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1. Introduction

One of the most debated issues in pre-big bang (PBB) cosmology [1] concerns its ini-

tial conditions [2, 3]. How fine-tuned should these be in order to generate a Universe

resembling ours? The principle of asymptotic past triviality (APT) [3] amounts to

saying that, far enough into the past, the Universe was well described by a generic,

perturbative solution of the low-energy, tree-level string effective action. In other

words, the very early Universe is assumed to lie deeply inside the low-curvature,

small-coupling regime. Under this assumption, for a critical superstring theory ad-

mitting the trivial Minkowski vacuum order by order in perturbation theory, the

early Universe can be represented as a random superposition (a chaotic sea) of mass-

less waves, propagating in all directions and with all (sub-string scale) frequencies.

The particle content of the waves should represent all the massless degrees of free-

dom of superstring theory, i.e. each one of the possible marginal deformations of the

two-dimensional CFT in trivial space-time. This can be hardly called a fine-tuned

initial state!

Understanding the evolution of such a Universe is clearly not a simple task.

However, we know that, as long as the tree-level low-energy approximation remains

valid, the classical field dynamics is both scale- and dilaton-shift-invariant since the

string and Planck scales simply sit as overall factors in front of the action. Gen-

eral arguments suggest that, while most of the time these waves will just propagate

linearly and independently, occasionally, through positive interference, overdense re-

gions will form and, thanks to gravitational instability, will lead to gravitational
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collapse. It was argued [3] that the interiors of sufficiently large and weakly coupled

collapsing regions could give birth to Universes that could resemble our own. The

above-mentioned classical symmetries guarantee that the scale of collapse will itself

be a stochastic variable, whose distribution will be related to that of the original

distribution of wave lengths. Since such a distribution naturally contains arbitrarily

long (though not arbitrarily short) wavelengths, it looks very likely that large enough

black holes would form with non-vanishing probability.

Notwithstanding the appeal of these general arguments, it would be very in-

structive to see them at work in some explicitly soluble model. In [3] this was partly

done, in D = 4 for the spherically symmetric case, through use of some powerful

results obtained by Christodoulou [4] over more than a decade. More recently, exact

analytic solutions were constructed by Feinstein, Kunze and Vázquez-Mozo (here-

after FKV) [5], who replaced the chaotic sea of waves by two colliding, homogeneous,

planar-fronted waves. In [5] the waves have infinite fronts and thus always lead to

collapse on space-time scales L that are inversely related to the energy density (i.e.

energy per unit of transverse area) in the waves:

L ∼ (GNρ1GNρ2)
−1/2 . (1.1)

While FKV only deal with D = 4, we will show that the above result holds for any D.

In the following we shall denote by d = D− 2 the number of transverse coordinates.
Although the case of infinite fronts is obviously an idealization, causality argu-

ments lead to the conclusion that collapse takes place even for finite-front waves,

provided the typical transverse extension R of the waves is larger than L, i.e. if:

R > L ∼ (GNρ1GNρ2)
−1/2 = Rd(GNE1GNE2)

−1/2 =
Rd

GN

√
s
= Rs

(
R

Rs

)d
, (1.2)

i.e. provided Rs ≡ (GN

√
s)

1
d−1 > R, as naively expected.

Other limitations of the FKV paper are that it deals only with gravitational and

dilatonic waves and that, as we mentioned, it is restricted to D = 4. It has been

pointed out recently [6] that the approach to the cosmological singularity (which

appears as the r = 0 singularity inside the collapsing region) depends strongly both

on the dimensionality of space and on the presence of other fields, in particular of

the various p-forms that string theory possesses. It was argued, in particular, that

turning on all the forms present in any consistent string (or M) theory, changes the

monotonic Kasner-like behaviour of the gravi-dilaton system into an ever-oscillating

behaviour à la BKL [7].

As a first step in the direction of overcoming the two limitations of the work

by FKV, we shall extend it both to an arbitrary number of (non-compact) dimen-

sions and to the presence of the Kalb-Ramond Bµν field. Keeping the exact planar

symmetry allows (see section 2) for an explicitly O(d, d)-invariant formulation of the
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dynamics in the string frame. While several properties of the solutions can be dis-

cussed in the general case (section 3), we have only been able, so far, to construct

explicit analytic solutions in the case of Bµν = 0 and arbitrary dimensions (sec-

tions 4 and 5), or when the Bµν field is generated through O(d, d)-transformations

(section 6). This will suffice, however, to address some of the issues raised in ref. [6].

2. The O(d, d)-invariant field equations

As explained in the introduction, we start with the low-energy, tree-level effective

action of critical superstring theory in the string frame. Up to a classically irrelevant

overall factor

S =

∫
dxD
√−ge−φ

(
R + ∂µφ∂

µφ− 1
12
HµνρH

µνρ

)
, (2.1)

where φ is the dilaton, R is the curvature scalar for the metric tensor gµν , and Hµνρ

is the field strength for the antisymmetric field

Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ . (2.2)

The problem we wish to study is the head-on collision of two infinite plane-

front waves, which, without loss of generality, will be taken to move along the x1

axis. Assuming symmetry under translations along the d = D − 2 spatial directions
orthogonal to x1 (xi with i = 2, . . . , D − 1), it is obvious that the problem is en-
dowed with d abelian isometries. In a convenient coordinate frame, there will be

no dependence upon the “transverse” coordinates xi, and thus, according to gen-

eral arguments [9, 10], we expect to have an exact O(d, d) invariance of the classical

field equations. The symmetry of the field equations (not to be confused with a

true quantum symmetry) is most easily exhibited in terms of the invariance of a

“reduced action” living in the non-trivial (here two-dimensional) subspace. In the

case of O(D − 1, D − 1)-symmetry (homogeneous Bianchi-I cosmologies) this was
done in [9, 11] and led to a continuous extension of scale-factor duality of Bianchi-I

cosmologies [12].

For the present purposes, we will adapt to our case a general result by Maharana

and Schwarz [13], and write the reduced action coming from (2.1) as:

S =

∫
dx0dx1

√−ge−φ
[
R + ∂αφ∂

αφ+
1

8
Tr
(
∂αM

−1∂αM
)]
, (2.3)

whose notation we shall now explain.

The equations of motion allow the metric gµν to be taken block-diagonal, with

blocks given by gij and gαβ where roman indices (i, j, . . .) will span the components

of the tensors from 2 to d+1 while the indices α and β take the values 0 and 1. The

explicit metric and curvatures appearing in (2.3) only refer to the latter.

3



J
H
E
P
1
0
(
2
0
0
0
)
0
3
5

We arrange the components gij in a d-dimensional matrix G. The matrix B will

contain the components Bij of the antisymmetric field while the remaining compo-

nents of B are set to 0. M is then the 2d-dimensional matrix defined by:

M =

(
G−1 −G−1B
BG−1 G− BG−1B

)
. (2.4)

Finally, the shifted dilaton is defined by:

φ = φ− 1
2
log detG+ constant , (2.5)

where the constant will be conveniently fixed later.

The reduced action (2.3) is manifestly invariant under the transformations

gαβ −→ gαβ ,

φ −→ φ ,

M −→ ΩTMΩ , (2.6)

where Ω denotes a global O(d, d) transformation

ΩT ηΩ = η , (2.7)

with η the O(d, d) metric in off-diagonal form

η =

(
0 Id
Id 0

)
. (2.8)

M itself belongs to O(d, d) and, being symmetric, satisfies

MηM = η , i.e. M−1 = ηMη . (2.9)

The above equations make the check of O(d, d)-invariance trivial.

Let us now derive the (manifestly O(d, d)-invariant) field equations from (2.3).

Varying the action with respect to the shifted dilaton gives

R + 2gαβDαDβφ− gαβ∂αφ∂βφ+ 1
8
gαβ Tr

(
∂αM

−1∂βM
)
= 0 , (2.10)

while varying with respect to the 2-metric gαβ provides

Rαβ +DαDβφ+
1

8
Tr
(
∂αM

−1∂βM
)
= 0 . (2.11)

Combining the trace of the latter equation with the previous one gives a simple

equation for φ which will play an important role later:

DαDα exp(−φ) = 0 . (2.12)
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The variation with respect to M must be performed carefully because of the

constraints coming from its definition. Following [9], we take them into account

by writing

δM = ΩTMΩ−M , (2.13)

with Ω = 1 + ε in O(d, d). Expanding to first order in ε, we obtain

∂α

(
e−φ
√−ggαβM−1∂βM

)
= 0 . (2.14)

Equations (2.10), (2.11), (2.12) and (2.14) compose the full set we wish to solve.

Before doing so, let us write them more explicitly by going to the conformal gauge

for the 2-metric

gαβ = e
Fηαβ (2.15)

and by working with “light-cone” coordinates:

u =
x0 − x1√
2

, v =
x0 + x1√
2

. (2.16)

Equations (2.10), (2.11), (2.12), and (2.14) then simply become:

∂u∂v exp(−φ) = 0 , i.e. ∂u∂vφ = ∂uφ∂vφ ; (2.17)

∂u

(
e−φM−1∂vM

)
+ ∂v

(
e−φM−1∂uM

)
= 0 ; (2.18)

∂2uφ− ∂uF∂uφ+
1

8
Tr
(
∂uM

−1∂uM
)
= 0 , same with u→ v ; (2.19)

∂u∂vφ− ∂u∂vF + 1
8
Tr
(
∂uM

−1∂vM
)
= 0 . (2.20)

Note that the two equations (2.19) have the form of Virasoro constraints of a

two-dimensional CFT, while the other equations are of the evolution type. Fur-

thermore, a straightforward, though not completely trivial, calculation shows that

the integrability condition for eqs. (2.19) holds and that eq. (2.20) is just a conse-

quence of the previous ones. Our discussion will thus be based on solving the set of

eqs. (2.17)–(2.19).

3. General properties of the solutions

In this section we will derive some general features of the solutions, which will be

useful for the more detailed investigations to be described later on.

The two colliding waves are defined to have their fronts at u = 0 and v = 0,

respectively, and thus to collide at u = v = 0 (i.e. at x0 = x1 = 0). The two waves are

not assumed to be impulsive, i.e. their energy density can have any (finite?) support

at positive u and v, respectively. Space-time is thus naturally divided in four regions:
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Region I, defined by u, v < 0, is the space-time in front of the waves before any

interaction takes place. It is trivial Minkowski space-time:

ds2I = −2dudv +
∑(

dxi
)2
, B = 0 , φ = φ0 , (3.1)

with a constant perturbative dilaton (exp(φ0)� 1). It will be convenient to fix the
constant in (2.5) as −φ0 so that, in region I, φ = 0.
Region II, defined by u > 0, v < 0, is the wave coming from the left before the

interaction. Metric and dilaton depend only on u and therefore the field equations

allow us to take F = 0 and write the ansatz:

ds2II = −2dudv +GIIij(u)dxidxj , Bij = B
II
ij(u) , φ = φII(u) . (3.2)

Similarly, region III, defined by u < 0, v > 0, represents the wave coming from the

right before the interaction. There,

ds2III = −2dudv +GIIIij (v)dxidxj , Bij = B
III
ij (v) , φ = φIII(v) . (3.3)

Note that we have not assumed any special shape for G, so that the results we give

in this section will hold whatever the (relative) polarization of the waves.

Finally, region IV (u > 0, v > 0) is the interaction region, with

ds2IV = −2eFdudv +GIVij dxidxj , (3.4)

and F , GIV, φIV and BIV are all functions of both u and v. Of course, the metric

must be continuous along with its derivative on the boundary lines between the four

regions. The same must be true for the dilaton φ and the antisymmetric field B.

Let us begin by solving the equations in region II (and thus, by trivial analogy,

in region III). The only non-trivial equation is the “Virasoro constraint”, eq. (2.19),

which (after momentarily dropping the subscripts II) reads

φ̈ =
1

8
Tr

[(
M−1Ṁ

)2]
, (3.5)

where the dot indicates the derivative with respect to u. The r.h.s. can be written

as the sum of three terms:

1

8
Tr

[(
M−1Ṁ

)2]
=
1

4d

[
Tr
(
G−1Ġ

)]2
+
1

4

{
Tr

[(
G−1Ġ

)2
t

]
−

− Tr
[(
G−1Ḃ

)2]}
, (3.6)

where (G−1Ġ)t is the traceless part of (G−1Ġ). The first trace on the r.h.s. can be
expressed in terms of the dilaton and the shifted dilaton as

1

4d

[
Tr
(
G−1Ġ

)]2
=
1

4d

(
d

du
log detG

)2
=
1

d

(
φ̇− φ̇

)2
. (3.7)
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It is now useful to change variable from u to ũ, with

d

du
= e−2φ/d

d

dũ
. (3.8)

Then, eq. (3.5) becomes

eφ/d
(
e−φ/d

)′′
= − 1

d2
φ′2 − 1

4d

{
Tr
[(
G−1G′

)2
t

]
− Tr

[(
G−1B′

)2]}
, (3.9)

where the prime denotes the derivative with respect to ũ.

It can be easily proved that all terms on the r.h.s. of eq. (3.9) are negative definite,

if we remember thatG is symmetric with positive eigenvalues and B is antisymmetric.

Hence, for any non-trivial wave, e−φ/d, which is constant and identically equal to 1
in region I, must acquire a non-vanishing, negative, and never increasing derivative

in region II. Thus, e−φ/d must vanish at some finite ũ = ũ∗. Returning now to the
coordinate u, we see that, if the dilaton is bounded (a necessary assumption if we

want to use the tree-level effective action), there exists a finite u = u∗ where e−φ/d

vanishes. Correspondingly, also detG vanishes, and the metric of the transverse space

will collapse to zero proper volume, thereby producing a (coordinate) singularity.

It is not too difficult to estimate the order of magnitude of u∗ by multiplying
eq. (3.9) by e−φ/d and by integrating it once after having gone back to the original
u-variable. The result is an estimate of u∗−1 and is given in terms of an integral
over u of the energy density per unit volume, i.e. in terms of the energy density

per unit area. One thus recovers the estimate u∗ ∼ (GNρ)
−1, in which the ap-

pearance of Newton’s constant is somewhat fictitious since, for waves of a given

geometry, the energy density scales like G−1N . The final result, reported in eq. (1.1),
is a Lorentz-boost-invariant way of writing the same expression once both waves are

considered simultaneously.

The same arguments can be repeated in region III, where detG has to vanish

at some finite v = v∗ with φ → +∞. These results generalize to any D and to
non-trivial antisymmetric fields, a well-known result in D = 4.

Let us finally analyse region IV, where the interaction between the two waves

occurs. We drop the subscript IV from all functions. We begin by using eq. (2.17),

which tells us that e−φ is the sum of a function of u and a function of v. The unique
function of this type that matches the boundary conditions with region I is

e−φ(u,v) = e−φII(u) + e−φIII(v) − 1 . (3.10)

We see that e−φ(u,v) must vanish on a hypersurface joining the coordinate singularities
in regions II and III and contained in the region u ≤ u0, v ≤ v0 within region IV.

Let us now introduce two new sets of coordinates that simplify the analysis in

region IV. One set is of the light-cone type:

r = r(v) = 2e−φIII(v) − 1 , s = s(u) = 2e−φII(u) − 1 , (3.11)
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while the second set is of the t− x kind:

ξ =
1

2
(r + s) = e−φ(u,v) ∼ −t ,

z =
1

2
(s− r) = e−φII(u) − e−φIII(v) . (3.12)

Note that the coordinates r, s run from +1 to −1 in region IV with their sum always
positive except on the singular boundary where r + s = 0. Going from the original

coordinates to either of the new sets changes only the conformal factor of the 2-

metric. We may thus write, for instance,

ds2IV = −efdξ2 + efdz2 +Gijdx
idxj , (3.13)

where f and G are functions of ξ and z. In r, s coordinates, this becomes

ds2IV = −2efdrds+Gijdx
idxj , (3.14)

where f and G are now functions of r and s. The shifted dilaton is simply

φ = − log ξ = − log (r + s)
2

. (3.15)

Finally, in these coordinates, eq. (2.17) becomes trivial and the only equations to be

solved, (2.18) and (2.19), become

∂r
(
(r + s)M−1∂sM

)
+ ∂s

(
(r + s)M−1∂rM

)
= 0 , (3.16)

(r + s)−2 + (r + s)−1∂rF +
1

8
Tr
(
∂rM

−1∂rM
)
= 0 , (3.17)

(r + s)−2 + (r + s)−1∂sF +
1

8
Tr
(
∂sM

−1∂sM
)
= 0 . (3.18)

To end this section, let us discuss the relation between the above equations and

those discussed in refs. [9, 14], where general solutions in the homogeneous [9] and

quasi-homogeneous [14] case were derived. Here we are dealing with fields depending

also on one spatial coordinate. For this reason, we have built the matrix M by

considering only the remaining d spatial dimensions, excluding the g11 component.

In the approach to the singularity, we expect the time derivatives to dominate over

the spatial ones (this hypothesis can also be tested and verified a posteriori, see

section 6). Thus, close to the singularity, the general solutions of [9, 14] should be

recovered. To see the explicit connection between the equations of motion (3.16)

and (3.18) and those in [9, 14], we have to complete the M matrix with the missing

rows and columns, extending it to a 2(d+1)-dimensional matrix. We must also add

the g11 component in the determinant of the metric used to construct the shifted

dilaton and go over to cosmic time dT = ef/2dξ. After some simple algebra, the

equations of motion can be brought to a form identical to that of refs. [9, 14], strongly

suggesting that the asymptotic solutions of [14] will emerge near the singularity.
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4. Solutions with B = 0

The case of B = 0 with parallel polarized waves was discussed in ref. [5] for d = 2.

We shall obtain below a generalization of their results to arbitrary d. For B = 0, M

reduces to

M =

(
G−1 0

0 G

)
. (4.1)

In each region, we choose a diagonal G with Gii = eλ+ψi , where
∑
ψi = 0 and

λ = 1
d
log detG goes to −∞ at u = u∗ in region II and at v = v∗ in region III.
The equations of motion follow easily from eqs. (3.16) and (3.18). They read

λ,rs +
1

2 (r + s)
(λ,r + λ,s) = 0 , (4.2)

ψi,rs +
1

2 (r + s)
(ψi,r + ψi,s) = 0 , (4.3)

f,r +
1

(r + s)
− r + s

4

(
dλ2,r +

∑
ψ2i,r

)
= 0 , (4.4)

f,s +
1

(r + s)
− r + s

4

(
dλ2,s +

∑
ψ2i,s

)
= 0 . (4.5)

We see that the equations for the ψi and that for λ are decoupled and can

be solved separately. They are also formally the same, so the solutions, found by

Szekeres [8], have the same structure:

−(r + s)1/2ψi (r, s) =
∫ 1
s

ds′
[
(1 + s′)1/2ψi(1, s′)

]
,s′ P−1/2

[
1 + 2

(1− r) (s′ − s)
(1 + s′) (r + s)

]
+

+

∫ 1
r

dr′
[
(1 + r′)1/2ψi(r′, 1)

]
,r′ ×

× P−1/2
[
1 + 2

(1− s) (r′ − r)
(1 + r′) (r + s)

]
. (4.6)

The same expression holds for λ, with the obvious replacements. In the above

expressions, P−1/2(x) are Legendre functions written in standard notation. Once λ
is given, φ can be obtained from eq. (2.5), since φ is known. Finally, the function

f(r, s) is given by an integral along a curve joining the point (r = s = 1), where it

vanishes, to the generic point (r, s):

f (r, s) =

∫ (r,s)
(1,1)

[f,rdr + f,sds, ] (4.7)

with f,r and f,s given by the r.h.s. of eqs. (4.4) and (4.5) as functions of (r, s) through

the previously determined φ and ψi.

We see that λ and the ψi are singular on the hypersurface ξ = r+s = 0. So, in a

very general way, we find that the collision of two plane waves leads to a (curvature)

singularity in the space-time whatever the number of dimensions. Although we do
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not have, at the moment, such an explicit solution for the general case, the discussion

given in the previous section makes us believe that a curvature singularity will always

emerge along the hypersurface ξ = 0.

5. Asymptotic approach to the singularity

For the solutions (4.6), the asymptotic behaviour for ξ → 0 is easily found by taking
the large-argument limit of the Legendre function [8] (see also Yurtsever [15]):

ψi (ξ, z) ∼ εi (z) log ξ ,

λ (ξ, z) ∼ κ (z) log ξ ,

f (ξ, z) ∼ a (z) log ξ . (5.1)

The coefficients multiplying the logarithm are functions of z, whose range, on the

singular surface, is −1−+1. One easily finds

εi (z) =
1

π
√
1 + z

∫ 1
z

ds
[
(1 + s)1/2 ψ (1, s)

]
,s

(
s+ 1

s− z
)1/2

+

+
1

π
√
1− z

∫ 1
−z
dr
[
(1 + r)1/2 ψ (r, 1)

]
,r

(
r + 1

r + z

)1/2
, (5.2)

a (z) =
1

4

∑
ε2i (z) +

d

4
κ2 (z)− 1 , (5.3)

with κ(z) given by the same expression as εi with ψi replaced by λ. The sum of the

εi must be zero according to the definition of the ψi.

The asymptotic form of the metric is

ds2IV = −ξa(z)dξ2 + ξa(z)dz2 + ξκ(z)
∑

ξεi(z)
(
dxi
)2
, (5.4)

while

φ ∼ −
(
1 +

d

2
κ(z)

)
log ξ . (5.5)

Going over to cosmic time ξ = t
2

a(z)+2 , gives the metric in Kasner form with

exponents

p1 (z) =
a (z)

a (z) + 2
,

pi (z) =
κ(z) + εi (z)

a (z) + 2
. (5.6)

The following relations are immediately verified:

φ =

(
D−1∑
α=1

pα (z)− 1
)
log t ,

D−1∑
α=1

p2α (z) = 1 . (5.7)
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The behaviour of the fields near the singularity is thus of Kasner type, modified,

as usual, by the presence of the dilaton. Note that, at the two tips of the singularity,

εi and κ diverge in such a way that the Kasner exponents near the tips are simply

p1 = 1, pi = 0. This corresponds to a (contracting) Milne-like metric which, being

non-singular, nicely matches the non-singular behaviour in regions II and III. Away

from these two points, κ and εi can take any value: it is easy to verify that the whole

Kasner sphere can be covered by appropriately choosing the initial data.

For generic z, the collision leads to a singularity showing all the characteristics

of a cosmological singularity. The Kasner exponents depend on z and therefore

the behaviour of the metric will depend on the point of the singular hypersurface

that we approach as ξ → 0. It is therefore interesting to study the signs of the
Kasner exponents for different choices of the coefficients εi and κ. In particular,

we would like to see whether, far from the tips of the singularity, inflation may

take place.

By the definition of a(z), we see that the denominators of the Kasner expo-

nents (5.6) are always positive. Concerning the numerators, we note that a(z) is a

quadratic form in εi and κ. The equation a(z) = 0 thus defines an ellipsoid in the

space (εi; κ) with p1 positive outside of this ellipsoid and negative inside. For each i

the equation pi = 0 defines the plane κ + εi = 0 passing through the centre of the

former ellipsoid. The pi’s are positive on the semispace containing the positive κ

semiaxis. Finally, we have to remember the constraint on the sum of the ψi, which

becomes
∑
εi = 0 in the asymptotic regime.

In conclusion, we see that there indeed exists a region where all the Kasner

exponents are negative. In fact, if we stay inside the ellipsoid on the side where

κ < 0, and take all εi close enough to zero, all the exponents are negative and we

have inflation in all directions. In the opposite situation (i.e. outside the ellipsoid,

with κ > 0 and εi close to zero) all exponents are positive and we have contraction

in all directions. All intermediate cases are also possible as we can let any number of

εi be large and negative and take at least one εi large enough and positive to balance

the others.

6. Colliding waves with antisymmetric field

Although we have written the equations in a manifestly O(d, d)-covariant form, we

have only managed, so far, to find solutions in region IV for vanishing antisymmetric

field. We can perform, however, O(d, d) boosts on our solutions to introduce it. This

procedure can be worked out in any number of the dimensions. Our purpose in this

section is to discuss the main features of the cosmologies obtained by this procedure

and to clarify the role of the antisymmetric field, particularly in connection with the

work of ref. [6].
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Let us write the transformation matrix Ω in terms of four d-dimensional blocks

Ω =

(
P R

Q S

)
. (6.1)

The constraint (2.7) reads

P TQ+QTP = 0 , (6.2)

RTQ+ STP = Id ,

P TS +QTR = Id ,

RTS + STR = 0 . (6.3)

From eq. (2.13), withM in the form (4.1), we obtain the inverse of the new metric G′

G′−1 = P TG−1P +QTGQ (6.4)

and extract also the antisymmetric field

B′ =
(
RTG−1P + STGS

)
G′ . (6.5)

It is interesting to investigate the asymptotic behaviour of the new cosmologies

obtained this way. We try to be very general, considering an initial metric that is

diagonal and has the Kasner form

G = diag
(
tλ1 , . . . , tλd

)
, (6.6)

with the λi ordered so that i < j implies that |λi| ≥ |λj|. In section 5 we showed
that the asymptotic approach to the singularity of the colliding waves metric is of

this type, if we let the λi depend on z.

When we perform the O(d, d) transformation, the new metric G′ is no longer
diagonal. However, we can diagonalize it by a step-by-step procedure. Exploiting

the fact thatG has the form (6.6), the eigenvalue equation forG′−1 takes the following
asymptotic form: ∑

b

∑
i

(
Piat

−λiPib +Qiat
λiQib

)
vb = αva . (6.7)

Assuming, in a first instance, that all λi are non-vanishing, we define two new

matrices U and U ′, whose components are

Uij =

{
Pij if λi > 0

Qij if λi < 0 ,

U ′ij =
{
Qij if λi > 0

Pij if λi < 0 .
(6.8)

12



J
H
E
P
1
0
(
2
0
0
0
)
0
3
5

The dominant term in the eigenvalue equation as t→ 0 becomes∑
b

U1at
−|λ1|U1bvb = αva . (6.9)

This is the eigenvalue equation for the projector to U1, i.e. the first eigenvalue of

G′−1 is α = |U1|2t−|λ1| with eigenvector va = U1a. Since the vectors orthogonal to U1
annihilate the dominant term we just considered, in order to find the other eigen-

values and the corresponding eigenvectors, we consider the successive sub-dominant

terms in the original eigenvalue equation in the space orthogonal to U1.

The next term is ∑
b

U2at
−|λ2|U2bvb = αva . (6.10)

The eigenvector of this term is v = U2: however, in order to annihilate the dominant

term, we have to take the component of U2 (asymptotically) orthogonal to U1 as the

second eigenvector. The corresponding eigenvalue is α = (|U2|2− (U1·U2)2|U1|2 )t
−|λ2|. The

next eigenvector must now be taken in the space orthogonal to U1 and U2, and so

on. In this way, we can build the complete system of eigenvectors of G′−1, combining
the rows of U , which are rows of the two matrices P and Q. The d eigenvalues

are then proportional to t−|λi| and therefore they are all diverging as t → 0. It is
easy to extend this discussion to the case of some vanishing λi. This clearly implies

asymptotically vanishing eigenvalues for G.

In order to complete our discussion, we have to mention some possible exceptions

to the above-mentioned situation. Not always, the rows of U , used to build the

eigenvectors, form an independent set of vectors. For a particular class of O(d, d)

transformations, having detU = 0, the result is different. It is easy to understand

the modifications: each time we face a Ui linearly dependent on the previous rows,

we just ignore it and proceed with the algorithm to the next term in G′−1. When we
have exhausted the first d dominant terms, we will still have to find one eigenvalue

(having skipped one term in the diagonalization). Taking the next term of G′−1, in
the form

U ′dat
|λd|U ′db , (6.11)

we can find the missing eigenvalue. In conclusion, we can see that, if the rank of U

is s ≤ d, then G′−1 will have s diverging and d− s vanishing eigenvalues. Note that,
even if the matrix P is chosen freely, the matrix Q is related to P by eq. (6.2). We

have to check whether, because of this relation, the determinant of U is necessarily

vanishing for some initial values of the Kasner exponents.

First, we observe that (6.2) implies

detP detQ = (−1)d detQ detP . (6.12)

Therefore, for odd d, either the determinant of P or the determinant of Q vanish.

We may now distinguish two classes of O(d, d) transformations. The identity trans-

formation belongs to those giving a vanishing detQ, and the same is true for all
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transformations that can be reduced to the identity in a continuous way. For met-

rics that are inflating in all directions before the transformation, U = Q and the

transformations having detQ = 0, instead of turning all eigenvalues to contracting

ones, leave at least an inflating. Conversely, for metrics contracting in all dimen-

sions, U = P and transformations with detP = 0 cannot leave all the eigenvalues

unchanged, but induce inflation in at least one direction.

Consider, as the last peculiar case, the one in which the exponents in the initial

metric are all positive except one. Then it is possible to show that the constraint (6.2)

forces detU = 0 if P is non-singular. The same argument can be repeated for metrics

inflating in all directions except one. In this case, U is composed by d− 1 rows from
Q and one from P . If Q is non-singular, then detU = 0 and again we have one

inflating dimension left.

Summing up, we can say that cosmologies with antisymmetric field that can be

obtained, by an O(d, d) transformation, from a metric having Kasner behaviour near

the singularity, generally contract in all dimensions. In even dimensions, at least one

inflates when the original metric has just one inflating or just one contracting dimen-

sion. In odd dimensions, if the O(d, d) transformation has detQ = 0, then, starting

from a full inflating metric or from a metric with one inflating dimension, we are left

with one inflating dimension. If detP = 0, then one dimension inflates when we start

from a full contracting metric or from a metric having just one contracting dimension.

We should also recall that none of the O(d, d) transformations affects the g11
component of the metric, which, therefore, can either inflate or contract.

The results of ref. [16] are compatible with ours, since, for d = 2, our statements,

when the determinant of G inflates, can be summarized as a change of sign in λ while

ψ is left invariant.

7. Conclusions

In this paper, extending previous work [5], we have modelled the onset of pre-big

bang inflation, from asymptotically trivial initial conditions [3], as the result of the

collision of two plane waves, made of gravitons, dilatons, and Kalb-Ramond massless

particles, in any number D = d + 2 of space-time dimensions. We showed that

the evolution of the system is described in terms of a compact and elegant set of

O(d, d)-invariant equations and that properties of the solutions can be studied in

full generality in three of the four regions defined by the planar-collision problem.

This already enables us to argue that the formation of a curvature singularity in the

future (to be identified with the big bang) is generic.

However, so far, we have not been able to solve the general problem analytically

in the fourth, and most interesting, region, except for the case of dilatonic and

parallel-polarized gravitational waves. Nonetheless, using O(d, d) transformations,

we were able to construct new solutions containing the KR field and to discuss the
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physically relevant properties of these new solutions. The main conclusions that

appear to emerge are the following:

• While the formation of a singularity is generic, the existence of inflating regions
near the singular surface is only generic in the absence of the KR form.

• The KR form, at least when generated from O(d, d) transformations, tends to

generate contraction rather than expansion, in agreement with other results [1]

and arguments [6].

• Since our equations appear to reduce, near the singularity, to those studied
previously [9, 14] in the homogeneous (or quasi-homogeneous) case, it looks

very likely that the above behaviour will persist in the general solution.

Eventually, one may be led to the conclusion that the most generic APT ini-

tial conditions (i.e. those containing all possible kinds of waves in the initial state)

can hardly produce such a flat, homogeneous and isotropic Universe to dispense us

completely from the more standard kind of potential-energy-driven post-big bang

inflation. Actually, it is very likely that, after exit from pre-big bang inflation, the

dilaton and other moduli will find themselves displaced from the minima of their non-

perturbatively-generated potentials and that further inflation will result from their

rolling down towards them. A similar conclusion seems to follow from completely

different, more phenomenological arguments, i.e. from the recent data analysis of

CMB anisotropies at small angular scales [17], which appears to confirm the need for

adiabatic perturbations of the kind naturally provided by potential-driven inflation,

but absent in the PBB scenario.

If so, we will have to back up from the early claims that the PBB scenario

can replace altogether standard inflation, and settle instead for a complementary

role it would play in providing the initial conditions that standard inflation badly

needs, and in “explaining”, from more natural and generic initial conditions, the

most mysterious event in the entire life of our Universe, the big bang.

Note added. While this paper was being written, we received a new paper by

Damour and Henneaux [18] containing a discussion of the outcome of O(d, d) trans-

formations on Kasner-like solutions. Their results, obtained with a different diago-

nalization procedure, agree with those discussed in our section 6.
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