
UCSD/PTH 00-18

The Renormalization Group Improvement of the QCD

Static Potentials

Antonio Pineda1 and Joan Soto2

1 Theory Division, CERN, 1211 Geneva 23, Switzerland
2 Department of Physics, University of California at San Diego,

9500 Gilman Drive, La Jolla, CA 92093, USA

PACS numbers: 12.38.Cy, 12.38.Bx, 12.39.Hg

We resum the leading ultrasoft logs of the singlet and octet static QCD poten-
tials within potential NRQCD. We then obtain the complete three-loop renor-
malization group improvement of the singlet QCD static potential. The dis-
crepancies between the perturbative evaluation and the lattice results at short
distances are slightly reduced.

Preprint submitted to Elsevier Preprint 21 July 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25290287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


y, q y g g g
the different scales involved in heavy quark systems near threshold [1–7]. The proper renor-
malization group (RG) resummation of these logs is a non-trivial issue. It has recently been
addressed within the so-called vNRQCD approach [8] for the O(1/m2) potentials [9], and
for the O(1/m) potential and the production current [10]. Since the proper resummation of
the logs may be important for the physics of the top quark production near threshold, as
well as for heavy quarkonium systems, and the existing calculations (see [2]) are done in a
formalism closer to potential NRQCD (pNRQCD) [11,4], it would be desirable to know how
to RG-improve within the latter formalism 1 . In this note we provide the first step towards
this goal by showing how the static potentials of QCD can be RG-improved within that
framework. Moreover, the RG-improved static potentials obtained in this paper represent a
new result by themselves. They provide the complete three-loop RG evolution of the static
potentials within an expansion in αs (in order to be so, besides our calculation, one needs
to know the static potentials at two loops [12,13]). Our results may also be relevant in or-
der to understand the discrepancies, at relatively short distances, between the perturbative
evaluation and the lattice results.

Since we are only interested in the static potentials, we only need to consider the static
limit of NRQCD [14] and pNRQCD, i.e. we only need to work at leading order in 1/m.
The matching between NRQCD and pNRQCD in the static limit, in the situation where
ΛQCD � 1/r (the limit we will consider in this paper), has been worked out in detail in ref.
[4].

The pNRQCD lagrangian at leading order in 1/m and next-to-leading order in the multipole
expansion reads

LpNRQCD = Tr

{
S† (i∂0 − Vs) S + O† (iD0 − Vo) O

}

+gVA(r)Tr
{
O†r ·E S + S†r · E O

}
+ g

VB(r)

2
Tr
{
O†r ·E O + O†Or · E

}

−1

4
F a

µνF
µν a + O(r2) . (1)

All the gauge fields in Eq. (1) are evaluated in R and t, in particular F µν a ≡ F µν a(R, t) and
iD0O ≡ i∂0O− g[A0(R, t), O] and

Vs = −Cf
αVs

r

Vo =
(

CA

2
− Cf

)
αVo

r
.

The potentials Vi, i = s, o, A, B are to be regarded as matching coefficients, which depend on
the scale ν separating soft gluons from ultrasoft ones. In the static limit, we understand by
soft energies the ones of O(1/r) and by ultrasoft energies the ones of O(αs/r). Notice that the

1 Recall also that in Ref. [10] the authors claim to have some discrepancies with the logs found in
earlier calculations [6,7] based on pNRQCD.
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the size of r is that 1/r � ΛQCD. However, in order to use perturbative RG techniques, we
shall also assume from now on that we are working at scales ν such that αs(ν) � 1.

Formally, we can write Eq. (1) as an expansion in r in the following way:

LpNRQCD =
∞∑

n=−1

rnλB
n OB

n , (2)

where the above fields and parameters should be understood as bare and the renormalization
group equations of the renormalized matching coefficients read

ν
d

dν
λ = Bλ(λ). (3)

If λ−1 = 0, there are no relevant operators (superrenormalizable terms) in the Lagrangian
and the RG equations have a triangular structure (the standard structure one can see, for
instance, in HQET [15]; see Ref. [16] for a review):

ν
d

dν
λ0 = B0(λ0) (4)

ν
d

dν
λ1 = B1(λ0)λ1 (5)

ν
d

dν
λ2 = B2,(2,1)(λ0)λ2 + B2,(1,2)(λ0)λ

2
1 (6)

.... , (7)

where the different B’s can be power-expanded in λ0 (λ0 corresponds to the marginal op-
erators (renormalizable interactions)). If λ−1 6= 0, however, there are relevant operators
(superrenormalizable terms) in the Lagrangian and the RG equations lose the triangular
structure. Still, if λ−1 � 1, a perturbative calculation of the renormalization group equa-
tions can be achieved as a double expansion in λ−1 and λ0. The RG equations now have the
following structure:

ν
d

dν
λ−1 (8)

= B−1(λ0)λ−1 + B(−1,2)(λ0)λ
2
−1λ1 + B

(a)
(−1,3)(λ0)λ

3
−1λ

2
1 + B

(b)
(−1,3)(λ0)λ

3
−1λ2 + O(λ4

−1)

ν
d

dν
λ0 = B0(λ0) + B0,1(λ0)λ−1λ1 + O(λ2

−1) (9)

ν
d

dν
λ1 = B1(λ0)λ1 + B1,1(λ0)λ−1λ

2
1 + O(λ2

−1) (10)
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At short distances, the static limit of pNRQCD lives in the second situation. Specifically,
we have λ−1 = {αVs , αVo}, that fulfils λ−1 � 1; λ0 = αs and λ1 = {VA, VB}. Therefore, we
can calculate the anomalous dimensions order by order in αs. In addition, we also have an
expansion in λ−1 that corresponds to working order by order in the multipole expansion.

The specific form of the pNRQCD lagrangian severely constrains the above general structure.
From ref. [4] 2 we obtain at leading, non-vanishing, order

ν
d

dν
αVs =

2

3

αs

π
V 2

A

((
CA

2
− Cf

)
αVo + CfαVs

)3

+ O(λ4
−1λ0, λ

2
0λ

3
−1)

ν
d

dν
αVo =

2

3

αs

π
V 2

A

((
CA

2
− Cf

)
αVo + CfαVs

)3

+ O(λ4
−1λ0, λ

2
0λ

3
−1)

ν
d

dν
αs = αsβ(αs)

ν
d

dν
VA = 0 + O(λ−1λ0, λ

2
0) (11)

ν
d

dν
VB = 0 + O(λ−1λ0, λ

2
0) .

It is the aim of this work to solve Eq. (11), and hence to provide the leading log (LL) ultrasoft
RG improvement of the pNRQCD lagrangian in the static limit.

The last two equations in Eq. (11) are decoupled from the rest and are equal to zero at the
order we are working. Therefore, we immediately obtain

VA(ν) = VA(r) and VB(ν) = VB(r). (12)

The first two equations of Eq. (11) are equivalent to

ν
d

dν

((
CA

2
− Cf

)
αVo + CfαVs

)
= γos

αs

π
V 2

A

((
CA

2
− Cf

)
αVo + CfαVs

)3

ν
d

dν
(αVo − αVs)= 0, (13)

where

γos =
CA

3
. (14)

2 The result of the last two equations corrects the previous evaluation of Ref. [4] (we thank A. Vairo
for confirming these results). In order to cross-check this result we have redone the computation
both in the Coulomb gauge and in the background field gauge.
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The first equation can now be easily solved (note that in order to solve these equations with
the demanded accuracy it was necessary to know the RG solution of VA, which happened to
be trivial). We obtain (where β0 = 11CA/3 − 4TFnf/3, TF = 1/2 and nf is the number of
light quarks):

αVs(ν) =αVs(r)−
2

3γos

((
CA

2
− Cf

)
αVo(r) + CfαVs(r)

)

×


1− 1√

1− 4γos

β0

((
CA

2
− Cf

)
αVo(r) + CfαVs(r)

)2
V 2

A(r) log
(

αs(r)
αs(ν)

)



αVo(ν) =αVo(r)−
2

3γos

((
CA

2
− Cf

)
αVo(r) + CfαVs(r)

)
(15)

×


1− 1√

1− 4γos

β0

((
CA

2
− Cf

)
αVo(r) + CfαVs(r)

)2
V 2

A(r) log
(

αs(r)
αs(ν)

)

 ,

which completes our results. These are exact up to O
(
λ3
−1(r)

(
λ2
−1(r) (λ0(r) log rν)n

)m
,

λ−1(r)λ0(r)
(
λ2
−1(r) (λ0(r) log rν)n

)m)
where n = 0, 1, 2... and m = 1, 2... . At this point we

would like to stress the simplicity of the calculation, which follows to a large extent from the
formalism used.

In the above results the different matching coefficients can be considered to be independent
(though assuming λ−1, λ0 � 1 in order for our perturbative evaluation to make sense). If we
want to perform a strict expansion in αs, one has to use the perturbative relation between
λ−1(r), λ1(r) and αs(r): λ−1(r) = A1αs(r)+A2α

2
s (r)+ ... and λ1(r) = 1+B1αs(r)+ .... Since

αVs and αVo are known at two-loop accuracy [12,13], Eq. (15) is known with the following
accuracy

αVs(ν) =α
(2 loops)
Vs

(r) +
C3

A

6β0

α3
s (r) log

(
αs(r)

αs(ν)

)
+ O(αs(r)

4+n logn rν) (16)

αVo(ν) =α
(2 loops)
Vo

(r) +
C3

A

6β0

α3
s (r) log

(
αs(r)

αs(ν)

)
+ O(αs(r)

4+n logn rν),

where n = 0, 1, 2, ... .

The above equation represents the complete three-loop RG improvement of the static po-
tentials. When the running αs(r) is substituted by its three-loop expression above and ex-
panded, all the log rν in the three-loop static potentials are obtained, including the infrared
logs of [18,3]. More explicitly, if we write λ−1 = λ−1(r, ν, αs(ν)), Eq. (16) provides the correct
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Fig. 1. We plot αVs versus r (GeV) for a range of energies relevant to a comparison with lattice
simulations and also to the study of the Υ(1S) system (nf = 4, Λthree loops

QCD = 0.28 GeV). The

solid line corresponds to α
(2 loops)
Vs

, the dotted line to α
(2 loops)
Vs

plus the single leading-log correction
computed in Ref. [3], the dot-dashed line to Eq. (16) and the dashed line to Eq. (15). We have fixed
ν = αs(r)/r.

α1+n
s (ν) logn rν, α2+n

s (ν) logn rν, α3+n
s (ν) logn rν terms at any power of n. Note that such

accuracy is not achieved by only replacing αs(r) by its three-loop running expression in the
two-loop calculation of the potential, as it is sometimes done in the literature [19] (see also
[20]).

Now we would like to give some numerical estimates of our results. In order to resum the
large logs, we fix ν = αs(r)/r in what follows. In Fig. 1, we plot αVs versus r (GeV), within
different approximations. If we compare the last term in Eq. (16) with the single leading-log
result obtained in [3], we can see a sizeable correction of the same order of magnitude. If
for definiteness we choose r−1 = 2 GeV, Eq. (16) gives a correction of around 3%, whereas
the single leading-log term gives a correction of around 1%. This shows the necessity to
RG-improve the single leading logs. In any case, as we can see from Fig. 1 and the above
results, the correction is rather tiny whith respect to the total value of αVS

. Equation (15),
however, produces a much more sizeable correction, as we can see in Fig. 1. If we again take
r−1 = 2 GeV the correction is of around 11%.

In all the cases the new results lower the value of αVs , reducing the existing discrepancies
between the perturbative results and the lattice simulations [21]. This is specially so when
using Eq. (15). Although the good behaviour of αVs using Eq. (15) is certainly appealing,
we should bear in mind that around the 1 GeV region λ−1(r) ∼ 1 and hence perturbation
theory becomes unreliable (specially in the perturbative relation between αVs(r) and αs(r),
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Since for αVo(r) only the one-loop expression is available, we refrain from performing a similar
study for it (note that in the numerical analysis above we have used the one-loop expression
of αVo(r) in Eq. (15)).

One could also consider non-perturbative effects in the static case when 1/r � ΛQCD (see
[4] for a more general discussion). Here we only mention that when αs(r)/r � ΛQCD the
leading non-perturbative contribution is proportional to r3〈αsFF 〉/αs(r) [24], whereas for
αs(r)/r ∼ ΛQCD one has a non-perturbative contribution proportional to r2 times a non-local
correlator of two chromoelectric fields with multiple potential insertions of O(αs(r)/r).

Our results are also relevant to actual physical systems composed of a quark and an an-
tiquark with very large but finite mass. However, in order to achieve, for instance, an
O(mα4+n

s logn αs) accuracy in the binding energy of those systems, the RG improvement
of the 1/m and 1/m2 potentials is also necessary. Since local field redefinitions allow to
reshuffle contributions from a given order in 1/m to another [23], a meaningful outcome can
only be obtained when all the contributions from the various potentials are taken into ac-
count. Hence, we restrict ourselves here to present a few numerical estimates on the impact
of the RG-improved static potentials for some typical scales one can find in the Υ(1S) and t-t̄
systems. In particular, for the Υ(1S), for which typical soft scales are of O(2 GeV), the dis-
cussion of Fig. 1 applies. For t-t̄ systems, in order to give an estimate, we take r−1 = 20 GeV
(nf = 5, Λthree loops

QCD = 0.2). We obtain that the corrections are of order 0.4%, 0.5%, 1%, if we
consider the single leading-log result, Eq. (16) and Eq. (15), respectively.

Before closing, let us mention that in the vNRQCD approach it appears to be crucial that
ultrasoft and soft gluons run from a scale mv2 and mv, respectively, to the scale m. In
the static system the scale m does not exist, and hence it is not clear to us how one should
proceed in the above-mentioned approach. Notice also that the difficulties pointed out in [25]
concerning a näıve RG improvement in two stages do not apply to the static case, since here
only one stage is involved, namely the RG improvement between NRQCD and pNRQCD.
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