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Abstract

We present a nonlinear realization 8§ s) on a space of 57 dimensions,
which is quasiconformal in the sense that it leaves invariant a suitably defined
“light cone” in R®7. This realization, which is related to the Freudenthal
triple system associated with the unique exceptional Jordan algebra over the
split octonions, contains previous conformal realizations of the lower rank
exceptional Lie groups on generalized space times, and in particular a con-
formal realization off;(7) on R27 which we exhibit explicitly. Possible ap-
plications of our results to supergravity and M-Theory are briefly mentioned.
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1 Introduction

It is an old idea to define generalized space-times by association with Jordan alge-
bras.J, in such a way that the space-time is coordinatized by the elemeditsaofl

that its rotation, Lorentz, and conformal group can be identified with the automor-
phism, reduced structure, and the linear fractional groupy ofspectively [6, 7, 8].

The aesthetic appeal of this idea rests to a large extent on the fact that key in-
gredients for formulating relativistic quantum field theories over four dimensional
Minkowski space extend naturally to these generalized space times; in particular ,
the well-known connection between the positive energy unitary representations of
the four dimensional conformal groufi/ (2, 2) and the covariant fields transform-

ing in finite dimensional representations of the Lorentz gréug2, C) [21, 20]
extends to all generalized space-times defined by Jordan algebras [10]. The ap-
pearance of exceptional Lie groups and algebras in extended supergravities and
their relevance to understanding the non-perturbative regime of string theory have
provided new impetus; indeed, possible applications to string and M-Theory con-
stitute the main motivation for the present investigation.

In this paper, we will present a novel construction involving the maximally
extended Lie groupFgs), which contains all previous examples of generalized
space-times based on exceptional Lie groups, and at the same time goes beyond the
framework of Jordan algebras. More precisely, we show that there exists a quasi-
conformal nonlinear realization dfy ) on a space of 57 dimensionsThis space
may be viewed as the quotient 6% ) by its maximal parabolic subgroup [11];
there is no Jordan algebra directly associated with it, but it can be related to a
certain Freudenthal triple system which itself is associated with the “split” excep-
tional Jordan algebrdéo’s whereQg denote the split real form of the octoniofis
It furthermore admits ak; ;) invariant norm form\y, which gets multiplied by
a (coordinate dependent) factor under the nonlinearly realized “special conformal”
transformations. Therefore the light cone, defined by the conditipn= 0, is
actually invariant under the fulkgg), which thus plays the role of a generalized
conformal group. By truncation we obtain quasiconformal realizations of other ex-
ceptional Lie groups. Furthermore, we recover previous conformal realizations of
the lower rank exceptional groups (some of which correspond to Jordan algebras).
In particular, we give a completely explicit conformaldidius-like nonlinear real-
ization of E;(7 on the 27-dimensional space associated with the exceptional Jor-

dan aIgebraI:?S , with linearly realized subgroups, 4 (the “rotation group”) and

Eg6) (the “Lorentz group”). Although in part this result is implicitly contained in

the existing literature on Jordan algebras, the relevant transformations have never
been exhibited explicitly so far, and are here presented in the basis that is also used
in maximal supergravity theories.

1A nonlinear realization will be referred to as “quasiconformal” if it is based on a five graded
decomposition of the underlying Lie algebra (as fys,); it will be called “conformal” if it is
based on a three graded decomposition (as e.gzfes).
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The basic concepts are best illustrated in terms of a simple and familiar exam-
ple, namely the conformal group in four dimensions [21], and its realization via
the Jordan algebrdl of hermitear2 x 2 matrices with the hermiticity preserving
commutative (but non-associative) product

aob:=%(ab+ ba) 1)

(basic properties of Jordan algebras are summarized in appendix A). As is well
known, these matrices are in one-to-one correspondence with four-ve€tans
Minkowski space via the formula = xz,0" wherec* := (1,5). The “norm
form” on this algebra is just the ordinary determinant, i.e.

Na(z) := detz = z 2" (2

(it will be a higher order polynomial in the general case). Defining= xz,5"
(whereg* := (1, —&)) we introduce the Jordan triple product g§:

{abe} = (aob)oc+ (cob)oa—(aoc)ob
= 2(abc+ cba) = {(a,b)c + (c,bya — (a,c)b (3)

with the standard Lorentz invariant bilinear forfm, b) := a,b*. However, it is
not generally true that the Jordan triple product can be thus expressed in terms of a
bilinear form.

The automorphism group ofy, which is by definition compatible with the
Jordan product, is just the rotation grofip/ (2); the structure group, defined as the
invariance of the norm form up to a constant factor, is the produde, C) x D,

i.e. the Lorentz group and dilatations. The conformal group associated/{vith
is the group leaving invariant the light-corié,(z) = 0. As is well known, the
associated Lie algebra is:(2, 2), and possesses a three-graded structure

g=g 'og’@gt, 4)

where the grade-1 and grade-1 spaces correspond to generators of translations
P* and special conformal transformatiohAg:, respectively, while the grade 0 sub-
space is spanned by the Lorentz generafdré’ and the dilatation generatdp.

The subspaces' andg~! can each be associated with the Jordan algébrauch
that their elements are labelled by elements: a,0" of JS. The precise corre-
spondence is

U,:=a,Ptcg™ and U,:=a,K'cg?. (5)
By contrast, the generators g are labeled bywo elementsz, b € JS, viz.
Sap = a,b,(M" + 0" D). (6)

The conformal group is realized non-linearly on the space of four-vectarss,
with a Mdbius-like infinitesimal action of the special conformal transformations

ozt = 2{(c, )zt — (x,x)ct (7)



with parameter*. All variations acquire a very simple form when expressed in
terms of above generators: we have

Uy(z) = a,
Sule) = {aba},
O(a) = —Yaca}, ®)

where{...} is the Jordan triple product introduced above. From these transforma-
tions it is elementary to deduce the commutation relations

[Uaan] ab »
[Sabs Uel = Ugapey »
[Sabs Uel = Uppacy »
[Sabs Sed] = S{abeyd = Sibadyc - 9)

(of course, these could have been derived directly from those of the conformal
group). As one can also see, the Lie algepeaimits an involutive automorphism
¢ exchangingy ™! andg=! (hence,(K*) = PH).

The above transformation rules and commutation relations exemplify the struc-
ture that we will encounter again in section 3 of this paper: the conformal realiza-
tion of E7(7) on R?7 presented there has the same form, exceptifas replaced

by the exceptional Jordan algebfgs over the split octonion®g. While our form
of the nonlinear variations appears to be new, the concomitant construction of the
Lie algebra itself by means of the Jordan triple product has been known in the liter-
ature as the Tits-Kantor-Koecher construction [24, 13, 17], and as such generalizes
to other Jordan algebras. The generalized linear fractionab{i$) groups of Jor-
dan algebras can be abstractly defined in an analogous manner [18], and shown to
leave invariant certain generalizeeangles defined by the norm form of degree
of the underlying Jordan algebra [14, 9]. However, explicit formulas of the type
derived here have never before appeared in the literature.

While this construction works for the exceptional Lie algehigg;), andEy; 7y,
as well as other Lie algebras admitting a three graded structure, it failssfgy,
Fy(4), andGy(y), for which a three grading does not exist. These algebras possess
only a five graded structure

g=g ’og'ag’agag. (10)

Our main result, to be described in section 2, states that a “quasiconformal” real-
ization is still possible on a space of dimensitim(g') + 1 if the top grade spaces
g*? are one-dimensional. Five graded Lie algebras with this property are closely
related to the so-called Freudenthal Triple Systems [4, 22], which were originally
invented to provide alternative constructions of the exceptional Lie gfollpiss

2The more general Kantor-Triple-Systems for whigf? have more than one dimension, will not
be discussed in this paper.



relation will be made very explicit in the present paper. The novel realization of
FEgg) which we will arrive at contains various other constructions of exceptional
Lie algebras by truncation, including the conformal realizations based on a three
graded structure. For this reason, we describe it first in section 2, and then show
how the other cases can be obtained from it.

Whereas previous attempts to construct generalized space-times mainly fo-
cussed on generalizing Minkowski space-time and its symmetries, the physical
applications that we have in mind here are of a somewhat different nature, and
inspired by recent developments in superstring and M-Theory. More specifically,
the generalized “space-times” presented here could conceivably be identified with
certain internal spaces arising in supergravity and superstring theory. As an ex-
ample, recall that the solitonic degrees of freedomief 4, N = 8 supergravity
carry 28 electric and 28 magnetic charges, which appear as central charges in the
N = 8 superalgebra, and combine into thé representation of/;;) (this is a
non-trivial fact, because the superalgebra initially “knows” only about the R sym-
metry SU(8)). Central charges and their solitonic carriers have been much dis-
cussed in the recent literature because it is hoped that they may provide a window
on M-Theory and its non-perturbative degrees of freedom. They also play an im-
portant role in the microscopic description of black hole entropy: for maximally
extendedV = 8 supergravity, the latter is conjectured to be given byrap, in-
variant formula [12], which reproduces the known results in all cases studied so
far. This formula is formally identical to our eq. (25) defining a light-con&RiH,
which suggests that the 57th component of 6z, realization should be inter-
preted as the entropy. While the latter is oy, invariant, the formula defining
it actually possesses a bigger nonlinearly realized quasiconformal invariance under
E8(8)!

For applications to M-Theory it would be important to obtain the exponentiated
version of our realization. One might reasonably expect that modular forms with
respect to a fractional linear realization of the arithmetic gréigg, (Z) will have
arole to play; in this case, such forms would consequently depend on 28 complex
variables and one real one. The 57 dimensions in witigh) acts might alter-
natively be interpreted as a generalized Heisenberg group, in which case the 57th
component would play the role of a variable paraméteThe action offg g (Z)
on the 57 dimensional Heisenberg group would then constitute the invariance group
of a generalized Dirac quantization condition. This observation is also in accord
with the fact that the term modifying the vector space additioRih(cf. eq.(23)),
which is required byFgg) invariance, is just the cocycle induced by the standard
canonical commutation relations on an (28+28)-dimensional phase space.



2 Quasiconformal Realization of Egs)

2.1 E;¢) decomposition ofEgs

We will start with the maximal case, the exceptional Lie grdilp), and its qua-
siconformal realization of°7, because this realization contains all others by trun-
cation. Our results are based on the following five graded decompositibg §f
with respect to it€;(7) x D subgroup
9—2 D g—l e go e g—|—1 e g+2 (ll)
1 ® 56 & (133®1)® 56 @ 1

with the one-dimensional group consisting of dilatations.D itself is part of
an SL(2,R) group, and the above decomposition thus corresponds to the de-
composition248 — (133,1) @ (56,2) @ (1,3) of Egi) under its subgroup
E7(7) X SL(Q,R)
In order to write out thet;(7) generators, it is convenient to further decompose
them w.r.t. the maximal compact subgrouplof;), which is SU8). In this basis,
the Lie algebra oft;(;) is spanned by the SU) generators’}ij, which are anti-
hermitean and traceless, together with the antisymmetric and complex self-dual
generator€;*! | transforming in ther0 and 63 representation of S(8), respec-
tively:
(Gijkl)T = ﬁeijklmnpq G™MP = Gijkla

G/ = (') = -G7;,
with SU(8) indicesl < 4, j,... < 8. The commutation relations are

Gy, 6N = ot e - 516,

; kl _ [k ~dmnli 1 i ~kl

[G@»,G m”] = —4gl gl 1 sightmn

[Gijkl Gmnpq] _ _%eijkls[manq}
b

S -

The fundamentab6 representation of’; is spanned by the anti-symmetric com-
plex tensorsZ% and their complex conjugates

Zij = (ZY)*.
The action ofE;(7) is given by
029 = NWZM — Ny ZM 4 58z
87 = A’“Z-ij — Aijz‘k: + Ez‘jklel . (12)

In order to extend”; ;) x D to the full Eg), we must enlarg® to anSL(2, R)
with generator E, F, H) in the standard Chevalley basis, together vtk 56
further generator$F;;, /) and(E;;, E*), where, of course,

F9 = (Fy;)* and EY = (E;)*.
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However, under hermitean conjugation, we have
Fi = (E;)' and EY = (Fj)'.

Similarly, E* = E andF* = F, butEf = F.
The grade-2, —1,1 and 2 subspaces in the above decomposition correspond
to the subspaces 2, g~ !, g!, andg? in (11), respectively:

Fa&{FJ F;}o{G* G HY ®{EY, E;} o E (13)

The grading may be read off from the commutators with

[H,E| = 2E, H,F| = —2F,
[H, EY] = EW, [H, FU] = —F,
H, Eij] = Eyj, [H, F;j] = —Fj;.

Under SU8) the new generators transform as

(G, B¥| = —ah B o B 4 107 BM
[Gij , Ekl] = —(5% Ejk + 52 Eﬂ + %5; Ey,
[Gi]- , F’“l] — ok P 4 gl Pt 4 L5t M
(G'j, Fu] = =6} Fik + 0 Fji + 105 Fia.

The remaining non-vanishing commutation relations are given by

B,F| =H
and
[GiH | By = s gl [GkL Ern] = — L giklmmpa
(GIH, Fn] = =0 B, [GiM, pron] = eikimnna
(B, FM] = —12GkL (B, Bu) = 26 B,
(B, Fy| = —455;:(;]']1] —5ZH, [FY, Fu) = —26%1?, ’
(B, Fi7] = -9, [, V] = P

To see that we are really dealing with the maximally split forntigf let us count
the number of compact generators: in addition to the 63 generatéi§ (), there
are56+ 1 anti-hermitean generato(& — F;;) , (E;; — F*)and(E — F), giving
atotal of 120 generators corresponding to the maximal compact sub§s ).

An important role is played by the symplectic invariant of té@ representa-
tions. It is given by

(X,Y) == 1(X9Y;; — X;YY). (14)



The second important structure which we need to introduce is the triple product.
This is a trilinear maB6 x 56 x 56 — 56, which associates to three elements
X, Y and Z another element transforming in ti& representation, denoted by
(X,Y, Z), and defined by
(X,Y,2)7 = —8iX*Y,zY -8iY* X, 2 -8y 7z, X1
—AYU XMz, — 21 XVUYR Z,, — 21 ZUY R X,
L IRV g (15)
A somewhat tedious calculatidshows that this triple product obeys the relations
(X,Y,Z) = (V,X,Z)+2 (X,Y) Z,
(X,Y,Z

) = (Z,Y,X) -2 (X,2)Y,
(X,Y,2) W) = (X, W,2),Y) = 2(X, Z) (Y, W) ,
) = (V,

(X,Y,(V,W, Z) W,(X,Y,2)) + ((X,Y,V), W, 2)

+(V.(Y, X, W), 2Z) . (16)
We note that the triple product (15) could be modified by terms involving the sym-
plectic invariant, such asX,Y)Z; the above choice has been made in order to
obtain agreement with the formulas of [3].
While there is no (symmetric) quadratic invariantiof ;) in the 56 represen-

tation, a real quartic invariatfy can be constructed by means of the above triple
product and the bilinear form; it reads

T2, 2;) = £ ((2,2,2),2)
42923428 2y — 29 Zi; 2% Ziy
_’_i EZJklmnpqzijZklZngpq
+ﬁ €ijklmnpqZd AN

VAN (17)

2.2 Quasiconformal nonlinear realization of Es

We will now exhibit a nonlinear realization dfygg) on the57—dimeAnsional vec-

tor space with basi€ := (72", Z;;, z), wherez is real, and agaiy”’ = (Z;;)*.
While z is an Er(7 singlet, the remaining 56 variables transform linearly under
Er (7). ThusZ forms the56 © 1 representation ofs7. In writing the transforma-

tion rules we will always omit the transformation parameters in order not to make
the formulas (and notation) too cumbersome. To recover the infinitesimal varia-
tions, one must simply contract the formulas with the appropriate transformation
parameters.

3Which relies heavily on the Schouten identity;;mnpq Xrjs = 0.
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The generatoH acts by scale transformations:
G'j(ZM) = 26k 7", Gii(z) = 0,
Gijk:l(zmn) — 2_14€ijk:lmnpquq’ Gijkl(z) =0

H(ZY) = 79, H(z) = 2z.

(18)

The E generators act as translations nwe have

E(ZY) = 0, E(z) = 1. (19)
and

Ez‘j(Zkl) =0, FEi(z) = —iZ9,

Eij(Zkl) == (55}, EZ']'(Z) = IZZ]

(20)

By contrast, the” generators are realized nonlinearly:
F(Z9) = Y(2.2,2)7 — 2V 2

—4iZ%* 7,74 —i7% 78 7.,
€M L Lo Zpg — 27 2,

F(2) = T4(ZY, Z;;) — #*

4797427, — 29 7,; 7% 7y

oty €IMMIP ) Z i Zpg

ok €ijkimnpg 20 ZM 2 7P — 2 (21)
Observe that the form of the r.h.s. is dictated by the requiremeft,@f covari-

ance: (F(Z"Y), F(Z;;)) and F(z) must still transform as th6 and1 of E7(7),
respectively. The action of the remaining generators is likewige, covariant:

FZ](zkl) — 4 Zkzz]l _i 6i_jlennquTnnqu ,

Fij(ZM) = 8108 Zjyn 2 41681 2 Z, + 21 23 29 4 6 2

F(2) = 4Z% 7229 + 29 ZM 724y — L €IMmmea gy 7 Zpg —1 2% 2,

EJ(Z) = 4 Zikalle + ZZ‘jZklel — 1—12 eijklmnquklZm”qu +1i Zij z.

(22)

Clearly, Er(7) covariance considerably constrains the expressions that can appear
on the r.h.s., but it does not fix them uniquely: as for the triple product (15) one
could add further terms involving the symplectic invariant. However, all ambi-
guities are removed by imposing closure of the algebra, and we have checked by
explicit computation that the above variations do close into theAulk) algebra

in the basis given in the previous section. This is a crucial consistency check.
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The term “quasiconformal realization” is motivated by the existence of a norm
form that is left invariant up to a (possibly coordinate dependent) factor under all
transformations. To write it down we must first define a nonlinear “difference”
between two pointst = (X%, X;;; z) andY = (Y¥,Y};; y); curiously, the
standard difference isot invariant under the translatior{$2/, £;;)! Rather, we
must choose

5(X7 y) = (Xij_Yijvxij_Y;j; x_y+<X7Y>) (23)

This difference still obeys (X', Y)=—4(), X) and thus) (X, X') =0, and is now
invariant under(Eij, E;j) as well asE; however, it is no longer additive. In fact,
with the sum of two vectors being defined &@st', —)), the extra term involving
(X,Y) can be interpreted as the cocycle induced by the standard canonical com-
mutation relations. In this way, the requirementfs) invariance becomes linked
to quantization!

The relevant invariant is a linear combination 6fand the quartidz; ;) in-
variantZy, viz.

Ny(2) = ./\/'4(Zij,ZZ-j;z) = I4(Z)-|-212, (24)

In order to ensure invariance under the translation generators, we consider the ex-
pressionNy(6(X,Y)), which is manifestly invariant under the linearly realized
subgroupEr (7). Remarkably, it also transforms into itself up to an overall factor
under the action of the nonlinearly realized generators. More specifically, we find

F(Ni(3(X,D))) = =2( +y) Na(3(X, )
Fij</\/4(5(;(7y))) = 20 (XY + YI) N (3(X, D))
H(Ny(O(X, D)) = 4Ni(3(X, D))

Therefore, for everyy € R the “light cone” with base poiny), defined by the
set of ¥ € R®" obeying

Ni(3(x,)) =0, (25)

is preserved by the fulllg gy group, and in this sensa/; is a “conformal invariant”

of Ey(s) . We note that the light cones defined by the above equation are not only
curved hypersufaces %7, but get deformed as one varies the base puinthe
existence of a fourth order conformal invariantgf s is noteworthy in view of

the fact that no irreducible fourth order invariant exists for the linearly realized
FEgs) group (the next invariant after the quadratic Casimir being of order eight).

2.3 Relation with Freudenthal Triple Systems

We will now rewrite the nonlinear transformation rules in another form in order to
establish contact with mathematical literature. Both the bilinear form (14) and the
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triple product (15) already appear in [3], albeit in a very different guise. That work
starts from2 x 2 “matrices” of the form

A:(O‘l xl), (26)

T2 Q2

whereaq, oy are real numbers and, x5 are elements of a simple Jordan alge-
bra J of degree three. There are only four simple Jordan algebrafsthis type,
namely the3 x 3 hermitian matrices over the four division algebrdsC, H andQO.
The associated matrices are then related to non-compact forms of the exceptional
Lie algebrasFy, Eg, E7, and Eg, respectively. For simplicity, let us concentrate
on the maximal casd?s , when the matrixA carries 1+1+27+27 = 56 degrees of
freedom. This counting suggests an obvious relation wittbthef £y and its
decomposition undefs s, but more work is required to make the connection pre-
cise. To this aim, [3] defines a symplectic invaridrt, B), and a trilinear product
mapping three such matrices B andC' to another one, denoted by, B, C).
This triple system differs from a Jordan triple system in that it is not derivable
from a binary product. The formulas for the triple product in terms of the matri-
cesA, B andC given in [3] are somewhat cumbersome, lacking manifegt,
covariance. For this reason, instead of directly verifying that our prescription (15)
and the one of [3] coincide, we have checked that they satisfy identical relations:
a quick glance shows that the relations (T1)—(T4) [3] are indeed the same as our
relations (16), which are manifestly; ) covariant.

To rewrite the transformation formulas we introduce Lie algebra generé&tors
andU 4 labeled by the above matrices, as well as generaigrslabeled by a pair
of such matrices. For the grade2 subspaces we would in general need another set
of generatorss 45 and K 45 labeled by two matrices, but since these subspaces
are one-dimensional in the present case, we have only two more gendkators
and K, labelled by one real number. In the same vein, we reinterpret the 57
coordinatesZ as a pai(Z, z), whereZ is a2 x 2 matrix of the type defined above.
The variations then take the simple form

Kq(Z) = 0,
) = 2a,
) = A,
) = (A, 2),
Sap(Z) = (A,B,Z) ,
) = 2(A,B)z,
) = —3(Z,A,Z) + Az,
) (2,2,7),A) + (A, Z) =,
)

1
6
= %a(Z,Z,Z)-i—QaZz,

11



Ku(2) = Ya((2,2,2),2) +2a2?, (27)

1
3
From these formulas it is straightforward to determine the commutation re-

lations of the transformations. To expose the connection with the more general
Kantor triple systems we write

KABEK<A,B> (28)

in the formulas below. The consistency of this specialization is ensured by the
relations (16). By explicit computation one finds

[UAv UB]

[UAv UB]

[U4,Up] = Kag,
]

[SaB,Uc] = Uy,
[Sap.Uc] = ~Up.acy.
[Kag.Uc] = ~Uacp) +Ugsc.a)
[Kap,Uc] = —Up.c.a +Uacs),
[SaB,Scp] = Sa,B,oyp + Sc(B,A,D) »
[Sap,Kcepl = —Kapcyp — Kca,B,D) »
[Sap. Kcp) = —Kacyp — Keap)
[Kap,Kep) = Sacmp— SB.o.ap — Sanpsc+ San.ac- (29)

For generalK 43, these are the defining commutation relations of a Kantor triple
system, and, with the further specification (28), those of a Freudenthal triple system
(FTS). Freudenthal introduced these triple systems in his study of the metasym-
plectic geometries associated with exceptional groups [5]; these geometries were
further studied in [1, 3, 22, 16]. A classification of FTS’s may be found in [16],
where it is also shown that there is a one-to-one correspondence between simple
Lie algebras and simple FTS’s with a non-degenerate bilinear form. Hence there is
a quasiconformal realization of every Lie group acting on a generalized lightcone.

3 Truncations of Eg s

For the lower rank exceptional groups containedtiys), we can derive similar
conformal or quasiconformal realizations by truncation. In this section, we will
first give the list of quasiconformal realizations containedtiyg). In the second

part of this section, we consider truncations to a three graded structure, which
will yield conformal realizations. In particular, we will work out the conformal
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realization ofE;(7) on a space of 27 dimensions as an example, which is again the
maximal example of its kind.

3.1 More quasiconformal realizations

All simple Lie algebras (except fosU(2)) can be given a five graded structure
(10) with respect to some subalgebra of maximal rank and associate a triple system
with the grade+1 subspace [15, 2]. Conversely, one can construct every simple
Lie algebra over the corresponding triple system.

The realization offs over the FTS defined by the exceptional Jordan algebra
can be truncated to the realizations 8f, Es, and Fyy by restricting oneself to
subalgebras defined by quaternionic, complex, and real HermiitiaA matrices.
Analogously the non-linear realization &k given in the previous section can
be truncated to non-linear realizationsiof(;), Eg (), andF 4. These truncations
preserve the five grading. More specifically we find that the Lie algebué;gf
has a five grading of the form:

Exn =18326 (50(6,6) D) ®32@ 1 (30)

Hence this truncation leads to a nonlinear realizatioivgf) on a33 dimensional
space. Note that this is not a minimal realizationtsfr). Further truncation to the
Eg6) subgroup preserving the five grading leads to:

Eg) =1®200 (SL(6,R) D) 200 1 (31)

This yields a nonlinear realization dfs on a21 dimensional space, which
again is not the minimal realization. Further reductiorflg,) preserving the five
grading

Fyy=1®14® (Sp(6,R)®D) ®14® 1 (32)

leads to a minimal realization df,(,) on a fifteen dimensional space. One can
further truncater’ to a subalgebrés, ;) while preserving the five grading

Gy =1©4® (SL(2,R)&D) 941, (33)

which then yields a nonlinear realization over a five dimensional space. One can
go even futher and truncat&, to its subalgebra'L(3, R)

SLB,R)=1®2a (SO(1,1)®D)d2d1, (34)

which is the smallest simple Lie algebra admitting a five grading. We should per-
haps stress that the nonlinear realizations given above are mininGgr Fy 4,
andEg(s) which are the only simple Lie algebras that do not admit a three grading
and hence do not have unitary representations of the lowest weight type.

The above nonlinear realizations of the exceptional Lie algebras can also be
truncated to subalgebras with a three graded structure, in which case our nonlinear
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realization reduces to the standard nonlinear realization over a JTS. This truncation
we will describe in section 3.2 in more detail.

With respect tds ) the quasiconformal realization @k ) (11) decomposes
as follows:

1 ) 56 & (133 @ 1) ® 56 & 1
1
1 @ 1
® 27 ®
27 & 27
1 ® 78 ) 1
27 ® 27
® 27 ®
1 ) 1
e7e8emb.pst 1

The 27 of grade+1 subspace and th27 of grade—1 subspace close into the
Eg6) ©D subalgebra of grade zero subspace and generate the Lie algefya of
Similarly 27 of grade +1 subspace together with #¥eof grade—1 subspace form
anotherk, ;) subalgebra ofig). Hence we have four differei; ;) subalgebras
of ES(S):

i) Er7) subalgebra of grade zero subspace which is realized linearly.

ii) Er(7) subalgebra preserving the 5-grading, which is realized nonlinearly
over a 33 dimensional space

iii) E7(7) subalgebra that acts on tB& dimensional subspace as the generalized
conformal generators.

iv) Er7) subalgebra that acts on tB& dimensional subspace as the generalized
conformal generators.

Similarly for £ 7y under theSL(6,R) subalgebra of the grade zero subspace
the 32 dimensional grade-1 subspace decomposes as

32=1+15+15+1.

The15 from grade+1 (—1) subspace together wilth (15) of grade—1 (+1)
subspace generate a nonlinearly realisé2 6, 6) subalgebra that acts as the gen-
eralized conformal algebra on thé (15) dimensional subspace.

For Eg6), Fu(a), Ga(2), andSL(3,R) the analogous truncations lead to nonlin-
ear conformal subalgebr&#l (6, R), Sp(6,R), SO(2,2), andSL(2,R), respec-
tively.
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3.2 Conformal Realization of E;(7)

As a special truncation the quasiconformal realizatiot’gf, contains a confor-

mal realization off;(7) on a space of 27 dimensions, on which figs) subgroup

of Er(7) acts linearly. The main difference is that the construction is now based on
a three-graded decomposition (4) Bf (7 rather than (10) — hence the realization

is “conformal” rather than “quasiconformal”. The relevant decomposition can be
directly read off from the figure: we simply truncate to BR ) subalgebra in such

a way that the grade-2 subspace can no longer be reached by commutation. This
requirement is met only by the two truncations corresponding to the diagonal lines
in the figure; adding a singlet we arrive at the desired three graded decomposition
of E7(7)

133 =270 (718 1) ®27 (35)

under itsEg ) x D subgroup.

The Lie algebrals sy has US@S) as its maximal compact subalgebra. It is
spanned by a symmetric teng6t’ in the adjoint representatid®t of uUsSp(8) and
a fully antisymmetric symplectic traceless tengsi*! transforming under tha2
of USp(8); indicesl < i,7,... < 8 are now USE) indices and all tensors with a
tilde transform under USp) rather then S(B). G'/*! is traceless with respect to
the real symplectic metrif;; = —;; = —Q¥ (thusQ;, Q" =4§7). The symplectic
metric also serves to pull up and down indices, with the convention that this is
always to be done from the left.

The E) generators are most simply recovered from thosg'gf,: we have

Gkl —. Gidkl 4 3; Qlidy k) 4 QlidQkI fr

70 — 42 + 27 + 1 (36)
and (wWithG¥Y := Q*G,.7)

i . g T

GY = GY+iU 37)

63 — 36 + 27 ’

where G/ is symmetric and/% antisymmetric; by definition all antisymmetric
tensors on the r.h.s. are thus symplectic traceless. The generéattrs/ form

a Eg ) subalgebra;H is the extra dilatation generator. The translation genera-
tors £ and the nonlinearly realized generatdf§, transforming a27 and27,
respectively, are defined by taking the following linear combinations of the remain-
ing generatoré/ andV¥:

EY = U7 4+ VY,
Fi = Ui-vi,

Unlike for Eg gy, there is no need here to distinguish the generators by the position
of their indices, since the corresponding generators are linearly related by means
of the symplectic metric.
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The fundamenta®7 of Eg) (on which we are going to realize a nonlinear
action of £ (7)) is given by the traceless anti-symmetric teng6t transforming as
Giy(Z¥) = 26k 7,
éijkl(Zmn) _ 21_4€ijk:lmnpq2pq ’ (38)
where
Zij = QikQﬂZkl = (ZZ])* .
Likewise, the27 representation transforms as
Gy(ZM) = 25k,
éijkl(Zmn) _ _igijklmnpquq ) (39)

Because the product of twai7’s contains no singlet, there exists no quadratic in-
variant of Esg); however, there is a cubic invariant given by

Ni(Z) = 79 723,240 (40)
As we already mentioned, both tl2& and the27 are contained in th&6 of E;
we have
ZU = ZU4iZU4 QU7 +iQ07
56 — 27+ 27+ 1 4+ 1
where, of course
0,729 = ;29 = 0.

We are now ready to give the conformal realization /) on the 27 di-

mensional space spanned by t#. As the action of the linearly realizefs )
subgroup has already been given, we list only the remaining variations. As before
EY acts by translations:

and I by dilatations

H(ZV) =71 (42)
The27 generatorg™ are realized nonlinearly:
Fij(Zkl) — _9 Zzg(Zkl) + Qi[le}j(Zngmn) + % QzJkal(Zngmn)
+82km Z, L arliqil _qk(ZimQ,,, Z™9) (43)

The norm form needed to define tig; ;) invariant “light cones” is now con-
structed from the cubic invariant df ). ThenA3(X —Y) is manifestly invariant
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under E ) and under the translatior’s¥/ (observe that there is no need to intro-
duce a nonlinear difference unlike féks)). UnderH it transforms by a constant
factor, whereas under the action/6f we have

FI(Ny(X = 7)) = (X7 + VIOV (X - 7). (44)
Thus the light cones ik27 with base point”
N3 (X -Y)=0 (45)

are indeed invariant undet; ;). They are still curved hypersurfaces, but in con-
trast to theEy(s) light-cones constructed before, they are no longer deformed as
one varies the base poikit

The connection to the Jordan Triple Systems of appendix A can now be made
quite explicit, and the formulas that we arrive at in this way are completely analo-
gous to the ones given in the introduction. We first of all notice that we can again
define a triple product in terms of thg; ) representations; it reads

(XY 2)7 = 16 X% 2V 416 2% X, 7Y 4409 (XHY5,, 270 )
—1—45(“}7’“12“ +4}>in]€le1 +22inle]gl . (46)
This triple product can be used to rewrite the conformal realization. Recalling
that a triple product with identical properties exists for the 27-dimensional Jordan

aIgebraJé?S, we now now considef as an element 0795. Next we introduce
generators labeled by elementslé?s, and define the variations

Ua(Z) = a,
Su(Z) = {abZ},
U(2) = =—3{ZcZ}, (47)

for a,b,c € Jf?s. It is straightforward to check that these reproduce the commu-
tation relations listed in the introduction with the only difference thgathas been
replaced by/Ys.
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Appendix A Jordan Triple Systems

Let us first recall the defining properties of a Jordan algebra. By definition these
are algebras equipped with a commutative (but non-associative) binary product
a o b = b o a satisfying the Jordan identity

(aob)oa*=ao (boa?). (A1)

A Jordan algebra with such a product defines a so-called Jordan triple system (JTS)
under the Jordan triple product

{abcy =ao(boc)+ (aob)oc—Dbo(aoc),

where™ denotes a conjugation ihcorresponding to the operatigrin g. The triple
product satisfies the identities (which can alternatively be taken as the defining
identities of the triple system)

{abc} ={cba},
{ab{cdz}} —{cd{abz}} —{a{dcb} z} + {{cda}bx} =0.

The Tits-Kantor-Koecher (TKK) construction [24, 13, 17] associates every JTS
with a 3-graded Lie algebra

(A.2)

g=9g '@g’@g™, (A.3)
satsifying the formal commutation relations:

6™ 07! = ¢°,

[ngl ) g+1] = 07

' 97" = 0.
With the exception of the Lie algebra&s,, F,, and Eg every simple Lie algebra
g can be given a three graded decomposition with respect to a subalgebfa
maximal rank.

By the TKK construction the elements, of the g*! subspace of the Lie al-

gebra are labelled by the elements J. Furthermore every such Lie algebga

admits an involutive automorphigmwhich maps the elements of the grade
space onto the elements of the subspace of grade

(Uy,) =: U,eg! (A.4)
To get a complete set of generatorgafie define

[Ua, Us] = Sap,
[SavaC] = U{abc}v (A.5)

whereS,;, € g° and{abc} is the Jordan triple product under which the spdde
closed.
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The remaining commutation relations are

[Sabv UC] = U{bac}a
[Saba Scd] = S{abc}d - Sc{bad}v (A6)

and the closure of the algebra under commutation follows from the defining iden-
tities of a JTS given above.

The Lie algebra generated I8y, is called the structure algebra of tH&'S J,
under which the elements of transform linearly. The traceless elements of this
action of S,;, generate the reduced structure algebrd.oT here exist four infinite
families of hermitian JTS’s and two exceptional ones [23, 19]. The latter are listed
in the table below (wheré/; »(0) denotesl x 2 matrices over the octonions, i.e.
the octonionic plane)

J G H
Mi2(0s)| Ege) |SO(5,5)

M 2(0) | Eg(—14) | SO(8,2)

J35 | Eyny | Ee

3 Er_a5) | Ee(—26)

Here we are mainly interested in the real foﬁ@s , which corresponds to the split
octonionsOg and hasEy ;) and Egg) as its conformal and reduced structure
group, respectively.
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