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Abstract:We compute the two-loop electroweak corrections to the radiative decays

of the B meson in the SM. Electroweak effects reduce the Wilson coefficient Ceff7 (MW )

by 2.6% for a light Higgs boson of about 100GeV and are less important for a heavier

Higgs. The leading term of a heavy top expansion of our result differs from the one

obtained in the gaugeless approximation where only top quark Yukawa couplings are

considered: we discuss the origin of the discrepancy and provide a criterion for the

validity of the gaugeless approximation. As a byproduct of the calculation we also

obtain the O(α) corrections to the Wilson coefficient of the four-fermion operator

Q2. A careful analysis of the interplay between electroweak and QCD effects leads

to an overall 2% reduction of the total branching ratio for B → Xsγ due to purely
electroweak corrections. For a light Higgs boson, the up-to-date SM prediction is

BRγ = (3.29± 0.21± 0.21)× 10−4.
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1. Introduction

Radiative B decays represent one of the most important probes of new physics and

a major testing ground for the Standard Model (SM). They already place severe

constraints on many new physics scenarios. The present experimental accuracy for

the branching ratio of B → Xsγ (BRγ in the following) is less than 15% [1] and
is expected to improve significantly in the near future, both at CLEO and at the

B factories.

On the theoretical side, since precise predictions in the SM are particularly im-

portant, the subject has reached a high degree of technical sophistication. Indeed,

perturbative QCD corrections are very sizeable [2] and give the dominant contribu-

tion; they are best implemented in the framework of an effective theory obtained by

integrating out the heavy degrees of freedom characterized by a mass scaleM ≥MW .

At lowest order in this approach the FCNC processes B → Xsγ and B → Xsg pro-
ceed through helicity violating amplitudes induced by the magnetic operators

Q7 =
e

4π2
mb s̄Lσ

µνbR Fµν , Q8 =
gs

4π2
mb s̄Lσ

µνtabRG
a
µν . (1.1)

A few years ago the renormalization group improved QCD calculation has been

completed at the next-to-leading order (NLO) [3]–[6], reducing the uncertainty from

uncalculated QCD higher orders to about 5%. More recently, NLO predictions have

been made available in some new physics models as well [5, 7].

There has also been progress concerning QED and electroweak radiative correc-

tions: after Czarnecki and Marciano considered all the leading QED logarithms [8],

their interplay with QCD corrections has been studied in [9, 10], and Strumia [11] has

calculated the leading term of the Heavy Top Expansion (HTE) of the electroweak
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two-loop corrections using the gaugeless limit of the SM. As for non-perturbative

effects, they seem to be under control [12], although some aspects may still need a

more detailed investigation [13].

In addition to uncalculated radiative corrections and non-perturbative effects,

the calculation of BRγ is also affected by the uncertainties on the input parameters

(the CKM matrix elements, the semileptonic branching ratio BRSL, etc.). In fact,

the latter bring the overall theoretical error to about 10%. As the parametric un-

certainties (especially those on the CKM elements, αs, BRSL, and Mt) are expected

to decrease soon, and given the crucial importance of this decay mode, it seems

appropriate to try and refine the SM prediction as much as possible.

In this note we reexamine the two-loop electroweak contributions to radiative

B decays and present the result of a calculation where only some photonic effects

have been neglected. Moreover, we update the SM prediction of BRγ using the

latest experimental inputs. The final result is expressed by a compact formula that

summarizes the dependence on the input parameters.

2. The calculation

Although generally small, two-loop purely electroweak effects are sometimes very

important: an example is provided by the precision observables of the SM, like the

effective sine measured on the Z0 pole and the W mass, where radiative corrections

up toO(g4M2t /M
2
W ) [14, 15] are now routinely included in the analysis with important

consequences in the electroweak fits [15, 16]. Moreover, by fixing the normalization of

the electroweak coupling, two-loop effects reduce the electroweak scheme dependence

of the SM prediction, which can be quite large — also for FCNC processes [17].

As mentioned above, in the calculation of BRγ the leading large logarithms of

QED origin are now under control, as a resummation of all ααn−1s (lnmb/MW )
n terms

has been completed [8, 9, 10]. Apart from that, our knowledge of electroweak effects

in b → sγ is limited to the subset of two-loop fermion loop corrections calculated
in [8] and to the leading term of the HTE of [11]. In fact, the two results are

numerically very different — about −2.3% and less than −0.7%, respectively, on the
Wilson coefficient at MW . The leading term of the HTE was calculated in [11] using

the gaugeless limit of the SM, i.e. in a Yukawa theory where the heavy top couples

only to the Higgs doublet, setting MW = 0 and keeping the Higgs mass MH finite

and arbitrary. In the presence of external gauge bosons, these can be considered as

background sources. This approach presents a few limitations that also motivate our

new calculation:

• the lowest order contribution to the Wilson coefficient of Q7 is a function of
the top mass whose HTE converges very slowly. Using xt = M

2
t /M

2
W ≈ 4.7

and writing explicitly the numerical values of the successive O(1/xnt ) terms,
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it reads

C
(0)
7 (xt) =

xt(7− 5xt − 8x2t )
24(xt − 1)3 +

x2t (3xt − 2) lnxt
4(xt − 1)4

= −1
3
− 0.010 + 0.070 + 0.046 + 0.021 + · · · = −0.195 , (2.1)

where the ellipses represent contributions O(1/x5t ) or higher. The leading HTE

is therefore unlikely to provide anything more than an order of magnitude

estimate of the two-loop electroweak contribution. In this respect, the similar

case of B0−B̄0 mixing [17] is very instructive: for realistic values of the top mass
the complete two-loop electroweak correction is not well approximated even by

the first three terms of the HTE and the leading HTE term is numerically far

from the complete result.

• even assuming the leading HTE term to be representative, it should not be
expected to give an accurate result for a light Higgs mass, MH ≈ O(MW ),

because it is obtained by setting MW = 0 [15]. On the other hand, present

electroweak fits show a decisive preference for a light Higgs boson, MH <

215GeV at 95%C.L. [16].

• the gaugeless limit has often been used to compute the leading HTE term, but
it is known [18] that in some cases it does not reproduce the correct result.

In the following we explain why it fails for radiative B decays and provide a

general criterion for its use.

A complete calculation of all electroweak effects in radiative B decays in the

framework of effective hamiltonians is a very complex enterprise which involves other

operators in addition to those of eq. (1.1). In fact, the analysis should be aimed at

resumming all ααns (lnmb/MW )
n effects. The procedure is summarized, for instance,

in [19]. Its necessary steps would be:

(i) the calculation of two-loop O(α) matching conditions for Q7,8 at some O(MW )

scale — this involves also their QED mixing with all other operators — and of

the O(α) contributions to the coefficients of various four quark operators;

(ii) QED-QCD running of the Wilson coefficients down to the B mass scale —

this would require a three loop computation of the anomalous dimension matrix

similar to that of [3];

(iii) calculation of the one-loop QED matrix elements of the various operators —

the determination of these matrix elements depends sensitively on the precise

experimental conditions.
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An important simplification can be obtained by keeping only the first term in an

expansion around sW = sin θW = 0. This is equivalent to considering a SU(2)L theory

with a background photon field and removes all the light virtual degrees of freedom.

In particular, all the diagrams with virtual photons and all infrared (IR) divergences

drop out of the two-loop calculation in a gauge-invariant way. Step (i) is therefore

much simpler as the calculation of the two-loop b→ sγ and b→ sg amplitudes gives
us directly the scheme independent O(g2) correction to C7,8, respectively (g = e/sW
is the SU(2)L coupling). Moreover, this simplification avoids completely steps (ii)

and (iii), because they are both driven by purely photonic effects suppressed at least

by Qu|Qd|s2W ≈ 0.05 with respect to pure SU(2)L contributions.
In analogy to [19], we complement this approximation scheme by keeping also

the O(g2M2t /M
2
W
) contributions that vanish as sW → 0. In practice, we therefore

expand the two-loop b→ sγ(g) amplitude A(2) in powers of s2
W
:

A(2) = g4
[
A0 + A1s

2
W
+O

(
s4
W

)]
(2.2)

and retain only A0 and the O(M
2
t ) part of A1. This is likely to be a sufficiently

good approximation, as suggested by those cases [17, 20] where it has been possible

to compare it with the complete SM result. We recall that ∆ρ [20] and B0 − B̄0
mixing [17] involve amplitudes conceptually similar to those under consideration:

forbidden at tree level and induced at one-loop by virtual SU(2)L effects. Later on,

we will give an estimate of the residual uncertainty.

We calculate analytically the two-loop amplitudes in the Feynman background

gauge with a background photon (gluon). A few thousand diagrams are automatically

generated by the package FeynArts 2.2 [21] (the topologies are shown in figure 1).

After setting to zero all light fermion masses but the b-quark mass, they can be

reduced to a few hundred equivalence classes, which we have actually computed.

Due to the GIM mechanism, the CKM cofactor of each equivalence class is always

proportional to λt = VtbV
∗
ts. The extraction of the magnetic penguin amplitude and

the two-loop integration are performed as in [5]. All the steps of the calculation have

been implemented in two independent and completely automatic codes that involve

various combinations ofMathematica [22] and Form [23] routines. Although the result

can be expressed in terms of logarithms and dilogarithms, it is rather lengthy and

we will present instead accurate numerical approximations.

A peculiarity of the two-loop calculation for these processes is the presence of

diagrams containing anomalous fermionic loops (triangles). It is well known that the

naive definition of anticommuting γ5 in n dimensions that we employ in the rest of

the calculation fails for these diagrams because it leads to algebraical ambiguities

and cannot reproduce the axial anomaly. Our solution consists in calculating Dirac

structures containing an odd number of γ5’s — i.e. those leading to the anomalous

term — using anticommuting γ5 in strictly four dimensions, which is possible because

of their apparent UV convergence. The anomaly cancellation then guarantees the
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Figure 1: Two-loop topologies for b→ sγ.

absence of both anomalous and ambiguous terms in the sum of all diagrams (see [25,

appendix C]). We have also checked our results for these specific terms using the HV

definition of γ5 in n dimensions [24]. From a formal point of view, the equivalence of

the two methods follows from the absence of non-invariant counterterms for the odd

γ5 part in the HV case [25], as can be also seen in full generality using the powerful

formalism of [26].

The renormalization is performed following the simple framework of [17], to

which we refer for a detailed discussion (see also [15]) and for the notation. We recall

that the top mass is renormalized on-shell as far as electroweak effects are concerned,

but it is customary to use an MS definition for the QCD effects. Although the

choice of the scale µt for the MS top mass is a matter of convention, the NLO QCD

corrections depend sensitively on µt. For simplicity, we follow [5] and in the numerics

we set µt = µW =MW and employ M t ≡M t(MW ) = 175.5± 5.1GeV obtained from
the pole mass value Mpolet = 174.3± 5.1GeV [27]. No renormalization of the electric
charge is necessary in our approximation. The renormalization of the b-quark mass,

not needed in [17], is also performed on-shell. The counterterm reads

δmb

mb
=
g2

16π2

(
µ̄2

M
2

t

)ε[
3

8ε
(xt − 1)− 3 + 8xt − 5x

2
t

16(xt − 1) −
3 (1− 3xt + x2t ) lnxt

8(xt − 1)2 +O(s2W )

]
.

One should keep in mind that the mb factors in eq. (1.1) originate either from the

b-quark Yukawa coupling or from the use of on-shell equations of motion. In the
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latter case, mb should not be renormalized as it is on-shell by definition. This is

the mass appearing explicitly in the projector of [5, eq. (14)]. Indeed, besides the

magnetic operators of eq. (1.1), there are additional off-shell operators that project

onto Q7,8 when the external momenta are set on-shell, i.e. Q10 ∼ e s̄L{6D, σµν}bL Fµν
and the analogous one with gluon fields [5]. In correcting the external fields, one

should take into account that the chirality of the b quark is different in Q7 and

Q10. The external leg corrections of [17] correspond to the correct LSZ factors and

implement the renormalization of the CKM matrix according to [28] within our

approximations. We recall that this gauge invariant definition of the CKM matrix is

the most appropriate to the present low-energy measurements because, unlike an MS

renormalization, it avoids O(g2) corrections not suppressed by GIM and proportional

to (m2i +m
2
j)/(m

2
i −m2j ), where mi,j are light quark masses [28]. Notice also that in

our framework δ(ZRd )ij = 0.

According to the standard procedure, we will normalize BRγ to the semileptonic

branching ratio, BRSL. This fixes the normalization of the electroweak coupling but

requires the inclusion of the one-loop electroweak corrections to BRSL [29]. It is

straightforward to see that, up to O(s2
W
) terms that we neglect, these are the same

that enter the muon decay. Hence, in this respect the use of BRSL is effectively equiv-

alent to that of the Fermi constant measured in muon decays, Gµ, and the coupling

renormalization proceeds as described for this case in [17]. We incorporate the com-

plete one-loop correction to the muon decay amplitude, without taking the sW → 0
limit, on the ground that this is an independent process for which the complete cor-

rection is available. Notice that the leading part of the photonic corrections to BRSL,

characterized by large logarithms and not considered in our calculation is part of the

O(ααn−1s lnnmb/MW ) analysis of [8, 9, 10] and is included in our numerical results.

We now recall that the regularization scheme-independent quantity entering the

calculation of BRγ is not C7(µb) but a combination C
eff
7 (µb) of this Wilson coefficient

and of the coefficients of the four fermion operators with mixed chirality [30, 3]. It

turns out [10] that the two scheme-independent quantities relevant for B → Xsγ and
B → Xsg are

Ceff7 (µ) = C7(µ)−
1

3
C5(µ)− C6(µ) + 1

6
CP7 (µ) +

1

2
CP8 (µ) ,

Ceff8 (µ) = C8(µ) + C5(µ)−
1

2
CP7 (µ) , (2.3)

where C5,6 and C
P
7,8 are the Wilson coefficient of the four-quark operators

Q5 = (s̄d)V−A
∑

q=u,d,s,c,b

(q̄q)V+A , Q6 = (s̄αdβ)V−A
∑

q=u,d,s,c,b

(q̄βqα)V+A , (2.4)

QP7 =
3

2
(s̄d)V−A

∑
q=u,d,s,c,b

eq(q̄q)V+A , QP8 =
3

2
(s̄αdβ)V−A

∑
q=u,d,s,c,b

eq(q̄βqα)V+A .

6
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Figure 2: Electroweak corrections to the Wilson coefficients C7,8(MW ). The solid lines

represent our results with their error estimates, the dashed lines their leading HTE, and

the dotted lines the results of the gaugeless approximation.

As CP8 (MW ) and C5,6(MW ) do not receive any O(α) contribution and C
P
7 (MW ) is pro-

portional to s2
W
, we need to consider in eq. (2.3) only the part of CP7 (MW ) enhanced

by M2t (which actually approximates the full Wilson coefficient very well [19]).

Our results for the O(g2) correction to the Wilson coefficients Ceff7,8(MW ) are

accurately approximated by

δCeff7,ew =
g2

16π2

[
1.8615− 2.422

(
1− M t

175.5

)
− 0.4463 lnMH

100
− 0.216 ln2 MH

100

]
,

δCeff8,ew =
g2

16π2

[
0.2596 + 0.282

(
1− M t

175.5

)
− 0.1366 lnMH

100
− 0.021 ln2 MH

100

]
, (2.5)

where the SU(2)L coupling g can be calculated from the relation g
2 = 4

√
2GµM

2
W
.

We use MW = 80.419GeV and s
2
W = 0.23145 for the O(g

2s2WM
2
t ) contributions that

we retain. Eqs. (2.5) reproduce accurately (within 1%) the analytic results in the

ranges 100 < MH < 250GeV and 165 < M t < 180GeV. We stress that eqs. (2.5)

are independent of the choice of the scale µt in the QCD top mass definition: it

is sufficient to calculate M t(µt) and employ it in eqs. (2.5). Differences between

different choices are present in the QCD corrections to BRγ but are higher order

effects as far as the present calculation is concerned.

The numerical relevance of our corrections to Ceff7,8(MW ) is shown in figure 2

for M t = 175.5GeV: at MH = 100GeV the Wilson coefficients of Q7,8 are reduced,

respectively by 2.6% and 0.7%. As a measure of the uncertainty due to the expansion

around sW = 0 we use the difference between the complete correction to the muon

decay and its sW → 0 limit, which amounts to about 0.5%. This seems to us a
realistic estimate of the error due to our approximation and we will use it in the

following. If we consider only fermionic loops we reproduce the results of [8] for

C7, which lead to a −2.3% reduction of C7(MW ). Although purely accidental, the

closeness of this fermion loop approximation to our complete result for a light Higgs,

MH ≈ 100GeV is impressive.
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3. Heavy Top Expansion and the gaugeless limit

Let us now consider the HTE of our results and see how it compares with existing

analyses. In units g2/(16π2) M
2

t/(2M
2
W
) it is given by

δCeff,ew7,HTE =
55ht − 16− 11h2t − 26h3t

144ht
− 2ht − 16− 36h

2
t + 74h

4
t − 45h5t + 2h6t

864h2t
π2 +

+
s2W
27
− 8− ht − 6h

2
t − 52h3t + 85h4t − 33h5t + 2h6t

72h2t
Li2(1− ht)−

− 74− 45ht + 2h
2
t

288
h2t ln

2 ht −

− 80 + 68ht − 262h
2
t + 134h

3
t − 25h4t + 2h5t

288ht
φ

(
ht

4

)
+

+
8− 17ht − 2h2t − 14h3t

72ht
lnht (3.1)

and

δCeff,ew8,HTE =
32− 83 ht − 23 h2t + 16 h3t

96 ht
− 8− ht − 18 h

2
t − h4t + 9 h5t − h6t
144 h2t

π2 − s
2
W

9
+

+
16− 2ht − 12h2t + 40h3t − h4t − 30h5t + 4h6t

48 h2t
Li2(1− ht) +

+
1− 9ht + h2t

48
h2t ln

2 ht +

+
8− 58 ht + 62 h2t + 17 h3t − 16 h4t + 2 h5t

96 ht
φ

(
ht
4

)
−

− 8 + ht + 7h
2
t − 5h3t

24 ht
lnht , (3.2)

where ht = M
2
H
/M

2

t , Li2(x) is the dilogarithmic function, and φ(x) is given in [17,

eq. (48)]. As can be seen in figure 2, the leading HTE term approximates our full

result very poorly, especially for a light Higgs. We have also studied the convergence

of the HTE, calculating its first three terms, and found that for realistic Mt values

they do not converge, in a way very similar to [17]. Our eq. (3.1) differs from the

analogous one in [11] by a term 2
9

(
1
2
− s2W

3

)
+
s2W
9
. On the other hand, we agree

with [11] if we perform the calculation in the gaugeless limit. This is not surprising

because it is known [18] that the gaugeless approximation does not always include

all leading M2t contributions.

To understand better this point, notice that for a asymptotically heavy top both

the top Yukawa coupling, gt = gMt/(2MW ), and the loop integration can provide

powers of the top mass. In the case at hand, the one-loop integrals are convergent, so

that the one-loop contributions scale at most like g2t /M
2
t ∼ g2/M2W . At the two-loop

level, the gaugeless contributions scale as g4t /M
2
t ∼ g2t g2/M2W ∼ g4M2t /M2W , but the

8
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Figure 3: Insertions of an effective Z0 penguin vertex in a one-loop diagram.

same heavy top behaviour can be obtained by inserting a dimension four operator1

proportional to g2t in a topless loop. In general, the effective lagrangian obtained after

integrating out the heavy top tells us exactly which the relevant operators are [31].

In our case, only the diagrams in figure 3 contribute to the leading HTE through

the insertion of a flavor changing dimension four Z0 penguin operator of the kind

s̄Lγ
µbLZ

0
µ. The diagram with a mass insertion on the internal b line depends on the

regularization scheme — it vanishes if IR divergences are regulated dimensionally

— and in the schemes where it does not vanish it is cancelled in the matching by a

contribution from the electroweak penguin operator QP7 of eq. (2.4). In both cases,

however, its contribution is reintroduced in the quantity Ceff7,8 by C
P
7 . In the limit of

a heavy top the effective vertex has the form

Γµ
s̄bZ0
= i

g3

16π2
λt
cW

xt
4
s̄Lγ

µbL (3.3)

with cW = cos θW and λt = V
∗
tsVtb. Inserting this gauge-independent effective coupling

in the one-loop diagrams of figure 3, and keeping in mind the tree level couplings of

the Z0 boson with bL, ∼ (1/2−s2W/3), and with bR, ∼ −s2W/3, we obtain the difference
between the HTE of our result and the gaugeless limit. The argument is completely

analogous for C8, whose HTE also differs from the gaugeless approximation.

So when does the gaugeless limit potentially fail at two-loop? Whenever at

the one-loop level the top quark diagrams in the limit of a heavy top scale like

a constant, namely in the same way as the topless contributions. Indeed, in this

case we know that there are some dimension four effective operators proportional

to g2t that can be inserted in one-loop diagrams not containing the top and give

contributions of the same order, in the limit of heavy top, of those belonging to the

two-loop gaugeless approximation.

1Dimension two insertions are removed by our choice of renormalization in the W − φ sector.
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bsγ, bsg Hγγ, Hgg ∆ρ,Rb, HZZ,K→πνν̄ B0-B̄0

[18, 32] [34, 18, 33] [17]

One loop
g2t
M2t
∼ g2

M2W

(e2,g2s) v gtMt
M2t

∼ (e2, g2s) g2M2t
M2W

or g2t
g4t
M2t

Two loop
g4t
M2t
∼ g2g2t
M2W

(e2,g2s) v g
3
tMt

M2t
∼ (e2, g2s) g2t g2g2tM

2
t

M2W
or g4t

g6t
M2t

Table 1: Leading HTE contributions to different processes. Following the criterion given

in the text, the gaugeless limit fails in the first two cases.

Table 1 summarizes the situation for the processes considered in the literature at

the two-loop level. It should be clear that the gaugeless limit works safely only when

the asymptotic expansion in Mt has maximal power (M
2
t at one-loop, M

4
t at two

loop). Of course, there might be exceptions. Indeed, whether the O(g2t ) dimension

four operators are relevant or not depends on the process under consideration. For

instance, in theHgg effective vertex [32] — relevant for gluon-gluon fusion production

and hadronic decays of the SM Higgs boson — they are not because the gluons

have no electroweak interaction. This is in contrast to the similar case of the Hγγ

effective vertex [18], where the gaugeless approximation does not give the correct

result. Similar considerations apply to the heavy Higgs limit, although the leading

term in the heavy Higgs expansion, subject to other constraints, is not always what

is expected from dimensional analysis.

4. Effects on the branching ratio

Let us now examine in some detail the effect of our calculation on BRγ. As a

first step we calculate the Wilson coefficients at a scale µb = 4.8GeV. It is well

known that the large mixing between Q2 = (c̄b)V−A (c̄s)V−A and Q7 induces additive
terms in the running of the coefficients from the W to the b mass scale which are

numerically very important. Our aim is to resum all contributions O(g2αnsL
n) and

O(αM2t /M
2
W
αnsL

n), where L is a large logarithm. As mentioned above, these terms

are uniquely originated by heavy degrees of freedom and enter only the determination

of the Wilson coefficients at a high scale µ ≈ MW . At this order the evolution of the

coefficients is therefore driven only by LO QCD effects. The Wilson coefficient at

the bottom mass scale is given at LO in QCD by

C
(0)eff
7 (µb) = η

16/23C
(0)eff
7 (MW ) +

8

3

(
η14/23 − η16/23)C(0)eff8 (MW ) +

+C
(0)
2 (MW )

8∑
i=1

hiη
ai , (4.1)

where η = αs(µW )/αs(µb) ≈ 0.56 and hi, ai are constants given e.g. in [30]. The last
term is approximately equal to −0.173 and is dominant.
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i P7 P8 P9 P10

γ̂
(0)eff
s,i7 −16

9
−1196
81

232
81

1180
81

γ̂
(0)eff
s,i8

5
6

−11
54

−59
54
−46
27

Table 2: Anomalous dimension matrix entries relevant for the mixing between elec-

troweak and magnetic penguins [10] in the basis of [30]. Two up and three down active

flavors are assumed.

The electroweak corrections affect eq. (4.1) in two ways: (i) they shift C
(0)eff
i (MW )

by δCeffi,ew; (ii) they introduce in eq. (4.1) those gluon and electroweak penguin oper-

ators that have non-zero O(g2) or O(αM2t ) contributions to the Wilson coefficients

at µ = MW . In the basis of [30], these are Q
P
3,7,9. Their LO QCD mixing with the

magnetic penguin operators can be gleaned from the anomalous dimension matrix

γ̂
(0)eff
s given in [10, 35] after a change of basis. The new entries of γ̂

(0)eff
s calculated

in [10] are given in table 2 in the conventional basis adopted in [30]. The additional

contributions to eq. (4.1) are therefore

δewC
(0)eff
7 (µb) = η

16/23δCeff7,ew +
8

3

(
η14/23 − η16/23) δCeff8,ew +

+
∑
i=3,7,9

CPi (MW )
∑
j

hijη
aij , (4.2)

where CPi (MW ) are the relevant O(α) contributions to the Wilson coefficients and

hij , aij are magic numbers that can be easily determined from the anomalous dimen-

sion matrix. The last term in eq. (4.2) is approximately given by 0.15C3(MW ) +

0.12C7(MW ) − 0.03C9(MW ) and is numerically very small; it reduces C
(0)eff
7 (µb) by

−0.2%.
Notice now that C

(0)
2 (MW ) in eq. (4.1) is unaffected by electroweak corrections

of the kind considered here if Gµ is used to normalize the effective hamiltonian (as

in fact we do); in that case C
(0)
2 (MW ) does however receive O(g

2s2
W
) corrections. In

the NDR scheme we find

C2(MW ) = 1 +
α(MW )

4π

[
−22
9
+
4

3
ln
M2
Z

M2W

]
+O(αs) , (4.3)

where α(MW ) is the electromagnetic running coupling evaluated at MW . The O(α)

electroweak corrections to the Wilson coefficient C2 are therefore very small (−0.13%).
But we stress that a different choice of normalization would induce additional (much

larger) electroweak contributions, as can be easily seen using [17]. Eq. (4.3) is a new

result that improves on [36], where only QED effects were taken into account, and

includes all one-loop electroweak contributions.

From eq. (4.1) and neglecting the O(α) effects of eq. (4.3) we see that C
(0)eff
7 (µb)

is reduced by only (1.3 ± 0.2)% for MH = 100GeV due to the electroweak correc-

tions we have calculated; the reduction is less pronounced for larger Higgs masses.
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In a similar way, we find that for C
(0)eff
8 (µb) the numerical impact of the last term

in eq. (4.2) is more important than that of the two-loop correction; electroweak ef-

fects increase C
(0)eff
8 (µb) by about 0.3 ± 0.2% for MH = 100GeV. In addition to

the leading logarithmic QCD effects considered in eq. (4.1) there are next-to-leading

QCD terms that enter the calculation of BRγ [3]. Our electroweak corrections af-

fect them only as a NNLO effect. As there are other uncalculated contributions

to that order, even in the approximation we have adopted — in particular O(g2αs)

corrections to the Wilson coefficients, as can be seen from [19, eq. (3.14)] — our

corrections should be implemented only in the calculation of the LO QCD Wilson

coefficient C
(0)eff
7 (µb).

The total effect of the electroweak corrections we have calculated on the NLO

calculation of BRγ is a −2.0±0.3% reduction for a light Higgs mass, MH ≈ 100GeV.
We stress that this does not include the O(ααn−1s lnnmb/MW ) QED effects of [8, 9, 10].

For larger Higgs masses the effect becomes smaller: −1.6% for MH = 200GeV and

−1.3% for MH = 300GeV. In the gaugeless approximation and excluding the last

contributions to eq. (4.2), the net effect on BRγ is a 0.5% reduction for MH ≈
100GeV.

We now calculate BRγ following closely [3, 5, 8, 9] and including all known higher

order effects as well as our new results. We also update the input parameters and

introduce some minor refinements in the NLO analysis. For instance, we evaluate

the MS top mass from the pole top mass using the O(α2s) expression [37], as these

corrections are large and their origin is distinct. Compared to the use of the O(αs)

conversion formula, this leads to a −0.4% reduction of BRγ. With respect to the
detailed analysis of [5], we adopt a new CKM factor fCKM = |V ∗tsVtb/Vcb|2 = 0.97 ±
0.02 instead of 0.95 ± 0.03, obtained using 0 < %̄ < 0.4 from global fits of the
unitarity triangle [38]. For the semileptonic BR, we employ BRSL = 0.1045±0.0021,
corresponding to the Υ resonance determination (the average of LEP measurements

is 0.1073 ± 0.0018). We also use Mt ≡ Mpolet = (174.3 ± 5.1)GeV, αs(MZ) =

0.119±0.002,MW = 80.419GeV [27, 16], λ2 = 0.12GeV
2, rcb = mc/mb = 0.29±0.02,

Mcb = mb−mc = 3.39±0.04GeV [39]. The above value of rcb is equivalent to a pole
mass mb = 4.77 ± 0.15GeV. Employing a conventional definition of total BRγ [9]
with a cut on the photon energy Eγ > (1− δ)mb/2, δ = 0.9, we obtain

BRγ = 0.000329
fCKM

0.97

BRSL
0.1045

(
αs(MZ)

0.119

)1.13(
Mt

174.3

)0.48(
rcb

0.29

)0.68(
Mcb

3.39

)−0.3
. (4.4)

Here the dependence of the calculation on the main input parameters is summarized

for small (< 1 σ) variations around their central values. Notice that, compared

to [9, 40], the 2% reduction due to electroweak corrections is compensated by a

2% increase from the update of the input parameters. The largest present single

parametric uncertainty comes from rcb and reaches around 5%.

12



J
H
E
P
0
9
(
2
0
0
0
)
0
0
1

The choice of δ = 0.9 for the photon cut-off energy in eq. (4.4) is mainly moti-

vated by the need to compare with previous literature. The experimental measure-

ment is based on a much stronger cut, Eγ > 2.1GeV [1], but needs to be extrapolated

to a more inclusive branching fraction (see [9] for a recent discussion). On the other

hand, non-perturbative problems may arise for soft photons. It seems therefore use-

ful to know BRγ for higher and more realistic cut-offs. For 0.3 < δ < 0.9 the central

value of eq. (4.4) is very well approximated by

BRγ(δ) = 3.01 + 1.01 δ − 1.49 δ2 + 0.79 δ3 , (4.5)

which shows a mild dependence on the cut-off in a large region of δ [9].

5. Summary

In summary, we have reanalyzed in detail the two-loop electroweak corrections to

B → Xsγ and B → Xsg decays. In order to avoid dealing with presumably small
photonic effects, in our calculation we have neglected terms proportional to s2

W
not

enhanced by M2t . We have also accurately discussed the interplay between elec-

troweak and QCD corrections. As a byproduct of the calculation we have presented

the complete O(α) corrections to the Wilson coefficient C2(MW ). The total effect of

electroweak corrections on the BR of B → Xsγ, BRγ, is a −2.0 ± 0.3% reduction,
which is three times larger than in [11]. After inclusion of all NLO QCD contribu-

tions, of non-pertubative corrections and of all known QED and electroweak effects,

we find (for MH = 100GeV and δ = 0.9)

BRγ = (3.29± 0.21± 0.21)× 10−4 , (5.1)

where the first error is parametric and based on up-to-date experimental inputs and

the second one is obtained by scanning the various scales considered in [5] between 1/2

and twice their central values and adding 0.3% for unaccounted electroweak higher

orders. Had we combined the scale ambiguities in quadrature, the second error would

have been 0.16. For MH = 215GeV, at the other edge of the preferred region from

global fits, the central value of BRγ is 3.30×10−4. Eq. (5.1) is in good agreement
with the present experimental values BRγ = (3.14 ± 0.48) × 10−4 from Cleo and
BRγ = (3.34± 0.68)× 10−4 from Belle [1].
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