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Revision of the closed orbit corrector system of the LHC

A. Verdier

Abstract

The closed orbit corrector system of the LHC has been revisited in accordance with the project
progress. The magnet measurement procedures are now well defined. This makes the error on
the magnet strength and positioning better known than at the time the orbit correctors were
specified.

The LHC is in a favourable context in the sense that we have a precise knowledge of
the vertical movement of the LEP tunnel and that an efficient code to detect field errors is
available. Under these conditions the strength of the closed orbit correctors in the arc and in
the dispersion suppressors is sufficient. The demand on closed orbit correctors in the insertions
can be somewhat relaxed.

The tolerances on the longitudinal positions of the dipoles and quadrupoles are easy to
satisfy and do not impose further constraints on the closed orbit corrector system.
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1 Introduction.
The closed orbit correctors are basic elements to make machine operation possi-

ble. Their strength is determined mainly by the transverse positioning tolerances of the
quadrupoles and the dipole field errors in the dipoles. The longitudinal positioning is less
critical. Its importance is evaluated below.

An analytical estimate of ideal corrector strengths is presented in section 2 to estab-
lish what is needed to compensate both random and systematic field errors. For the case
of random errors it is shown that this agrees with the previous estimates. The calculation
done with the new table of alignment errors is done for the case of the arc correctors in
section 4.

The LHC insertions were modified some years ago, which led to a request of new
orbit correctors according to the quadrupole changes. The relevance of this change is
evaluated in sections 5 and 6. A summary of our knowledge of the ground motion in the
LHC tunnel is recalled in section 7 in order to support the arguments concerning the
insertion correctors. The characteristics of an existing orbit analysis code which could
help a lot in the first years of the LHC operation is equally recalled in section 8. Finally
it is shown in section 9 that the longitudinal positioning and tilt do not introduce further
constraints on the closed orbit corrector system.

2 Closed orbit correction
2.1 Corrector strengths for the random field errors

Conceptually the closed orbit correctors are aimed at correcting locally the magnet
field errors in order to minimise the closed orbit excursion. In the LHC a closed orbit
corrector acting in the relevant plane will be installed close to each quadrupole. In this
context, the best correction procedure is to make local orbit bumps by means of two
correctors and the field error kicks over a piece of machine with a π phase advance at
most (in the case of the LHC this represents two arc cells). This makes it possible to
obtain directly the expectation value of the orbit corrector kick angle as a function of the
error distribution parameters. This procedure cannot be applied for the practical orbit
correction merely because the field errors are unknown.

It is important to point out that the beam position monitors are not considered
here since they should not intervene in the determination of the strength of the orbit
correctors. This implies that the perturbation of the closed orbit distortion they make
can be neglected.

For a piece of machine extending over a phase advance of π, there must be in each
plane two correctors with kick angles θ1 and θ2, installed at places where the betatron
function has values β1 and β2 and the phases are µ1 and µ2. The conditions to make
a local closed orbit bump by means of the two correctors and the field error kicks are
obtained by specifying that the trajectory due to this ensemble of kicks of index k is zero
everywhere downstream. The transverse amplitude of this trajectory is given by

X(s) = Σkθk

√
β(s)βk sin[µ(s)− µk]. (1)

The index k refers to all kicks including the correctors and s is the longitudinal coordinate.
Expressing that X(s) is zero for any s downstream of the set of kicks, gives two equations :

θ1

√
β1 sin µ1 + θ2

√
β2 sin µ2 + Σkicksθi

√
βi sin µi = 0,

θ1

√
β1 cos µ1 + θ2

√
β2 cos µ2 + Σkicksθi

√
βi cos µi = 0,
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which can be solved to obtain the corrector strengths

θ1 =
1√

β1 sin(µ1 − µ2)
Σkicksθi

√
βi sin(µ2 − µi),

θ2 =
1√

β2 sin(µ2 − µ1)
Σkicksθi

√
βi sin(µ1 − µi).

The kicks associated with errors belong to a series of random distributions with zero aver-
age. The only relevant quantity we can compute is the expectation value of the corrector
kick angles. As the optics functions and the kick angles are uncorrelated, we can do their
quadratic sums independently and we obtain

< θ1,2 >=
1

| sin(µ1 − µ2)|

√√√√Σkβkθ2
k

2β1,2

. (2)

Here we have replaced the expectation value of the product
√

βi sin µi by the product
of the square root of the average β-function and 1/2 which is the average of the square
of the sine function. It is important to note that the sum in formula (2) has to be done
over all possible kicks for each error distribution. For instance if only the quadrupoles
are considered in the case of the LHC, the expression under the square root becomes
θ2

QF +
βQD

βQF
θ2

QD for the horizontal plane. The factor 2 at the denominator has disappeared

because there are two QF, two QD and two correctors in two cells which extend over
a phase advance of about π. The formula expresses that the corrector at QF has to
compensate not only the misalignment of its neighbouring quadrupole QF but also the QD
misalignment. With the present β ratio of 32/180, the strength which would be necessary
for the correction of QF alone has to be increased by 8%, which is non negligible.

It is interesting to compare the respective impacts of quadrupole misalignments and
b1 error in the dipoles on the orbit correction system. To this end we use equation (2)
either for the case of quadrupoles only or for the case of dipoles only. Equating the two
values, we obtain the relation b1(10−4) = 33.5 ∆x(mm). An r.m.s. misalignment of the arc
quadrupoles by 0.1 mm has as much impact on average on the orbit correction system as
a random b1 of a little more than 3 units in the dipoles.

We examine now the maximum orbit excursion which is a fundamental parameter
for aperture calculations. In the context of the above correction procedure, the orbit
excursion is zero at the beginning of the orbit bump and grows up as a random walk up
to the first corrector, due to the kicks associated with the random error. The quadratic
sum of the amplitudes obtained from formula (1) is

< xco >=

√
β̂

2
Σkβkθ

2
k, (3)

where β̂ is the peak value of the betatron function and the sum is done up to the first
corrector.

2.2 Corrector strengths for the systematic field errors
These strengths are evaluated separately as the correction can be computed exactly.

The field errors considered here are only those of the dipoles.
A simple minded correction scheme consists of kicking the beam only at the focusing

correctors with the same angle as that due to the error. This makes a periodic orbit like
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Figure 1: Trajectories with a compensated systematic field error in the dipoles. θ is the
kick angle due to this field error. The kick θ due to all systematic dipole field errors occurs
at the middle of the distance between QF and QD. θC and θQ are the kick angles due to
the corrector and to the quadrupole, respectively.

the full line shown in figure 1 for the horizontal case. The corrector kick angle θc is
computed as follows. The sum of this angle and the kick angle due to the quadrupole
θQ is equal to twice the kick angle due to the field error θ. The orbit excursion in the
quadrupole xQ and the kick angle due to the quadrupole are related by : θQ = xQk,
k being the integrated normalised strength of the quadrupole. xQ is also equal to θL/4
where L is the cell length. Remembering that the cell phase advance µc is obtained from
sin µc/2 = kL/4, we obtain by combining these equations : θc = θ(2 − sin µc/2). The
maximum orbit excursion associated with this scheme is equal to θL/4. For LHC, L is
equal to 107 m and the dipole angle is 5.1 mrad. Thus for a systematic relative field error
of 0.001, the value of θ is 15.3 µrad (3 dipoles between two quadrupoles) and the maximum
orbit excursion is 0.41 mm. As this is non negligible, a possible reduction of the excursion
by a factor 2 can be achieved by making an oscillation as the dashed line on figure 1. The
corrector strength is a little larger. The computation is a little more complicated than the
above one. It gives : θc = θ (4−sin µc)(2+sin µc)

4+3 sinµc
. For a phase advance per cell of π/2, it become

equal to 1.46 θ instead of 1.29 θ for the simple scheme.

2.3 Maximum corrector strengths
In order to determine the maximum corrector strength in the arcs, we accept that

one corrector of the 352 can exceed the maximum strength. This means that we accept
to realign one machine section in order to reduce this corrector strength. Assuming a
Gaussian distribution of the corrector strengths, this distribution is cut accordingly at nσ

such that exp(−n2
σ/2) = 1/352. This gives nσ=3.42. Then the strength necessary for the

correction of the systematic field errors has to be added as it is uniformly distributed.
For the dispersion suppressors and the insertions the number of correctors is much

smaller and we will request merely that the probability of realignment is 0.01, i.e. the
maximum strength is 3 times the r.m.s. Again, the strength necessary for the correction
of the systematic field errors has to be added.
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The closed orbit correctors can be used to scan the machine aperture. The kick
angle needed to this end is equal to the vacuum chamber radius divided by the maximum
β-function. For the arcs it is about 120 µrad. It would be unreasonable to design orbit
correctors to fulfil this additional constraint at nominal energy. Therefore the aperture
scans will only done at injection and up to about 2.8 TeV. This assumes that no deforma-
tion of the vacuum chamber, which could change the location of the aperture restrictions,
due to the setting of the nominal magnetic field is expected.

3 Comparison with previous results concerning the LHC arcs
This section is aimed at a comparison with the results in [1]. In the case of the LHC

we consider a local orbit correction over two arc cells, as the phase advance per cell is
close to 90◦.

In the horizontal plane we have to consider only the b1 error and the misalignment
of the quadrupoles. The alignment of the dipoles introduces only second order field errors.
In the vertical plane, the field errors originate mainly from the dipole roll, the a1 error
and the vertical misalignment of the quadrupoles.

It is clear that the feed-down effect of the multipoles is completely negligible. This
can be illustrated by the lower order case, that of the skew quadrupole component, which
corresponds to the largest perturbation. The kick due to a closed orbit distortion of
amplitude xco combined with a2 in the dipoles of bending angle θD = 5.1 mrad, is given
by a2

R
θDxco, where R = 0.017 m is the reference radius for the errors. For a closed orbit

amplitude of 4 mm, the kick is (0.12 × a2) µrad. For a value of a2 of less than 2 units,
the kick is smaller than that associated with a quadrupole displacement of 0.1 mm by one
order of magnitude.

We first recompute the r.m.s. corrector strength for the vertical plane with the
errors specifications already taken in [1]. The r.m.s. roll of the dipoles is 1.6 mrad (a
large value, apparently based on HERA measurements [1]). The a1 uncertainty is not
considered. The associated kick is 8.2 µrad, there are twelve dipoles for two correctors,
their average β-function is 106 m. The r.m.s. quadrupole misalignment is 0.6 mm. The
associated kick is 17.8 µrad for the nominal strength of 0.00871 m−2 at 7 TeV (gradient of
203 T/m). The value of the β-function at the QF and QD quadrupoles is 180 m and 32 m,
respectively. Putting all these numbers in formula (2), we obtain an r.m.s. value of the
corrector kick angle of 22.3 µrad. This is about the value obtained in [1]. The maximum
corrector strength is 76.3 µrad according to the above specifications. This is close to the
maximum of 80.8 µrad. We arrive then at a conclusion similar to that given in [1], i.e.
that one local realignment has to be expected.

In the horizontal plane, the random b1 in the dipoles is 0.001 and the horizontal r.m.s.
misalignment of the quadrupoles is 0.5 mm [1]. The r.m.s. corrector strength obtained with
these numbers is 16.4 µrad. This is again about the value obtained in [1]. The maximum
corrector strength is 56.1 µrad according to the above specifications. This is far from
the maximum strength but the contribution of the systematic field errors has not been
considered.

So far we arrive at about the same conclusions as those of the previous study. We
consider now the situation with the present estimates of the misalignments and field errors.

4 Revision of the arc correctors
The errors assumed in [1] were somewhat overestimated. An inventory of field errors

has been done in 1999. For the quadrupole transverse alignment, the new r.m.s. values
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are 0.37 mm in both planes after one year (see presentation by W. Scandale at the LHC
Parameter and Layout Committee on the 12th of April 1999). A random drift of 0.1 mm
which is supposed to occur over one year has been included. The associated kick is, for
the nominal quadrupole excitation of 0.00956 m−2 (223 T/m at 7 TeV), 11 µrad in both
planes.

For the dipoles, the random b1 error is 7×10−4 (kick of 3.57 µrad) and the b1 uncer-
tainty due to geometrical errors is 10×10−4 (kick of 5.1 µrad). The effect of the persistent
currents has not been considered, as we deal with the nominal energy where they do not
have any effect.

The dipole alignment is not important for the optics except their transverse tilt.
All contributions to the horizontal field errors including coil tilt (500µrad of r.m.s. error
on the measurement of the horizontal plane and 200 µrad of machine alignment error)
and ramp effects add-up to an equivalent random a1 of 5.4×10−4 (kick of 2.75 µrad). The
systematic error comes mainly from the uncertainty (geometrical error) and has a value
of 5.8×10−4 (kick of 2.96 µrad).

The r.m.s. corrector kick angles obtained by combining the random field errors in
the dipoles by means of formula (2) are : 13.7 µrad in the horizontal plane and 13.0 µrad
in the vertical plane. The difference between these two numbers comes from the dipoles.

The maximum corrector strengths are obtained by multiplying these numbers by
3.42 and adding the correction of the systematic part, i.e. 1.46 times the value of the
systematic kick error associated with three dipoles (this makes 22.3 µrad for an uncertainty
of 10 units). In the horizontal plane we obtain 69.2 µrad and in the vertical plane 57.5 µrad.
The maximum corrector strength of 80.8 µrad is never exceeded.

In a real machine the alignment of the quadrupoles is done with a smooth curve as
a reference. Such a realignment is not innocent in that sense that some corrector strength
is needed to correct the orbit distortion due to “smooth curve alignment”. In the case of
LEP, the maximum value of this corrector strength is of the order of 10µrad [2]. With
the present alignment errors there is a sufficient margin in both planes. If we forget the
last item, there is a further provision for an r.m.s. drift of the alignment of 0.24 mm in
the horizontal plane and 0.38 mm in the vertical plane.

The r.m.s. closed orbit excursion computed by means of equation (3) in the hori-
zontal plane has a value of 0.84 mm (there is a contribution of one QD offset by 0.37 mm
and three dipoles with a random b1 of 7 units). As there are 200 cells in the machine,
the probability that the maximum excursion is exceeded at one location corresponds to
a maximum of 3.26 r.m.s., i.e. 2.73 mm. An additional excursion of 0.41 mm due to cor-
rection of the systematic error has to be added. Eventually the maximum excursion is
3.14 mm. In the aperture studies a maximum excursion of 4 mm has been assumed. This
is compatible with the present estimate as our estimate is associated with an ideal correc-
tion scheme, and it is not proved that the closed orbit excursion can be reduced to this
level in the real machine.

5 Closed orbit correctors in the dispersion suppressors
The quadrupoles are stronger than those of the arc, their maximum length is 6.8 m

and their nominal gradient is 200 T/m. We take these parameters for all quadrupoles.
There are 8 dipoles for two correctors instead of 12. The optics is about the same as in
the arcs.

With the present alignment values, the r.m.s. corrector kick angle is 23.5 µrad ver-
tically and 24.5 µrad horizontally. This is valid for both polarities of the dispersion sup-
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pressor. The maximum corrector strength is obtained by multiplying the r.m.s. value by
3 and adding the correction for the systematics. We obtain 88.4 µrad in the horizontal
plane and 78.5 µrad in the vertical plane.

This is well below the maximum corrector strength of 120 µrad (3.11 T, length of
0.9 m). Using arc correctors of maximum kick angle 80.8 µrad would increase the proba-
bility of realignment from 0.01 to 0.027 in the horizontal plane and would not change the
situation in the vertical plane.

6 Closed orbit correctors in the insertions
In the insertions the situation is a little complicated by the existence of the crossing

angle scheme. In fact dedicated closed orbit correctors are reserved to this end so that
there is little interference between this scheme and the closed orbit correction [3, 4]. What
is needed in the very worst case is 14% of the corrector strengths close to Q6 and Q7,
i.e. 23 µrad. These correctors are special, their length is 1.25 m and their nominal field is
3.11 T.

There are no dipoles and the correctors have to take care of the quadrupoles only. As
in the dispersion suppressors, their maximum length is 6.8 m and their nominal gradient
is 200 T/m.

The largest β ratio between quadrupoles is 0.44, in the physics insertions. Taking the
maximum length of 6.8 m for all quadrupoles, the kick associated with the displacement
of 0.37 mm is 21.6 µrad. The expectation value of the corrector kick is then 25.9 µrad for
both planes. The maximum corrector strength is 77.8 µrad. This value is well below the
present maximum strength of the MCBC’s of 120 µrad.

The separator scheme needs 23 µrad so the maximum useful corrector strength is
97 µrad. This strength can cope with an r.m.s. displacement of 0.46 mm. Consequently,
the random drift can become 0.29 mm instead of the 0.1 mm assumed above.

7 The ground motion in the LHC tunnel
Once the machine has been aligned, the ground motion of the tunnel destroys the

alignment with time. For the case of the LHC the situation is well known as the vertical
alignment of the LEP quadrupoles has been measured yearly from 1993. Consequently no
exotic assumption about the deformation of the LHC tunnel is justified.

An exhaustive analysis of the data can be found in [5]. The main aspects of the ver-
tical motion of the LHC tunnel can be summarised as follows according to measurements
taken in 1993 and corrected from the measurements done after the installation :

– between IR8 and IR4 < 1.3 mm/year (the maximum occurs in fact at about the
middle of the arc between IR2 and IR3 and never in the insertions),

– between IR4 and IR7 < 0.5 mm/year,
– between IR7 and IR8 ' 3 mm/year.

It is important to note that the two cases of large motion concerns middle of arcs and
consequently do not interfere with the questions raised in section 6. In any case, it must
be clear that a provision has to be made at the places where large vertical displacements
occur to realign the LHC (about three centimetres in 10 years between IR7 and IR8).

Thus the situation between IR4 and IR7 represents quite well that of the LHC
insertions. If only one element over 700 has a misalignment of 0.5 mm, this points to an
r.m.s. misalignment of 0.14 mm. This estimate is consistent with the r.m.s. annual drift
of 0.1 mm quoted at the LHC Parameter and Layout Committee. The latter is based on
the LEP survey measurements done later on after 1995 [6]. The algorithm to establish
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the misalignment figures was kept the same from 1995 to 2000, and was different from
the algorithms used between 1993 and 1995. It was shown by the author that the new
algorithm used after 1995 provides results as good as the previous ones from the point of
view of closed orbit correction [2].

For the horizontal plane there is much less data than for the vertical plane. One
source of drift could be the change of the magnet tilt which can make an horizontal
displacement because of the distance of about 1 m between the magnets and the ground.
The maximum tilt observed in LEP after 4 years is 3 mrad at a single place and 2 mrad at
about 10 places. Therefore we can assume a maximum tilt change of 0.5 mrad per year.
This induces an horizontal displacement of 0.5 mm at 1 m, i.e. about the same as the old
misalignment value.

Partial informations concerning the measured horizontal misalignment can be found
in [7]. The maximum realignment in 1994 was 1.7 mm over a machine length of 8.5 km.
The maximum realignment in 1995 was 1.0 mm over a machine length of 12 km (about 150
quadrupoles). The latter value points to an r.m.s. misalignment of 0.32 mm if we assume
that there was only one quadrupole with a misalignment above 1 mm. Thus it seems that
the position drifts in the horizontal plane are a little larger than the vertical one if we
except the octant IR7/IR8.

For the worst case of the insertion correctors, we have seen that the strength margin
can cope with a local displacement of three times the r.m.s. value, i.e. 0.87 mm. As the
maximum measured displacement is about 0.5 mm in the vertical plane, this means that
the situation is quite safe and no realignment is needed during the first year of operation
provided the LHC alignment has the same quality as that of LEP. In the horizontal plane
there is a probability of 0.13 of a realignment during the first year of operation if we
assume a maximum horizontal drift of 1 mm.

8 Orbit analysis
An efficient code for analysing the closed orbit measurements has been written in

1993 [8] and unfortunately little used for LEP. It is based on fitting a closed orbit mea-
surement with a betatron oscillation together with checking the relevance of the BPM’s
readings. A bad fit reveals a discontinuity in the orbit or a bad orbit reading.

In principle, by using a sliding window to do the fits, it is possible to distinguish a
wrong reading from a kick by looking at the fits residues associated with different numbers
of measurements per fit. In practice this is not easy.

Once an orbit discontinuity is localised from the inspection of the fit residues, the
associated kick is computed by means of two fits, one upstream and one downstream, and
by seeking the machine element which makes the best matching between the two fits. The
automatic system makes it possible to check the measurements so that the orbit disconti-
nuities can be identified with confidence. Once kicks have been computed, their relevance
is checked and their contribution to the closed orbit distortion is subtracted. When the
whole machine has been inspected, the measurements, corrected from the contribution of
the kicks, are all tested to check that good BPM readings have not been discarded. Then
the kicks are tested again in order to avoid to compute a kick at a place where a wrong
reading had not been detected. The complete procedure takes some seconds in the LEP
control system. An interesting outcome is the evaluation of BPM offsets.

The code has been reactivated in 1999 by J. Wenninger. It made it possible to rule
out field errors suspected in the octant 3 of LEP. This code, which is written in C, will
be conserved with the rest of the LEP control system. It is important to use it from the
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beginning of the LHC running, when the machine is not too badly misaligned. We have
noticed that it becomes almost useless if the misalignments are too important since there
is not clear reference curve for the alignment in this case. This is what happened in 1992
when LEP was badly misaligned. Using this code from the beginning of operation can
help to overcome the impossibility of mechanical measurements along the beam trajectory
once the LHC machine is mounted.

9 Tolerance on longitudinal alignment
The longitudinal alignment tolerances are seldomly addressed as they are easily

fulfilled. In this section the longitudinal positioning and the longitudinal tilt are examined.

9.1 Longitudinal positioning of the dipoles
The longitudinal tilt of a dipole does not have any effect up to second order as it

reduces its field and increases its length by the same factor if the end effect are neglected.
If a rectangular dipole is displaced longitudinally by a positive quantity ∆s small

compared with its length, a positive horizontal kick of value −∆s
ρ

appears at its entrance
where the horizontal β-function has the value β1 and the horizontal phase the value µ1,
and a negative kick of value ∆s

ρ
appears at its exit where the horizontal β-function has

the value β2 and the horizontal phase the value µ2. The combination of these two kicks
produces a closed orbit distortion x given, downstream of the dipole, by :

x(s) =
∆s

√
β(s)

2ρ sin πQ

[√
β1 cos(πQ + µ(s)− µ1)−

√
β2 cos(πQ + µ(s)− µ2)

]
.

After expanding and rearranging the cosine terms, the amplitude of the closed orbit
distortion can be written :

x̂(s) =
∆s

√
β(s)

2ρ sin πQ

[
β1 + β2 − 2

√
β1β2 cos(µ1 − µ2)

]
. (4)

This formula can be expressed by means of the β-functions only. Indeed in a gradient free
region (which means that we neglect the focusing effect of the dipole), the trajectory of
equation x(s) = s can be written :

x(s) = s =
√

β(s)β1 sin[µ(s)− µ1].

The index 1 is associated with the optics functions at s = 0. For our case, if s = L, where
L is the length of the dipole, we obtain :

L =
√

β2β1 sin(µ2 − µ1). (5)

The cosine term in equation (4) can be re-expressed by means of this expression. Even-
tually equation (4) can be rewritten using the average 2β̄ = β1 + β2 and the difference
∆β = β1 − β2. Assuming that both L and ∆β are small compared with β̄, the amplitude
of the closed orbit distortion is approximately :

x̂ =
∆s

√
β(s)

2ρ sin πQ

√
L2 + ∆β2

β̄
. (6)
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It is quite helpful to compare the effect of this error with the effect of a random b1

error. The kick associated with b1 is b1L/ρ. Comparing the amplitude of the closed orbit
distortion associated with this kick with equation (6), we can define an equivalent b1(∆s)
error :

b1(∆s) =
∆s
√

L2 + ∆β2

Lβ̄
.

For a dipole of length 14.3 m in the middle of the half cell, β̄ = 80 m and ∆β = 40 m. The
equivalent b1 in units of 10−4 is given by

b1(∆s) = 0.37 ∆s(mm).

If we consider a random b1 equal to 5 units, an r.m.s. error of longitudinal position of the
dipoles of 6 mm is equivalent to increasing this random b1 by 10%.

9.2 Longitudinal positioning of the quadrupoles
The most important effect due to random gradient errors is the β-beating. Using

the same notations as for the dipole, this beating is given by

K∆s

sin 2πQ
[−β1 cos φ + β2 cos(φ + µQ)] .

The phase advance across the quadrupole can be obtained from formula (5) by replacing

L by sin
√

KL√
K

for a focusing quadrupole. This expression is approximately equal to L when

KL2 is smaller than 1. For a defocusing quadrupole, the sine function has to be replaced
with the hyperbolic sine.

Expanding the cosines, we can compute the maximum amplitude amplitude of the

beating. Furthermore, assuming that sin
√

KL
Kβ1β2

is smaller than 1, we obtain :

K∆s

sin 2πQ

√
sin2

√
KL

K
+ ∆β2.

Comparing this expression with that due to a single gradient error, we can define an
equivalent relative gradient error :

b2(∆s) =
∆s

Lβ̄

√
sin2

√
KL

K
+ ∆β2.

For an arc quadrupole, ∆β = 0 and the equivalent gradient error is given merely by
∆s/β̄. For a β value of 180 m, we see that one random b2 unit is obtained for a random
longitudinal misalignment of 18 mm. This explains why the longitudinal misalignment
is rarely considered for ensembles of FODO cells. The situation is different for low-β
insertions where β1 can be very different from β2. For instance for the quadrupole Q3 of
the low-β inner triplet, ∆β, β̄ and L are respectively equal to 1200 m, 4200 m and 6.3 m.
One random b2 unit is now obtained for a random longitudinal misalignment of 2 mm.

9.3 Longitudinal tilt of the quadrupoles
For this case we integrate the expression of the closed orbit distortion across the

quadrupole. Taking the origin of the longitudinal coordinate at the quadrupole centre,
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the elementary kick angle due to the field error associated with a longitudinal tilt of angle
θ is

Kθsds,

s being the longitudinal coordinate. The closed orbit distortion due to misaligned quadrupole
is obtained by integrating the effect of this kick :

x(s) =

√
β(s)

2 sinπQ

∫ + L
2

−L
2

Kθtdt
√

β(t) cos[φ + µ(t)].

This integral can be computed by expanding the cosine and integrating each term by
parts, using the same substitution as in the preceding section, plus another one for the√

β(t) cos[µ(t)]. After about one page of algebra, we obtain the amplitude of the closed
orbit distortion for a focusing quadrupole :

x(s) =
θ
√

β(s)γQ

2 sinπQ

[
2√
K

sin(
√

KL/2)− L cos(
√

KL/2)

]
,

where γQ is the TWISS parameter at the quadrupole centre. After expansion of the
trigonometric functions, we obtain

x(s) =
KL3θ

12 sinπQ

√
β(s)γQ.

By comparing this expression with that associated with a transverse displacement ∆x,
we obtain the relation

θ(∆x) =
6∆xβQ

L2
√

1 + α2
Q

,

where αQ and βQ are the TWISS parameters at the quadrupole centre. For an arc
quadrupole of length 3.1 m, where βQ is equal to 180 m and αQ almost zero, a longitudinal
tilt of 11 mrad makes the same distortion as a transverse displacement of 0.1 mm. Prac-
tically, the longitudinal tilt of a quadrupole can be adjusted within better than 1 mrad,
so its effect is completely negligible compared with that of the transverse alignment. This
is also true for the low-β quadrupoles as long as αQ is smaller than 1. It is clear that
the mechanical tolerances associated with a longitudinal tilt are more important than the
optics tolerances.

10 Conclusion
The specification of closed orbit correctors is intimately linked with the realignment

probability compatible with the machine operation.
The present alignment tolerances are much better than previously assumed, with the

obvious consequence that the closed orbit corrector strengths are reduced. Furthermore
the situation of the LHC is favourable as :

– the behaviour of its tunnel is well known and documented,
– there is a powerful code for analysing the orbits available from the beginning of the

machine operation.
It is worth recalling that a random field error of r.m.s. value one per mil in the

dipoles is statistically equivalent to a random transverse misalignment of r.m.s. 0.24 mm
of the arc quadrupoles or 0.13 mm of the large quadrupoles of the dispersion suppressor.

10



It appears that the closed orbit correctors of length 1.25 m close to the quadrupoles
Q6 and Q7 could be replaced with correctors of length 0.9 m within the present alignment
budget.

As in the other A.G. machines, the longitudinal alignment of the magnets is not
critical from the optics point of view. It is likely that those tolerances will be determined
by the mechanical assembly constraints.
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