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ABSTRACT

We study the process e−e− → e−e− at a high energy e−e− collider including the effect
of graviton exchanges in the warped gravity model of Randall and Sundrum. Discov-
ery limits for gravitons are established and the effects of polarization are discussed.
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A great deal of recent interest centres around the physics possibilities of a high energy
linear collider with e± beams[1]. Such a machine can be run in e+e− or e−e− collision
modes modes. Th principal scattering processes at these are, respectively, Bhabha
scattering e+e− → e+e− and M6oller scattering e−e− → e−e−.

One of the useful features of M6 oller scattering e−e− → e−e− at a high energy
e−e− collider is that it can receive only a limited number of contributions from physics
options[2] which go beyond the Standard Model (SM). Among the interesting beyond-
Standard-Model (BSM) options are the exchange of multiple gravitons in models with
low-scale quantum gravity. The exchange of multiple gravitons, in the t-channel as
well as the u-channel, can affect the process e−e− → e−e− in two ways:

• by changing (increasing or decreasing) the total cross-section from the SM value
— this being the usual effect of BSM physics;

• by changing the kinematic distributions of the final state electrons — this being
the effect of exchanging particles with higher spin.

Two different scenarios of low-scale quantum gravity have attracted a great deal
of recent attention. In one of these, due to Arkani-Hamed, Dimopoulos and Dvali
(ADD)[3], one envisages a spacetime with 4+d dimensions, where the extra d dimen-
sions are compactified with radii Rc as large as a millimetre. In the ADD scenario,
in four dimensions there is a tower of massive Kaluza-Klein modes of the graviton,
whose masses are so densely-spaced (by as little as 10−13 GeV) as to form a quasi-
continuum. Though each graviton mode couples to electrons with the feeble strength
of Newtonian gravity, the collective effect of all the gravitons contributes to interac-
tions of almost electroweak strength[4]. Effects of multiple exchange of gravitons in
M6oller scattering, within the ADD scenario, have been studied in Ref.[5].

The other popular scenario of low-scale quantum gravity is that due to Randall
and Sundrum[6], who write a non-factorizable spacetime metric

ds2 = e−KRcφ ηµν dx
µdxν + R2

c dφ
2 (1)

involving one extra dimension φ compactified with a radius Rc, which is assumed to
be marginally greater than the Planck length 10−33 cm, and an extra mass scale K,

which is related to the Planck scale M
(5)
P in the five-dimensional bulk by K

[
M

(4)
P

]2 '[
M

(5)
P

]3
. Such a ‘warped’ geometry is motivated by compactifying the extra dimension

on a S1/Z2 orbifold, with two D-branes at the orbifold fixed points, viz., one at φ = 0
(‘Planck brane’ or ‘invisible brane’), and one at φ = π (‘TeV brane’ or ‘visible brane’).
The interesting physical consequence of this geometry is that any mass scale on the
Planck brane gets scaled by the ‘warp factor’ e−πKRc on the TeV brane. It now
requires KRc ' 12 — which is hardly unnatural — to obtain the hierarchy between
the Planck scale and the electroweak scale. There still remains a minor problem:
that of stabilizing the radius Rc (which is marginally smaller than the Planck scale)
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against quantum fluctuations. A simple extension of the RS construction involving
an extra bulk scalar field has been proposed [7] to stabilize Rc and this predicts light
radion excitations with possible collider signatures [8]. Alternatively, supersymmetry
on the branes can also act as a stabilizing effect[9]. Models with SM gauge bosons
and fermions in the bulk have also been considered[10], but will not be discussed in
this work.

The mass spectrum and couplings of the graviton in the RS model have been
worked out, in Refs. [11, 12]. We do not describe the details of this calculation, but
refer the reader to the original literature. It suffices here to note the following points.

1. There is a tower of massive Kaluza-Klein modes of the graviton, with masses

Mn = xnKe−πKRc ≡ xnmo (2)

where m0 = Ke−πKRc sets the scale of graviton masses and is essentially a free
parameter of the theory. The xn are the zeros of the Bessel function J1(x) of
order unity.

2. The massless Kaluza-Klein mode couples to matter with gravitational strength;
consequently its effects can be ignored for all practical purposes.

3. Couplings of the massive Kaluza-Klein modes are gravitational, scaled by the
warp factor eπKRc and are consequently of electroweak strength.

Feynman rules (to the lowest order) for these modes have been worked out in Refs. [13])
and [14] in the context of ADD-like scenarios. Each graviton couples to matter with
strength κ =

√
16πGN . All that we need to do to get the corresponding Feynman

rules in the RS model is to multiply the coupling constant κ by the warp factor eπKRc

wherever necessary. It is convenient to write

κeπKRc =
√

32π
c0
m0

(3)

where κ =
√

16πGN , using Eqn. (2) and introducing another undetermined parameter

c0 ≡ K/M (4)
P . Thus (c0, m0) may conveniently be taken as the free parameters of the

theory2. Though c0 and m0 are not precisely known, one can make estimates of their
magnitude. The RS construction requires K to be at least an order of magnitude less
than M

(4)
P , which means that the range of interest for c0 is about 0.01 to 0.1 (the lower

value being determined by naturalness considerations). m0, which is of electroweak
scale, may be considered in the range of a few tens of GeV to a few TeV. Eq. (2) tells
us that the first massive graviton lies at M1 = x1m0 ' 3.83 m0. Since no graviton

2Though we differ from the exact choice of parameters in Ref. [12], a translation is easily made
using the formulae c0 = 1

8π

(K/MP

)
and m0 = Λπ

(K/MP

)
. It follows that c0 is roughly an order

of magnitude less than K/MP and m0 can be one or two orders of magnitude smaller than Λπ.
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resonances have been seen at LEP-2, running at energies around 200 GeV, it is clear
that we should expect m0 > 50 GeV at least.

In this letter, we examine the effects of multiple graviton exchange in M6 oller
scattering in the RS scenario. We focus on the possibility of observing an excess
in e−e− events over the SM prediction, and comment on possible refinements using
the the kinematic distributions of the final-state electrons. As earlier calculations[12]
have shown, in the case when c0 is large, the resonance structure in Bhabha scattering
is lost and there is not much difference, qualitatively speaking, between Bhabha and
M6 oller scattering in the RS model. In other words, M6 oller scattering is as good a
probe of this model as Bhabha scattering in this case. It is on this option that our
interest is focussed.

The calculation of the Feynman amplitude involves, for the diagrams with graviton
exchange, a sum over graviton propagators of the form

∑
n

1

t−M2
n

≡ − 1

m2
0

Λ

(√−t
m0

)
(4)

and a similar sum with t↔ u. Using the properties of the zeros of Bessel functions,
the function Λ(xt) can be written, to a very good approximation, as[15]

Λ(xt) =
1

πxt
Im ψ

(
1.2331 + i

xt

π

)
+

0.32586

220.345 + 29.6898 x2
t + x4

t

(5)

where ψ(z) is the well-known digamma function. The variation of Λ(xt) with xt is
illustrated in Figure 1. It is immediately obvious that the effective coupling of the
gravitons varies according to the scattering angle, except in the case when

√−t� m0,
i.e. xt → 0. This is a feature quite different from that observed in the related ADD
model, where it is possible to take a limit in which a similarly-defined λ(xt) is either
constant or a slowly-varying function. This is also a feature which can potentially
change the angular distribution of the final-state electrons.

There are six Feynman diagrams corresponding to M6oller scattering

e−(p1, λ1) + e−(p2, λ2) −→ e−(p3, λ3) + e−(p4, λ4) (6)

including the Standard Model as well as graviton-exchange diagrams. Evaluation of
these, using the Feynman rules for the RS model, and summing over the final-state
helicities λ3, λ4, is straightforward and leads to a squared matrix element |M(λ1, λ2)|2,
whose explicit form is not given here in the interests of brevity. If the initial-state
electrons have a left-handed longitudinal polarization P , the differential cross-section
is given by

dσ

dt
=

1

64πs2

[
(1− P )2 |M(+,+)|2 + (1 + P )2 |M(−,−)|2

+(1− P 2)
{
|M(+,−)|2 + |M(−,+)|2

} ]
(7)
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Figure 1: Illustrating the variation of the effective coupling Λ of RS graviton towers to electrons
as a function of xt =

√−t/m0.

assuming that both the beams are identically polarized. The importance of the polar-
ization factor P is considerable, since it can be used, among other things, to enhance
or decrease the SM contribution to the cross-section. In fact, polarization studies
form an important part of the physics program at a linear collider[16].

In order to make a numerical estimate of the cross-section, we have incorporated
the calculated cross-section into a Monte Carlo event generator, by means of which
we calculate the cross-section for e−e− → e−e− subject to the following kinematic
cuts.

• The scattering angle of the electron(s) should not lie within 100 of the beam
pipe.

• The transverse momentum of the electron(s) should not be less than 10 GeV.

These ‘acceptance’ cuts are more-or-less basic ones for any process at a high-energy
collider with electron and/or positrons. Though further selection cuts will become
appropriate when a more detailed analysis is done, it suffices for our analysis, which
is no more than a preliminary study, to take the above cuts. We then calculate the
cross-section in the SM and in the RS Model (including interference effects) for a
fixed polarization P and given input parameters c0 and m0 of the RS Model. Our
results are given in Fig. 2.

In Fig. 2(a), we present the total cross-section for the unpolarized case P = 0
as a function of machine energy for three different values of the RS mass scale m0 =
150, 250 and 500 GeV. The dashed line represents the SM prediction and this exhibits
the expected falling-off with machine energy. For large values of the graviton mass
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m0, this behaviour is preserved, since the graviton contribution is very small anyway.
However, when the graviton mass is smaller, the cross-sections show a marked increase
with energy, which reflects the well-known behaviour of gravity. Obviously, at energies
of 3–4 TeV, the gravitational contribution is huge if the mass scale m0 is small;
however, a discernible difference exists even when m0 = 500 GeV. Thus, we can
expect larger effects — or, conversely, stronger bounds — on the RS Model as the
machine energy increases.
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Figure 2: Variation of the cross-section for Moller scattering with (a) machine energy and (b)
polarization of the electron beams. In (a) the solid curves correspond to the RS Model predictions
for m0 = 150, 250 and 500 GeV, while the dashed line represents the SM contribution. In (b), the
solid lines represent the SM and RS model contributions, while the dashed line represents their
difference. Other parameters are marked (in the boxes).

In Fig. 2(b), we present the variation of the cross-section with the polarization P ,
at a 1 TeV machine, for the parameter set marked in the inset box. The solid curves
correspond to the SM and the RS model predictions, for a fixed set of parameters
(c0, m0), while the dashed line represents the difference between the two. It is obvious
that there is a modest advantage to be gained from polarizing the beams, and there
is little difference between the cases when the beam is dominantly left- or right-
handed. This is also expected, since graviton exchanges are non-chiral; in fact, the
small difference arises from the interference between diagrams with graviton and Z-
exchange.

In order to estimate the discovery reach of a linear collider, we adopt the following
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strategy. Discovery limits will be reached if the total experimental cross-section agrees
— within the experimental precision — with the SM. Any excess or deficit must be
attributed to BSM physics. Thus, for a given energy

√
s, a given polarization P and a

fixed set of parameters (c0, m0), we calculate the total cross-section in the RS model.
A corresponding calculation of the SM cross-section, multiplied by the luminosity,
would lead to a predicted number of events. We then estimate the errors assuming
that the statistical errors are Gaussian and that there are no systematic errors. While
this certainly makes our estimates of the discovery limits over-optimistic, we can argue
that electron detection efficiencies are generally high enough to allow us to make a
reasonable estimate in this approximation. In any case, before more detailed studies of
the detector design and systematic effects are undertaken, any estimate of systematic
errors must be pure guesswork. We choose, therefore, to neglect such effects. Finally
the search reach of the collider is given in terms of 3σ discovery limits.
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Figure 3: Discovery limits as a function of the integrated luminosity for Randall-Sundrum graviton
modes at an e−e− collider at centre-of-mass energies of 500 GeV and 1 TeV. Solid (dotted) lines
correspond to unpolarized (80% left-polarized) electron beams. The value of c0 is written alongside
the relevant curve. The ordinate is labelled as a function of the mass scale m0 on the left and the
mass of the lightest resonance M1 on the right.

Fig. 3 shows the search reach for the RS model at linear colliders running at 500
GeV and 1 TeV respectively, as a function of the integrated luminosity, for three
different values of the coupling constant c0 (marked along the curves). It may be
seen that a linear collider could easily probe m0 up to at least 300 GeV — which
corresponds to a lightest graviton mass of around 1.3 TeV — if 500 pb−1 of data are
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collected. A slight improvement is possible with polarized beams, as the dotted lines
show. If the energy of the collider be increased to 1 TeV, the reach goes up almost
by a factor of 2. It may, then, be possible to discover or exclude graviton resonances
of mass 2.2 TeV or more.

While a 500 GeV or a 1 TeV collider will almost certainly be built, there has
been much interest in having a collider which probes the high energy frontier[17]. In
particular, it is possible that the CLIC machine at CERN will be able to achieve a
centre-of-mass energy as high as 3 TeV. Moreover, the possibility of a muon collider
operating at a centre-of-mass energy of 3–4 TeV has also received serious consider-
ation. For these machines, luminosities as high as 103 fb−1 per year have also been
considered. Gravitational effects in e−e− → e−e− are, of course, identical to those in
µ−µ− → µ−µ−. In view of these possibilities, we have explored the discovery reach
of a 3 TeV machine for the RS model. Our results are exhibited in Fig. 4. It may be
seen that this can easily probe m0 as high as 1 TeV, which corresponds to gravitons
of mass nearly 4 TeV or more.
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Figure 4: Discovery limits as a function of the integrated luminosity for Randall-Sundrum graviton
modes at an e−e− collider at a centre-of-mass energy of 3 TeV. The labelling is the same as in Fig. 2.

It is worth noting that if graviton masses are pushed up to 5 TeV or more, then,
given that the scale K must be roughly an order of magnitude smaller than M

(4)
P , it

follows that the warp factor e−πKRc must be somewhat larger than is possible now.
This would either push up the Higgs boson mass to unacceptable values, or require
some mechanism to have a smaller mass scale origin for the Higgs boson mass on the
Planck brane. This would be a somewhat uncomfortable situation for the RS model,
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since the original simplicity — and therefore elegance — will be lost.
Finally we comment on the possibility of observing/constraining graviton effects

using the angular distribution of the final state electrons. Since this form of BSM
physics involves exchange of spin-2 particles, rather than spin-1 particles, as in the SM,
one can, in principle, expect a rather different angular distribution for the electrons
in the final state. In order to test this prediction, we have made a χ2-analysis of the
electron angular distribution in the cases when there is graviton exchange and when
there is no graviton exchange. It turns out that the difference in the distributions is
rather small and confined to the central region. We find that one cannot get better
discovery limits by considering the angular distributions than those which can be
obtained by simply considering the total cross-section. If indeed an excess or deficit
over the SM prediction is found, angular distributions might then become useful in
determining the type of BSM physics responsible, e.g. in distinguishing between
spin-1 and spin-0 exchanges. However, this would require high statistics and fine
resolutions. Accordingly, in this preliminary study, we do not pursue the question of
angular distributions any further.

In conclusion, therefore, an e−e− collider would be a useful laboratory to look for
graviton exchange mechanisms, since there are very few competing BSM processes.
We find that a simple study of the total cross-section for e−e− → e−e−, subject to
some minimal acceptance cuts, leads to a prediction of rather optimistic discovery
limits. It is more useful to consider the total cross-section than the angular distribu-
tion, which is rather similar to that in the SM. Polarization of the beams can improve
the search reach by a few percent, irrespective of whether the beams are left- or right-
polarized. At a high energy collider, running at 3 or 4 TeV, the search limits can be
taken as far as graviton masses of 5 TeV or more, which is more-or-less the frontier
as far as the simplest version of the RS Model is concerned.
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