mnreding ™, and "
I, haveto begiven as

or the n, magretic fluxes of the surfaces ", ...,

HO?

JB mdr =¥, i=1,2, ..n. (8)

3. POTENTIAL FORMULATIONS

The solution d the differential equations (1) and (2) with the constitutive equation (3), the boundiry
condtions (4) and (5), the interface ondtions (6) as well as the integral condtions (7) or (8) is
unique [5]. Equivalent boundxry value problems involving second ader elli ptic differential equations
as well as Dirichlet and Neumann boundry condtions can be set up in terms of potential functions.
These boundry value problems lend themselves well to numericad solution with the dd o the
method d finite dements. The various potential formulations will be reviewed in the foll owing.

31 Reduced scalar potential

Sincethe airl of the magnetic field intensity is, in general, noreero, it canna always be written as the
gradient of ascdar patentia function. If, howvever, afunction T is foundsatisfying

curdT=J inQ, 9)

then H-T iscurl free and the magnetic field intensity can be written as

H =T -grad® (10
where ® isthe reduced magretic scalar potential.

The doice (10) automaticdly satisfies Ampere's Law (1), so Maxwell’s equation (2) remains
to be solved. Taking acourt of the material relationship (3), it has the form

—div(ugrad®) = —div(uT) inQ. (11

Thisisageneralized LaplacePoisn equation.
The boundiry condtion (4) becomes

un Cgradd = /J%;: =uTh+b onl, (12

a nonhamogeneous Neumann boundry condtion. Expressng the condtion (5) with the dd o the
scdar potential,

graddxn=Txn-K onl, (13

is obtained. Let us assume that the aurrent density J has no namal comporent on I, and that the
integral quantities spedfied if I, is composedsél‘ severa norconreded parts are the magnetic



voltages as in Eq. (7). Then, choacsing the value of @ to be the magretic voltage U , defined in (7) at
an arbitrary paint P, inT,,i=1, 2, ...,n, U_ =0, thevalueof ® at any pant Pin T, is obtained as
the sum of U, and d the integral of the tangential comporent of grad® along some arve C,
conreding P, to P. The tangential comporent of grad® can be obtained from Eq. (13) as

aa;‘t):nx(gradcbxn):nX(TXn)+K><n onl . (14

Hence, the boundry condtion onl , is

CD(P)=Umi+J[n><(Txn)+Kxn]E:II=CD0(P), PO, (15

Pi

a Dirichlet boundary condtion. If fluxes of the form (8) are the spedfied as integral quantiti es, then
the reduced scdar potential formulation canna be enployed dredly.

The boundry value problem consisting d the differentia equation (11), the Neumann
boundry condtion (12) and the Dirichlet boundxry condtion (15) can be cat in a weak form
fadlitating the gplicaion d the method d finite dement to its numericd solution. Let us consider
al functions satisfying the Dirichlet boundary condtion (15). From among these, the solution d the
boundiry value problem is the function @ fulfilli ng

IV\,{—div(ugrade)]dQ + J’W(un Cgradd)dr =Ivv[—div(uT)]dQ + J’W(uT (n +b)dr (16)

with w being an arbitrary weighting function that obeys the homogeneous counterpart of the Dirichlet
boundxry condtion (15):

w=0 onfl,,. a7
Using the identities
Iw{—div(ugradtb)]dQ = I gradwlugradddQ - fw(un [gradd)dr (18)
Q Q e+
?[V\{—div(uT)]dQ =?[gradwEUTdQ - fw(uT (n)dr (29
Mg+My

aswell asthe boundry condtion (17), the following can be stated:

The solution d the boundxry value problem (11), (12), (15) is the function & satisfying the
Dirichlet boundry condtion (15) if the wed form

IgradwulgraddbdQ = I gradwlLTdQ + J’wbd‘ (20
Q Q B

hads for any functionw satisfying Eq. (17).
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In order to satisfy the interface ondtion (6d), it is aufficient that the scdar potential as well as
the tangential comporent of T be wntinuows. The interface ondtion (6b) is included in the wegk
form provided w is continuows along I' ,. This can be seen by adding the two integrals over I,
correspondng to (6b) to the left hand side of (16). Applying the identities (18) and (19) over Q, and
Q,, theform (20) is obtained.

Several options are open for the doice of the function T satisfying Eqg. (9). The most
straightforward ore isthe Biot-Savart field H, computed from the aurrent density as

J(Q) e 46 o

s(P)——J

where e, is the unit vedor painting from the source point Q to the field pant P, r, is the distance
between Q and P and Q, is the domain where J is norzero. The aurl of Hg is obviously J, so it
satisfies EQ. (9) and |sthus avalid choice & T. In highly permeeble media, the magnitude of H is
frequently much lessthan the magnitude of H,. This means that using H, as T can result in large
cancdlation errors when computing H from Eq. (10). These cancdlation errors are ruinos if ® is
computed numericdly, e.g. approximated by pecevise ontinuows functions with dscontinuows
derivatives as in the method d finite dements, and H is smultaneously computed analyticdly as a
smoath function. One method to avoid these arors is using a total scdar potential in ferromagnetic
regions assumed to be aurrent free [1]. An dternative is to interpolate H, with the ad similar
functions as those used for the gproximation o grad® [3]. The doiceof usingH_asT is, naturally,
not the only paosshility. Some useful options in the mntext of the method d finite dements can be
foundin[6] and[3].

The scdar potential formulation d magnetostatic fields is appeding since it offers the most
eoonamic description in terms of unknawn functions. In view of the fad, however, that the quantity
derived dredly from the patential function is the magnetic field intensity, the aror of the flux
density is much higher in ferromagnetic iron regions than in norferromagnetic ar domains espedally
if the field runs mainly parallé to theironair interface ad henceH has abou the same value in bah
regions [7]. This fad suggest that formulations yielding the magnetic flux density diredly from the
potentials perform better in problemsinvolving highly permeable parts.

3.2 Vector potential

Since the divergence of the magnetic flux density is zero, it can be written as the aurl of a magnetic
vedor potential function A:

B=curlA inQ. (22
The doice (22) automaticdly satisfies Maxwell’s equation (2), so Ampere’'s Law (1) remains
to be solved. Taking acourt of the material relationship (3), it has the form

curl(veurlA) =J inQ. (23

Thisisaseoond ader partial differential equation.
The boundiry condtion (5) becomes

veurlAxn=K onl, (29

a nonhanogeneous Neumann boundry condtion. Expressng the condtion (4) with the dd o the
vedor potential,
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nieurlA =b onl, (25

is obtained. The norma comporent of the airl of A is completely determined by the tangential
comporent of the vedor potential. Therefore it is possble to choose afunction a so that the Dirichlet
boundiry condtion

nxA=aonl, (26)

implies (25). Naturally, several possble functions a exist. All they have to fulfill are the two
condtions

diva=div(nxA) =nleurlA=b onl, (27)

and

Gf(ax n) Call =;fAtangemiaml =jA fal = J’n GurlAdlr =W, , i=1,2,...n, (28

Hi

where C,, isthe aurve boundng the surfacel”,, and as such separates ', from I' 5. The satisfadion o
Eq. (28) ensures the fulfillment of the integral condtions (8). If magnetic voltages of the form (7) are
the spedfied integral quantiti es, then the vedor potential formulation canna be employed diredly.

The solution d the boundry value problem consisting o the differentia equation (23), the
Neumann boundry condtion (24) and the Dirichlet boundry condtion (26) is not unique. The
gradient of any scdar function can be alded to any o its olutionsif the scdar functionis constant on
I's. This ladk of uniquenesscan be diminated by modifying the boundary value problem to include
the Coulomb gauge on the vedor potential [2]. In this case, the differential equation (23) is replaceal

by
curl(veurlA) — grad(vdivA) =J in Q, (239)

and the boundary condtions are supdemented by the foll owing two conditions:

AMm=0 onl, (249)

vdivA =0 onT .. (269)
The boundxry value problem (239), (24), (24a), (26), (26a) has a unique solution satisfying the
Couomb gauge

vdivA =0 inQ (29

and hence dso the differential equation (23).

To oltain the week form of the ungauged, nonumque boundxry value problem (23), (24), (26),
the satisfadion d the Dirichlet boundary condtion (26) is assumed and (23), (24) are written by
requiring that
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J’w (Meurl (veurlA)]dQ + J’w HveurlA xn)dr :J’w LdQ + J’w Kdr (30)
Q H Q H

is stisfied with w being an arbitrary vedor weighting function that obeys the homogeneous
courterpart of the Dirichlet boundary condition (26):

nxw=0 onl . (31

Using the identity

J’w (Meurl (veurlA)]dQ = ?[curlw WeurlAdQ - fw veurlA xn)dr (32
Q Mgty
aswell asthe boundry condtion (31), the following can be stated:

A solution d the boundiry value problem (23), (24), (26) is any function A satisfying the
Dirichlet boundry condtion (26) if the wedk form

J’curlw curlAdQ :?[W [JdQ + J’W Kdr (33
Q H

hads for any functionw satisfying Eq. (31). If the aurrent density J and the surface airrent density K
are described with the dd of afunction T satisfying (9) and

Txn=K onl, (34

then, wsing the identity

lw CCurlTdQ :J’curlw TdQ - fw QT xn)dr (35
Q

Mg+ly

and the boundary condition (31), the weak form (33) can be rewritten as

2[curlw WeurlAdQ = ?[curlw (TdQ. (36)

In arder to satisfy the interface ondtion (6b), it is afficient that the tangential comporent of
A be ontinuows. The interface ondtion (6a) is included in the weg form provided the tangential
comporent of w is cortinuows along I',. This can be seen by adding the two integrals over I,
correspondng to (6a) to the left hand side of (30). Applying the identity (32) over Q, and Q,, the
form (33) isobtained.

To oltain the wed form of the gauged, urique boundxry value problem (23a), (24), (243), (26),
(26a), ore has to assume the satisfadion d the Dirichlet boundary condtions (24a) and (26) whereas
(233), (24) and (26a) are written by requiring that
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lw (Dcurl(vcurlA) — grad(vdivA)]dQ + J’w CveurlA xn)dr + J’w hvdivAdlr = J’w LdQ + J’w Kdr
H B Q H

(37)

is satisfied with w being an arbitrary vedor weighting function that obeys the homogeneous
courterparts of the Dirichlet boundxry condtions (24a) and (26):

wh=0 onl,, (39
nxw=0 onl . (39
Using the identiti es (32) and
?[w (I-grad(vdivA)]dQ :J’divwvdivAdQ - fw nvdivAdr (40
Q Mgty

aswell asthe boundry condtions (38) and (39), the foll owing can be stated:

The solution d the boundry value problem (23a), (24), (24a), (26), (269) is the function A
satisfying the Dirichlet boundiry condtions (24a), (26) if the weak form

?[(curlw curlA + divwvdivA)dQ = lW LdQ + J’W Kdr (41

hads for any functionw satisfying Egs. (38) and (39).

It is essy to verify that, besides the interface ondtion (6a), this weak also form implies the
condtion

nw,divA, +nv,divA, =0 onl, (42)

It will be shown in sedion 4that the gplicaion d the method d finite dements ensures the
approximate satisfadion d the wee forms. This means that a cetain error in the fulfillment of the
Coulomb gauge (29) isinvariably present. Alongan irorair interface the cndtion (42) implies that
this error is much higher in the ferromagnetic region (where v is low) than in the ar domain (where v
may be several thousand times higher). A large aror in the satisfadion d the Coulomb gauge results
in even larger errors in fulfilling Ampere's Law in iron, since the additional term grad(vdivA) in
(233) is far from zero [8]. All in all, this feaure of the gauged formulation makes it unsuitable for
solving problems involving ferromagnetic materials. Therefore, in the following, the ungauged
boundiry value problem (23), (24), (26) will be mnsidered only.

4. THE METHOD OF FINITE ELEMENTS

The method d finite dements requires the problem region Q to be discretized into elementary
domains cdled finite dements forming a mesh.. The dements have simple geometricd forms such as
triangles or quadril aterals in two-dimensional problems or tetrahedra, hexahedra, prisms, etc. in three
dimensional arrangements. The dements are defined by nogks and scdar interpdating functions
cdled shape functions are asociated with ead noce in ead element. The shape functions are low
order palynomials. Scdar potentials can be interpolated with the ad of the shape functions providing
approximations which are continuots on the intggaces between finite dements. Such nodd finite



elements will be discussed in sedion 4.1.Besides nodes, edges can also be defined within finite
elements and vedor shape functions are then associated with ead edge in ead element. These alge
shape functions are low order vedor poynomials. They can be used to interpdlate vedor functions.
The gproximations thus generated are vedor functions whose tangential comporents are @ntinuous
aaoss element interfaces but whase normal comporents are, in general, discontinuows. They are,
therefore, suitable for approximating vedor patentials. Edge finite dements will be treaed in sedion
4.2.A detail ed expasition d the method d finite dements can be founde.g.in[9].

41 Node based elements

An element noce shape function N’ (k=1, 2,...,n®) is aswciated with ead of the n® nockes of

the j-th finite dement. They are usualy defined in a locd coordinate system and are low order
poynomials of thelocd coordinates &, n, {. They are cnstructed to okey the eguations

1 at thdlocalnodek,

= k=1, 2,
<) %J atall otherlocalnodes

n'. (43)

[EEER M

N (E,n,

The dement node shape functions may aso serve to establish a transformation between locd
and dobal coordinates. With x, y and z dencting the global coordinates, this transformation hes the
following form within the j-th element:

nge) nge) nge)

X(En.{) = Zkaie"’(s,n,Z), y(Eng)= ZykNée”(s,n,o, 2&,n,0) = szNf”(f,n,Z).

(44)

where x,, y, and z_are the global coordinates of the k-th locd noce.

Since the nodes of neighbaing elements coincide, the number of the global nodes is lessthan
the product of the number of elements and n{®. It will be denoted by n. A globd node shape
functionN, (i =1, 2, ...,n) isassociated with ead of the global nodes and is defined as

N. (X, y,2) = Q\Iéel)(x, y,2) inthej -thelementif theglobalnodei coincideswithitslocalnodek,
Y E) in anelementif theglobalnodel doesnotcoincidewith anyof itslocalnodes

(49)

The global node shape functions are continuows in Q since they have the same variation in bah
elements aong any interface between two elements. They have aproperty smilar to Eq. (43) with
resped to the global noces:

1 at theglobalnodei,

N (x,y,2) =
(% ¥.2) %)atallotherglobalnodes

i=1,2,..n.

n

(46)

The n, globa node shape functions are linealy independent, bu there is a linea
interdependence anongtheir gradients. In fad, the sum of all nodal basis functionsis 1.
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N =1, (47)

asit is obvious from the fad that the function identicaly equal to 1 can be exadly represented with
the dd of node shape functions (the constant is the lowest order paynomial) and al its nodal values
are 1. Thefollowingis obtained after taking the gradient of (47):

- gradN, =0. (48)

1=1

This means that the maximal number of linealy independent gradients of the global node shape
functions is n -1, i.e. the number of tree elges in the graph defined by the finite dement mesh. It
follows from the linea independence of the global node shape functions that n -1 of their gradients
areinfad linealy independent.

Let us now consider the numericd solution o the wea form (20) of the reduced scdar
potential formulation o magnetostatic fields. Let the global nodes in the finite dement mesh which
are not on the surface ', (where a Dirichlet boundxry condtion is prescribed) obtain the order
numbers 1, 2, ...,nandthose onT , the order numbersn+1, n+2, ...,n . Let further ®, denate the value
of the reduced magnetic scaar potential in the global node i. Obviously, the values @, i = n+1, n+2,
..., N, are known from the Dirichlet boundary condtion (15) and, dwe to the interpolatory property
(46) of the global node shape functions, the expresson

Pp(xY,2) = _i@ N; (x,y,2) (49)

is a known function approximately satisfying Eq. (15). Furthermore, the functionsN, i =1, 2, ...,n
satisfy the homogeneous Dirichlet boundary condtion (17) required o the weighting functions.
Therefore, an approximation d the scaar potential in the form

P(x,y,2) =PV (x,y,2) = ”Z"q)i N (x,y,2) =@ (x Y, 2) + icbi N; (x,y,2) (50

is giitable for a numericd solution besed onthe weék form (20). Indedd, it satisfies the Dirichlet
boundxry condtion (15) independent of the chaice of the n unknavn noddl potential values @, i = 1,
2, ...,N.

The relevant numerica methodis cdled Galerkin's procedure and is constituted by writing the
week form (20) with the scdar potential function replaced by the gpproximation (50) and wsing the
functionsN, i = 1, 2, ...,n as weighting functions. This |leads to a system of algebraic equations for
the n unknavns:

lgradNi Cugradd™dQ :!gradNi UTdQ +J’Nibdr ,i=1,2,...n, (51)

or, with the known quantiti es brougtt to the right hand side:
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n

Z<191-1[gr<31dNi [ligradN, dQ
-

=lgradNi [UTdQ +JNibdF —IgradNi Cugrad®,dQ, i=1,2,..n. (52

B

The matrix of this equations g/stem is obviously symmetric and also sparse, since the suppat of the
global node shape functions extends over a few finite dements only. The matrix is aso pasitive
definite. The system can be solved advantageously with the dd of iterative techniques. The most
widely spread methodis that of precondti oned conjugate gradients [10].

4.2 Edge based elements

An element edge shape function N (k =1, 2, ...n{) is asociated with each of the n{® edges of
the j-th finite dement. They are usually defined in alocd coordinate system and are low order veaor
poynomials of the locd coordinates &, n, {and d their gradients. This results in the important
property that the gradients of the node shape functions are in the space spanned by the alge shape
functions or, in aher words, the gradients of the node shape functions can be written as linea
combinations of the edge shape functions. The latter are constructed to obey the eguations

if 1 =k,
NG = B  k=1,2,..,n9. (53
gb otherwise
€dg

3

where edge isthe|-th edge of the dement.

The transformation between locd and dobal coordinates is established with the dd o the
element node shape functions asin Eq. (44).

Since the alges of neighbaing elements coincide, the number of the global edges is lessthan
the product of the number of elementsand n{®. It will be denoted by n.. A globa edge shape function
N (i=1,2,...n)isaswciated with eat of the global edges andis defined as

AN’ (x,y,2) inthej-thelementif theglobaledgei coincideswith its localedgek,

Ni (X! y1 Z) = . . . . . . .
in anelementif theglobaledge doesnotcoincidewith anyof itslocaledges

(54)

Thetangential comporents of the global edge shape functions are @wntinuowsin Q sincethey have the
same variation in bah elements along any interface between two elements. They have aproperty
similar to Eq. (53) with resped to the global edges:

_—
J'Nimﬂ:él)lj " =12, .., (55)
ey

otherwise
5

The n, global edge shape functions are linealy independent, but there ae linea interdependencies
among their curls. Indeed, since the gradients of the nodal basis functions are in the function space
spanned by the elge basis functions, we have the following n -1 linealy independent relations:
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gradN. = Z!Cika , i=1,2,..n-1 (56)
where

n,

Zcfk >0, i=1,2,..n-1. (57)

Takingthe aurl of ead of the equationsin (56) resultsin

n,

ZcikcurlNk =0, i=1,2,..n-1. (58)

Together with (57) and with the linea independence of the equations in (56), this implies that the
maximal number of linealy independent curls of the edge basis functionsisn,_-(n -1), i.e. the number
of cotree elgesin the graph d the finite dement mesh. Since there ae no more linealy independent
gradients in the spacespanned by the elge basis functions than n -1, nd lessthan n_ -(n -1) of the
curls of the edge basis functions are linealy independent.

Let us now consider the numericd solution d the weg form (33) of the ungauged vedor
potential formulation o magnetostatic fields. Let the global edges in the finite dement mesh which
are not on the surface ', (where a Dirichlet boundbry condtion is prescribed) obtain the order
numbers 1, 2, ...,n and those on I, the order numbers n+1, n+2, ..., n. Let further A denote the
integral of the magnetic vedor potential over the global edge i. Obvioudly, the values A, i = n+1,
n+2, ...,n, are known from the Dirichlet boundiry condtion (26) and, dwe to the interpolatory
property (53) of the global edge shape functions, the expresgon

Ao(xy.2)= 3 AN, (xY.2) (59

i=n+l

is a known function approximately satisfying Eq. (26). Furthermore, the functionsN,, i =1, 2, ...,n
satisfy the homogeneous Dirichlet boundary condtion (31) required o the weighting functions.
Therefore, an approximation d the vedor potential in the form

A(xy,2) =A™ (xy,2) = Z AN (x,y,2) = Ap(xY,2) + Z AN (xy,2) (60)

is giitable for a numericd solution besed onthe weék form (33). Indedl, it satisfies the Dirichlet
boundry condtion (26) independent of the dhoiceof the n unknavnintegral values A, i =1, 2, ....n.

The gplicaion d Gaerkin's method is constituted by writing the wea form (33) with the
vedor potential function replaced by the gpproximation (60) and wsing the functionsN,, i =1, 2, ...,n
asweighting functions. This leadsto a system of algebraic equations for the n unknavns:

1[curlNi WeurlA™dQ :[Ni JdQ +J’Ni Kdr, i=1,2 ..n (62)
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or, with the known quantiti es brougtt to the right hand side:

Z Aj‘l[curINi WeurIN,,dQ :INi [IdQ +J’Ni Kdr —1[curINi [WeurlA ,dQ
4

i=1,2 .0 (62

The matrix of this equations g/stem is obviously symmetric and also sparse, since, similarly to the
node shape functions, the suppat of the global edge shape functions extends over a few finite
elements only. The matrix is also pasitive semidefinite, i.e. al its eigenvalues are nonregative, bu
some of them are ze&o. The singuarity of the matrix follows immediately from the linea
interdependencies between the aurls of the global edge shape functions written in Eq. (58). Sincethe
method d conjugate gradients can cope dficiently with pasitive semidefinite (singuar) matrices [11]
provided the right hand side of the eguations g/stem is consistent, the robustness of the numericd
scheme is ensured. Note that this would na be the cae if node shape functions were used to
approximate eath comporent of the vedor patential: the matrix in the equations g/stem (62) were
then na singuar but, because of the small eigenvalues approximating zero, extremely ill condtioned.

The form (62) of the Galerkin equations does nat ensure the consistence of the right hand side.
Using the week form (36) instead of (33), however, resultsin the equations g/stem

Z AJ.“[curINi eurIN,dQ =2[(:urINi TdQ —2[(:urINi eurlA,dQ, i=1,2,..n. (63
=

In thisform, the right hand side is obviously consistent, since the same linea interdependence anong
its elements is present as among the rows of the left hand side. Consequently, the form (63) of the
Galerkin equations must be used in the numericd redizaion.

5. REDUCED VECTOR POTENTIAL

Thetotal vedor potential formulation described in sedion 3.2with its numericd solution bymeans of
edge finite dements presented in sedion 4.2 las the disadvantage that the shape of the wils hasto be
exadly modeled by finite dements. If thisis nat the cae, then the predsion d the right hand side of
the Galerkin equations becomes very low as it can be seen in Eq. (62). Indeal, the numericd
integration d the product of the edge shape functions and d the arrent density canna be caried ou
predsely if Jisdiscontinuows within the finite dements. In addition, it is desirable that the part of the
field due to the conductors be computed analyticdly using the Biot-Savart Law and orly the part due
to theiron be obtained numericdly with the dd o the method d finite dements.

The necessty of representing the shape of coil s by the finite dement mesh can be avoided by
introducing areduced vedor potential A [3] as

B=p,Hg+curlA, inQ (64)
where H. is the Biot-Savart field defined in (21). Also, 1 H, is the magnetic field due to the wilsin
freespace ad, hence, curlA, isthefield resulting from the presence of iron.

The choice (64) automaticdly satisfies Maxwell’s equation (2) since the divergence of the
Biot-Savart field is zero. Ampere’'s Law (1) remains to be solved. Taking acount of the material
relationship (3) and d the fad that the aurl of H,isJ, it has the form

43



curl(veurlA,) =curlHg —curl(vuy,Hg) inQ. (65

This ond ader partial differential equationis smilar to Eq. (23). In air regions, the right hand side
isobvioudly zero.

The boundiry condtion (5) becomes

veurlA, xn=K -vH xn onl (66)

a nonhamogeneous Neumann boundry condtion. Expressng the condtion (4) with the dd o the
reduced vedor patential,

nleurlA, =b—-pu,nHg onl, (67)

isobtained. Thisis equivalent to the Dirichlet boundiry condtion

nxA, =aonl, (69

where a satisfies two condtions smilar to (27) and (28).

To oltain the wed form of the boundxry value problem (65), (66), (68), the satisfadion d the
Dirichlet boundry condtion (68) is asaumed and (65), (66) are written by requiring that

?[w [Meurl(veurlA, )1dQ + Jw (ueurlA, xn)dr
=§[w (feurlH ¢ —curl (Vi H ¢)]dQ + Jw MK —vu,H g xn)dr (69)

is stisfied with w being an arbitrary vedor weighting function that obeys the homogeneous Dirichlet
boundxry condtion (31)

Using the identiti es

?[w (eurl(veurlA, )]1dQ =Icurlw wcurlA  dQ - fw [uveurlA, xn)dr (70
Q Mg+
IW [eurl (VoH ¢)]dQ =Icurlw W H dQ - fw [VuH ¢ xn)dr, (71)
Q Q Mg+y
Iw [eurlH (dQ =?[curIW[H-ISdQ— fw [H ¢ xn)dr, (72
Q Mg+

assuming similarly to (34) that

Hexn=K onl, (73

and wsing the boundry condtion (31), the foll owiﬂg can be stated:



A solution d the boundry value problem (65), (66), (68) is any function A satisfying the
Dirichlet boundry condtion (68) if the wegk form

?[curlw ecurlA, dQ =?[curlw H¢ —vu,HS)dQ (74)

hads for any function w satisfying Eq. (31).

In order to solve the week form (74) by Galerkin’s method wsing edge finite dements, let the
global edges in the finite dement mesh which are not on the surfacel, (where aDirichlet boundary
condtion is prescribed) obtain the order numbers 1, 2, ...,n and those on I, the order numbers n+1,
n+2, ...,n. Let further A denote the integral of the reduced magnetic vedor potential over the globel
edgei. Obviously, thevalues A, i = n+1, n+2, ...,n_are known from the Dirichlet boundiry condtion
(68) and, dweto the interpadatory property (53) of the global edge shape functions, the expresson

Ne

AD(X!y!Z): ZANi(X’y’Z) (75)
i=n+l
is a known function approximately satisfying Eq. (68). Furthermore, the functions N, i =1, 2, ...,n

satisfy the homogeneous Dirichlet boundary condtion (31) required o the weighting functions.
Therefore, an approximation d the reduced vedor potential in the form

A4y D=AD (Y, D= 3 AN (xY.2) :AD(x,y,z>+iANi(x, .2) (76)

is giitable for a numericd solution besed onthe weék form (74). Indedl, it satisfies the Dirichlet
boundbry condtion (68) independent of the dhoiceof the n unknavnintegral values A, i =1, 2, ...,n.

The gplicaion o Galerkin’s methodis again constituted by writing the weak form (74) with
the vedor potential function replacel by the gpproximation (76) and wsing the functions N, i = 1, 2,
...,nasweighting functions. Thisleads to a system of algebraic equations for the n unknowns:

?[curINi WeurlAMdQ =?[curINi [(Hs-VUHAQ, i=1,2,..n, (77)

or, with the known quantiti es brougtt to the right hand side:

Z AJJ:curINi WeurlN,dQ =?[curINi [H ¢ -V H)dQ —?[curINi [WeurlA ,dQ ,
4

i=1,2,..n (78)
The matrix of this equations g/stem is the same & in Eq. (62) obtained in the cae of the total vedor

potential. The mnsistence of the right hand side is obvious, so the singuarity of the matrix does not
impair the robustnessof the numericd scheme.
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6. CONCLUSIONS

The numericd solution d magnetostatic fields by means of the finite dement method can be based
either onareduced magnetic scdar potential or on a magnetic vedor potential. The first option can be
redized by noa based finite dements and the second ore by edge based ores. The predsion d the
vedor potential formulation is superior to that of the method kased ona scdar potential in highly
permeable iron parts. The use of edge based finite dements for the numericd solution d the
boundiry value problem in terms of an ungauged vedor potential leals to an equations g/stem with a
singuar matrix. Choasing a suitable form of the right hand side, it can be made to be mnsistent and,
hence, the iterative solution d the equations g/stem is robust. Taking acourt of the field of the wils
in free space with the dd o the Biot-Savart Law, a reduced magnetic vedor potential can be
introduced. This eliminates the necessty of modeling the shape of the wils by the finite dement
mesh and results in high predsion sincethe finite dement solution represents the iron induced fields
only. Consequently, the reduced vedor potential formulationis espedally suitable for the analysis of
supercondicting magnets includingiron parts such asthe LHC magnets.
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