
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - SL DIVISION

In tracking codes there is the need to obtain, at run time, various machine quantities which depend
parametically on things such as momentum or quadrupole strength. To this end we have overloaded (in
FORTRAN 90) Berz' DA package [1] as well as the analysis library LieLib [2,3] which is based on this
package and we have created polymorphic types. Runtime polymorphism is not interpretation as in
COSY-INFINITY [4] and is more appropriate to large ring tracking codes. Consequently we have
applied these tools to the code SixTrack [6].

* KEK

CERN-SL-2000-048

 paper presented at EPAC2000, 26-30 June 2000, Vienna, Austria

Geneva, Switzerland

03.08.00

SL/Div Reps

Map creation and analysis via overloaded tools in FORTRAN 90

AP

 E. Forest*, F. Schmidt

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/25291283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Map Creation and Analysis via overloaded Tools in FORTRAN 90

E. Forest, KEK; F. Schmidt, CERN

Abstract

In tracking codes there is the need to obtain, at run time,
various machine quantities which depend parametrically
on things such as momentum or quadrupole strength. To
this end we have overloaded (in FORTRAN90) Berz’s DA-
package [1] as well as the analysis library LieLib [2, 3]
which is based on this package and we have created poly-
morphic types. Runtime polymorphism is not interpreta-
tion as in COSY-INFINITY [4] and is more appropriate to
large ring tracking codes. Consequently we have applied
these tools to the code SixTrack [6].

1 INTRODUCTION

A substantial amount of accelerator theory reduces to the
calculation of a normal form. The normal form is a for-
mal statement concerning the stability properties of the ring
under consideration. For example, if one states that a lin-
ear system can be normalised into a rotation, and then this
statement is mathematically equivalent to the so-called lin-
ear Courant-Snyder theory. Normal form concepts can be
applied to the equations of motion or finite “s” maps. Be-
cause they are applicable to finite “s” maps the entire ma-
chinery of automatic differentiation, introduced by Berz to
our field, can be used. Libraries such as our Lielib can be
written to normalise these maps. Finally the normalising
transformations can be propagated using the same tracking
code that produced the maps in the first place.

There are two impediments to the usage of these tech-
niques in accelerators. First there is a cultural barrier: un-
less one learns how to rephrase the standard theory in terms
of finite maps, then the machinery of Berz is not usable.
Map methods in rings, in conjunction with Lie methods,
give us an elegant and powerful practical way to do linear
lattice calculations which are easily extendible to nonlinear
problems. Unless one is willing to sit down and (re)learn
linear theory, then these finite “s” map methods will be dif-
ficult if not impossible to swallow.

Secondly, if one swims against the cultural current and
learns the map methods, there is still a formidable task
in dealing with FORTRAN77 libraries such as the “DA-
package” and Lielib. Berz, first to notice this problem,
started the COSY-INFINITY program in which he devised
an interpreted language. The COSY language permits users
to access Taylor series and manipulate them using a nicer
syntax. For example, the addition of two Taylors A and
B could become C=A+B rather than using a call to a sub-
routine such as CALL DAADD(A,B,C). COSY-INFINITY
reads a file, which it then interprets. This solution is cer-
tainly acceptable to single pass systems but fits poorly into
tracking codes for large rings.

Modern languages such as C++ and also FORTRAN90
permit operator overloading and thus allows one to use the
syntax C=A+B in a compiled code. In addition, one would
like to do “parameter dependence at run time.” The au-
thors had included this feature into their code SixTrack
and DESPOT respectively in a very cumbersome way us-
ing the old FORTRAN77 “DA-package.” Bengtsson, to our
knowledge, was first to realize that in languages like C++,
one could develop a delegated (run time) polymorphic type
that permit precisely this kind of run time conversion. Re-
markably, and somewhat contrary to public belief, such
polymorphic types can be constructed in FORTRAN90 as
well (see Szymanski [5]).

We decided to go back to Bengtsson’s idea which con-
sisted in linking directly Berz’s package and Lielib to the
appropriate polymorphic classes. This work could cer-
tainly have been done in C++ [8] ; we are not advocating
any language over another.

2 THE POLYMORPHIC PACKAGE
The library is a hierarchical set of packages (modules in
FORTRAN90) and they are displayed in Figure 1. The first
modules definition.f90 contains definitions of types as the
name indicates. For example, a type called taylor:

TYPE TAYLOR
INTEGER I ! integer is a pointer in old da-package
TYPE (TAYLORLOW) J ! taylorlow is the newda taylor series
END TYPE TAYLOR

Taylor is the type for a polynomial. The integer I points
to the integer used by Berz in his package to locate a poly-
nomial. The type Taylorlow illustrates the possibility of
putting several TPSA libraries under the “hood.”

The next 3 modules overload the old “TPSA-Package”
of Berz and the physics library LIELIB. The basic TPSA
operations are defined in TPSA.F90, basic maps and their
concatenation are defined in TPSALIE.F90 and finally
more advanced options such as normal forms and map fac-
torisations are defined in TPSALIEANALYSIS.F90. Up
to this point we have overloaded the basic functionality of
the “DA-package” and LIELIB. A code using these tools
only could resemble very much the COSY-INFINITY input
file except that it requires compilation: it is not interpreted.

The first addition to this edifice was COMPLEXTAY-
LOR.F90. Here we defined a complex polynomial as two
polynomials of type taylor: the real and imaginary parts.

TYPE(COMPLEXTAYLOR)
TYPE (TAYLOR) R
TYPE (TAYLOR) I
END TYPE COMPLEXTAYLOR

The two final packages are REALPOLYMORH.F90
and COMPLEXPOLYMORPH.F90. In these packages
we define a real and a complex polymorphic type. We will

tpsalie_analysis.f90

newlielib.f90Lielib.f

tpsalie.90

Tpsa.f90

definition.f90

dabnew.f

newda.f90Berz’s TPSA Package:
polynomials are represented
by integer pointers.

New TPSA Package

Analysis Routines

Both TPSA Taylor series are merged here.
A new type called taylor combines taylorlow
and the integer pointer of Berz’s TPSA. The
complex taylor type and the polymorphic
types are also defined there.

define_newda.f90 Defines in new
type called taylorlow

Basic Operations of the TPSA packages
 involving Taylor series are overloaded here,
for example +,-,/, etc... as well as other things such
as derivatives. Here we really overload dab.f and
newda.f90

Here operations on maps are overloaded. A new type
damap is introduced (as well as other useful types).
Map operations are overloaded, for example,
concatenation and inverse.

Finally, at the top, this package overloads various
useful parameterization of a map: Dragt-Finn,
inverse Dragt-Finn, vector fields, vector fields
in resonance basis, and, of course, normal forms.

Code that overloads the Taylor packages
(including that of Berz) as well as the
analysis routines of Lielib

Free standing TPSA packages
which could be used on their
own. Of course that defeats
the purpose of overloading!

real_polymorph.f90

complex_taylor.90
Allows complex TPSA

 Polymorphic types: Can change a run
time

Complex_polymorph.f90

Complex type is overloaded. The complex type
is made of 2 taylors: T YPE complextaylor

type (taylor) r
type (taylor) i
END T YPE complextaylor

Figure 1: Schematic Overview of the Full Polymorphic Package (FPP), down-load from web [7].

Figure 1:not discuss the complex polymorph type but instead con-
centrate on the real polymorphic type denoted by Real8 in
our package by analogy to REAL*8 in FORTRAN77.

The Real8 type is defined as follows:
TYPE REAL_8
TYPE (TAYLOR) T
DOUBLE PRECISION R
LOGICAL ALLOC
INTEGER KIND
INTEGER I ! assignment integer
DOUBLE PRECISION S ! special scaling factor
END TYPE REAL_8

A real polymorph is either double precision or taylor. If
it is double precision then the integer kind is set to one and
the value of the polymorph is contained in the field “r.” If
the polymorph is a polynomial then the kind is set to two
and the logical alloc is true. This logical is necessary for
garbage collection of the polynomials.

If a code is written entirely with types Real8 rather than
true double precisions, and if nothing else is done, then the
code will always use the field “r” and the TPSA package
will never be invoked. Such a calculation is typically 4 to
5 times slower than a true real floating point calculation as
estimated long time ago by Bengtsson. The real power of
polymorphism is the ability for a real number to turn Taylor
at run time. This is achieved by overloading the equal sign

(=). Suppose that the variable A is type real8: A=5.d0.
If the kind of A is set to 1, then this line simply assigns
5.d0 to A%r. However if the user has set the kind of A to
0, then this assignment will set polynomial part of A, A%t,
to 5.d0 +s ∗ XI. This means that the variable A is now a
polynomial inXI. The quantity A%s is normally defaulted
to one unless the user desires otherwise. Of course upon
completion of this assignment, the kind of A is set to 2. It
is now a polynomial.

To illustrate how these things are done, we will show
here the functions that overload addition of two type taylor
in TPSA.F90 (polynomials) and the equivalent routine in
real polymorph.f90.
FUNCTION ADD(S1, S2)
TYPE (TAYLOR) ADD
TYPE (TAYLOR), INTENT (IN) :: S1, S2
CALL ASS(ADD) !assigns add to a global scratch variable

IF(OLD) THEN ! old=.true. refers to berz’s da-package
CALL DAADD(S1%I,S2%I,ADD%I)

ELSE
CALL NEWDAADD(S1%J,S2%J,ADD%J)

ENDIF
END FUNCTION ADD

This function ADD, in TPSA.F90, overloads the addi-
tion of two polynomials by calling the appropriate subrou-
tine of the DA-package. There are routines for all possi-
ble operations (adding scalar to polynomials, multiplica-
tion etc. . .) Now let us look at the equivalent function for
the polymorph.

FUNCTION ADD(S1, S2)
TYPE (REAL_8) ADD
TYPE (REAL_8), INTENT (IN) :: S1, S2

INTEGER LOCALMASTER
SELECT CASE(S1%KIND+3*S2%KIND)

CASE(4)
ADD%R=S1%R+S2%R
ADD%KIND=1
CASE(5,7,8)

LOCALMASTER=MASTER
CALL ASS(ADD)
SELECT CASE(S1%KIND+3*S2%KIND)
CASE(5)
ADD%T= S1%T+S2%R
CASE(7) ;ADD%T= S1%R+S2%T ;CASE(8); ADD%T= S1%T+S2%T

END SELECT
MASTER=LOCALMASTER

CASE DEFAULT
WRITE(6,*) " TROUBLE IN ADD "
PAUSE
END SELECT
END FUNCTION ADD

Looking at the above function, if S1%kind and S2%kind
are both equal to one, then CASE(4) will be selected. The
“double precision” field of the polymorphs S1 and S2 will
be added and assigned to the double precision field of
ADD. If both kinds are 2, then CASE(8) will be selected
and the taylor parts will be added. This will invoke the
other function ADD contained in TPSA.F90. Of course
there are also the cases corresponding to a real added to a
taylor series. These are CASE(7) and CASE(8). We men-
tioned that a polymorph could have kind=0; this should
not happen during an operation and therefore the code will
reach the DEFAULT case and the program will pause.

The techniques used here could be written more com-
pactly in C++. Also the assignment of global vari-
ables is rather involved here: MASTER, LOCALMAS-
TER,etc. . . are all related to the global scratch variables
gymnastics. We will not describe these things here.

This completes our short description of polymorphism.
Now we will show some examples of its use in a tracking
code.

3 EXAMPLE OF USAGE IN SIXTRACK
PROGRAM TEST
USE TRACKING
TYPE(BEAM_LINE) ALS
REAL*8 CLOSED_ORBIT(6)
TYPE(REAL_8) Y(6)
TYPE(DAMAP) A
TYPE(TAYLOR) BETA(2)
TYPE(NORMALFORM) NORMAL_FORM
INTEGER I,ik, ND2
DO I=1,6 ;CLOSED_ORBIT(I)=0.D0 ;ENDDO
CALL read_BEAM_LINE(ALS,’ALS.TXT’)
write(6,*) " Number of quadrupoles 0 or 2 "
read(5,*) ik ! If k=0 the quadrupoles are not parameters
IF(IK==0) CALL KILL(ALS) ! MAKES ALL POLYMORPHIC INDEX p%I TO 0
CALL FIND_orbit(ALS,CLOSED_ORBIT,1,nocavity)
if(ik==2) then ! Two families of quadrupoles
PARA_REMAIN=.TRUE.
do i=1,als%n
if(als%mag(i)%name(1:2)==’Q1’) als%magp(i)%bn(2)%i=6
if(als%mag(i)%name(1:2)==’Q2’) als%magp(i)%bn(2)%i=7

enddo
endif
ND2=4
call init(3,ND2/2,ik+1,0,BERZ)
call alloc(y,6);call alloc(NORMAL_FORM)
call alloc(BETA,2);call alloc(A)
y=5
do i=1,6; y(i)=CLOSED_ORBIT(i) ;enddo

CALL TRACK(ALS,Y,1,1,-nocavity)
NORMAL_FORM=y
Y=5
do i=1,ND2;y(i)=NORMAL_FORM%A_t%V(i)+CLOSED_ORBIT(I);enddo
DO I=ND2+1,6;Y(I)=CLOSED_ORBIT(I);ENDDO
do i=1,als%n-1
CALL TRACK(ALS,Y,I,I+1,-NOCAVITY) !Tracking of NORMAL_FORM%A_t
A=Y !POLYMORPHS MADE INTO A DAMAP
WRITE(16,*) ALS%MAG(1)%NAME
BETA(1)=(A%V(1).PAR.’1000’)**2+(A%V(1).PAR.’0100’)**2
CALL DAPRINT(BETA(1),16)
BETA(2)=(A%V(3).PAR.’0010’)**2+(A%V(3).PAR.’0001’)**2
CALL DAPRINT(BETA(2),16)
BETA(1)=BETA(1).D.5 ; CALL DAPRINT(BETA(1),16)
BETA(2)=BETA(2).D.5 ; CALL DAPRINT(BETA(2),16)

enddo
END PROGRAM TEST

In this short program, the one-turn fully coupled map is
computed around its fixed point and then normalised. The
canonical transformation is contained in the field NOR-
MAL FORM%A T. From the theory of normal forms,
it is expected that this transformation evolves like the
map itself. Therefore it is propagated using the tracking
command TRACK(ALS,Y,I,I+1,-NOCAVITY) through el-
ement number “I.” In this particular example, we tracked
the beta functions and their derivatives with respect to delta
(fifth variable). The reader notices that in this example the
quadrupole strengths are potential runtime parameters.

4 CONCLUSION

The full package is operational and its usefulness has been
demonstrated in conjunction with the tracking tools for the
LHC, HERA, and ALS lattices. Besides runtime param-
eter dependence, it also includes stochastic envelopes (for
radiation). All calculations use arbitrary vector fields.

5 ACKNOWLEDGEMENTS

One of the authors (E.F.) would like to thank F. Ruggiero
for his invitation to join the SL–AP group at CERN for
a period of 3 months. He also acknowledges the help of
A. Xiao at DESY and the hospitality of F. Willeke.

6 REFERENCES

[1] M. Berz, Part. Accel., 1989, Vol. 24, pp. 109–124.

[2] M. Berz, É. Forest and J. Irwin, Part. Accel., 1989, Vol. 24,
pp. 91–107.

[3] É. Forest, LBL differential algebra package and LieLib, un-
published.

[4] M. Berz, “COSY INFINITY 8”, NSCL Technical Report
MSUCL-1088, Michigan State University, 1998.

[5] V.K. Decyk, C.D. Norton, and B.K. Szymanski, “How to
Support Inheritance and Run-Time Polymorphism in For-
tran 90”, In Computer Physics Communications, Vol. 115,
pp. 9-17, 1998.

[6] F. Schmidt, CERN SL/94–56(AP) (1994).

[7] F. Schmidt, “SixTrack web page”,
http://wwwslap.cern.ch/f̃rs.

[8] Visit the following web sites: http://www-
ap.fnal.gov/ michelot/, http://wwwslap.cern.ch/classic/.

