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Abstract

We investigate certain fixed points in the boundary conformal field
theory representation of type IIA D-branes on Gepner points of K3. They
correspond geometrically to degenerate brane configurations, and physi-
cally lead to enhanced gauge symmetries on the world-volume. Non-abelian
gauge groups arise if the stabilizer group of the fixed points is realized pro-
jectively, which is similar to D-branes on orbifolds with discrete torsion.
Moreover, the fixed point boundary states can be resolved into several
irreducible components. These correspond to bound states at threshold
and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves.
Thus, the BCFT fixed points appear to carry two-fold geometrical infor-
mation: on the one hand they probe the boundary of the instanton moduli
space on K3, on the other hand they probe discrete torsion in D-geometry.
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1. Introduction

Conformal field theory on world-sheets with boundary (BCFT) has proven to be

a powerful tool for studying the quantum geometry of D-branes. In particular, inves-

tigating exactly solvable tensor products of N =2 minimal models [1,2] has provided

important insight in the D-geometry of Calabi-Yau threefolds, in the domain of strong

quantum corrections [3-12]. The purpose of the present letter is to investigate extra

gauge symmetries stemming from certain fixed points in the BCFT. As these arise

already in type II compactifications on K3, we will focus here on this particularly sim-

ple situation where all properly constructed BCFT states should have a well-defined,

classical geometric interpretation; however, most of our CFT considerations directly

apply also to general n-folds.

The problem can be stated as follows. Using the methods developed in [3], given

some Fermat (“Gepner”) point on a K3 surface one can easily find a list of boundary

states that correspond to D-brane configurations E with RR-charges
†

v(E) = (q4, q2, q0) ≡ (rk, c1, r + 1
2c1

2−c2) ∈ Heven(K3, ZZ) . (1)

It is in fact possible to extract more bundle data than just the charges from the BCFT,

like for instance the number of moduli of a configuration. For some configurations it

was found in [5,6] that the number ν of vacuum states in the open string sector is

larger than one. Physically, this corresponds to extra gauge fields on the world-volume

and mathematically to a degenerate bundle or sheaf. If there are ν̃ > 1 U(1) factors

in the gauge group (where 1 ≤ ν̃ ≤ ν), such configurations should be considered

as reducible because each U(1) corresponds to an independent center-of-mass degree

of freedom of a multi-brane system. There is no fundamental distinction between a

multi-brane system and a bound state at threshold with the same overall charges, as

these configurations live on the same continuous branch of moduli space.

Our aim is to investigate such degenerate configurations with ν > 1, which corre-

spond to singular boundary points of the instanton moduli space where extra gauge

fields appear. In particular, we would like to find what the charge vectors v(i)

(i =1, ..., ν̃) of the individual components of a reducible configuration are. This first of

all requires understanding the CFT origin of the non-trivial multiplicities. As we will

see, they are rooted in certain “simple current” fixed points that generically appear

on the boundary but not in the bulk CFT. This reflects the fact that the relevant

† As usual, ci denote Chern classes and rk the rank of the corresponding bundle or sheaf.

− 1 −



geometric singularities do not appear on the manifold, but rather in bundles over it.

Upon resolving the fixed points, we will obtain the brane charges v(i) of the irreducible

components; they turn out to have a canonical description in terms of sub-sheaves of

semi-stable sheaves.

We will also find that while ν is given by the order of the stabilizer S of the

fixed point, the number ν̃ of irreducible components is given by the order of the so-

called [13] untwisted stabilizer U . If the stabilizer is realized only projectively on the

fixed point, then ν/ν̃ ≡N2 > 1, which leads to enhanced U(N) gauge symmetry on the

world-volume. This is analogous to D-branes on orbifolds with discrete torsion [14,15],

and provides an interesting mechanism for obtaining non-abelian gauge symmetries in

type II string compactifications, within the conformal field theory of N =2 minimal

models.

2. Fixed points in B-type N =2 boundary CFT

We consider the CFT describing the internal part of a Gepner model for an n-fold

(where n is the complex dimension of the Calabi-Yau space) at the Fermat point. It

is constructed out of the tensor product of r N =2 minimal models with levels ki,

suitably projected to ensure worldsheet supersymmetry and to allow (after the GSO

projection) for supersymmetry in the external spacetime [16]. While A- and B-type

boundary conditions [17] for such models have been studied over the past few years,

the resolution of fixed points under these projections has not yet been fully worked

out.

More concretely, for A-type states (associated to real submanifolds) the algebraic

problems associated with fixed points were pointed out in [18], analyzed in an example

in [8], and solved in [19]. For B-type states, associated to holomorphic geometry, fixed

point phenomena were first noticed in a geometrical context in [5]. Specifically, recall

that the B-type states in [1] were (partially) labelled by integers ~L =(L1, ..., Lr),

where 0≤Li ≤ [ki/2]. It was observed in [5,6,8] that whenever a label Li reaches

ki/2, then by virtue of field identifications there is an extra copy of the vacuum state

contributing to open string amplitudes. Each such vacuum state corresponds to a

gauge field on the brane world-volume [3]. The details depend on whether n + r is

even or odd [6], and altogether it is found that the total number of such vacuum states

is:

ν = 2ℓ̃ , ℓ̃ =

{
ℓ n + r odd
ℓ − 1 n + r even, ℓ > 0
0 n + r even, ℓ = 0 ,

(2)
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where ℓ is the number of Li equal to ki/2. When all kj are odd, as for example in the

case of the quintic threefold, then ν is always equal to one and the phenomena that

we are going to discuss do not appear.

The peculiarity of labels Li = ki/2 has been recognized before in a different con-

text, namely boundary operators in su(2) WZW models [20] with Dodd-type modular

invariant. It has been traced to the fixed point of the simple current that generates

the modular invariant [20,21,22]. This simple current has non-integer conformal di-

mension and therefore does not lead to a fixed point in the bulk theory. However it

leads to a fixed point in the boundary CFT, and as a consequence the boundary state

splits into a pair of states. Our aim is to resolve the analogous fixed points in N =2

Gepner models, and find what the charges of the resolved boundary states are.

2.1. Simple currents in the Gepner-Greene-Plesser construction

At the level of chiral CFT, the problem of constructing B-type boundary con-

ditions is characterized by both an increase in chiral symmetry (guaranteeing inte-

grality of U(1) charge) and a partial breaking of the chiral symmetry (because of

“twisted gluing conditions” [1], or non-trivial “automorphism type” [2]). To deal

with these complications in a direct manner would require the development of new

CFT techniques. However, mirror symmetry exchanges the A- and B-type boundary

conditions, so that we can more easily construct B-type states as A-type states in the

mirror model. As is well-known, the mirror model can be obtained, according to the

Greene-Plesser [23] construction, by modding out all phase symmetries, and BCFT

constructions allowing to deal with such a situation are available right now.

For the closed string spectrum it is sufficient to study the action of the orbifold

group on the primary fields of the theory. However, for obtaining modular data,

and a fortiori boundary conditions and the open string spectrum, it is essential to

understand the chiral realization of the symmetries. This can be done with simple

current techniques. We will not describe those techniques in any detail here, but

rather refer to ref. [24] for simple currents in general, and to [19] for the application of

simple currents to the construction of A-type boundary conditions in Gepner models,

as well as for further references. The general theory of boundary conditions in simple

current invariants will appear elsewhere [25]. (See also the appendix of the present

paper.)
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For a single N =2 minimal model at level k (whose primary fields are labelled,

up to field identification, by (l, m, s)), the most important simple currents are listed

in Table 1.

simple current (l, m, s) order conf. weight

v (0,0,2) 2 3/2

s (0,1,1) 4h or 2h k/8h

p (0,2,0) h k + 1/h

f (k,0,0) 2 k/4

Table 1: The most important simple currents of N =2 minimal models, for odd or

even level k, and with h = k + 2.

In more familiar terms, we note that v is just the primary field that contains

the world-sheet supercurrent(s), s is the primary field that contains the spectral flow

operator, while the monodromies of p give the phase symmetries. The simple current

f is distinguished because it is the only one with potential fixed points. It acts on

primary fields as f(l, m, s) = (k − l, m, s), and thus, if k is even, then f fixes all fields

of the form (l, m, s) =(k/2, m, s). By field identification we can write:

f = (k, 0, 0) ≡ (0, h, 2) = ph/2v . (3)

When forming the tensor product of minimal models, we add a subscript i to

indicate the factor. The Calabi-Yau projection, which turns the tensor product into

the exact solution of the Calabi-Yau sigma model, can be thought of as a simple

current extension by the currents wi = v1vi, i =2, ..., r and by u = vn+r
1

∏
i pi. To

obtain the mirror model, one must in addition include into the simple current group

all invariant phase symmetries, i.e., all combinations vǫ
1

∏
pi

πi that satisfy

∑

i

πi/hi + ǫ/2 ∈ ZZ , (4)

where πi =0, ..., hi−1 and ǫ = 0 if n + r is even, and ǫ=0, 1 if n + r is odd.
†

† The possibility of having ǫ 6= 0 is usually neglected in the literature, because it is irrelevant for

the computation of the closed string NS spectrum. This is no longer true in the open string

sector.
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As a first step in analyzing the fixed points, we need to know the stabilizer of

a given B-type boundary condition. This is rather simple. The only candidate fixed

point boundary conditions are those with Li = ki/2, for some i. So all we need to do

is to determine which combinations of fi are allowed phase symmetries. When n + r

is odd, it follows from (3) and (4) that every fi is allowed. Therefore the total number

of phase symmetries leaving ~L fixed is 2ℓ, where ℓ is the number of j with Lj = kj/2.

When n + r is even, only pairs fifj with i 6= j are allowed phase symmetries, so the

order of the stabilizer is 2ℓ−1. Thus, we see that ν as defined in (2) is indeed precisely

given by the order of the stabilizer S of ~L.

2.2. Projective representation and non-abelian gauge symmetry

An important result from the general theory [25] is that the number
⋄

of inde-

pendent boundary states associated to a given ~L is not given by the order ν of the

stabilizer S, but rather by the order ν̃ of the untwisted (or central) stabilizer U , which

differs from ν multiplicatively by a square number:

ν = ν̃ N2 . (5)

This equation means that a fixed point boundary state can be resolved into ν̃ indepen-

dent components that are not further decomposable. It is the analogue of the relation

|Γ|= ∑NR

i=1(dRi
)2 that was derived for orbifolds [14,26,15], where Γ is the discrete

group that is modded out and dRi
is the dimension of the irreducible (projective)

representation Ri of Γ. In our context the rôle of Γ is played by the stabilizer S, and

ν̃ is the number of irreducible representations. In the present BCFT construction,

these all have the same dimension N .
‡

More concretely, the untwisted stabilizer is associated with an alternating biho-

momorphism (a commutator two-cocycle describing an element of H2(S, U(1))), i.e.,

a pairing

E : S × S →C
×

⋄ More precisely, the number of ZZK orbits, where K = l.c.m.(ki + 2).

‡ More precisely, when forming tensor products of ordinary superconformal minimal models,

N = 2[̃ℓ/2] is always a power of two (see the appendix). Other values of N , given by powers

of K, should be possible by using N =2 coset models based on SU(K).
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compatible with the group law and equal to one on the diagonal. The untwisted

stabilizer is

U := {Π∈S; E(Ξ, Π) =1 ∀ Ξ∈S} . (6)

In general, E is the product of a (not necessarily alternating) bihomomorphism F

computed from the fixed point modular matrices, and the relative monodromies of

the currents:
♮

E = F e2πiX . (7)

If E is non-trivial (which means that ν/ν̃ = N2 > 1), we can have only a projective

realization of the stabilizer group (this may be called “discrete torsion” [27,28]). The

Hilbert space can then be written as H=V ⊗H′, where V =C
N is the representation

space for an N2-dimensional projective representation of S (the natural action of S
on V is by multiplication with N×N matrices). Accordingly, each of the ν̃ vertex

operators that describe the emission of U(1) gauge bosons on the boundary, gains

N×N additional “internal” indices, thereby forming vertex operators associated with

U(N) gauge symmetry.

The physical picture underlying (5) thus is that the collection of ν gauge fields

splits into ν̃ separate families, each containing N2 gauge fields carrying the adjoint

representation of U(N).

Accordingly, the fixed point D-brane boundary states split into ν̃ independent

“N -fold bound states”, each of which realizes a U(N) gauge symmetry on its world

volume. This is analogous to the argumentation in [14] where D-branes on orbifolds

with discrete torsion were considered. Specifically it it was argued [14,15] that discrete

torsion in the open string sector can be attributed to a flat but topologically non-trivial

background B-field on a torsion 2-cycle. The net effect of this is that the minimal

wrapping number of a D-brane is N , because configurations with charge less than N

are not allowed [15] due to global world-sheet anomalies [29,30]. We find that this

consistency condition is naturally encoded in the BCFT, in that the ν̃ independent

boundary states cannot be decomposed into further boundary states with smaller

charges.

It would be interesting to more explicitly see how the fixed point boundary states

with N >1 probe the torsion part of the 2-homology [31]. More broadly, it may also

be possible to give them a meaning in terms of twisted K-theory groups, which seems

to be the appropriate framework for D-branes in a B-field background [29,32]. These

issues are however beyond the scope of the present paper.

♮ See Appendix A for the details of the computation of F, X,E and U in Gepner models.
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2.3. RR charges of resolved boundary states

We now explain the computation of the RR charges of the B-type boundary

states that arise from resolving fixed points, and in particular how one finds the

corresponding geometric brane charge vectors v(i), i =1, ..., ν̃. In general the RR

charge is given, up to a normalization, by the one-point amplitude on the disk with

boundary condition a, with the insertion of the bulk vertex operator ΦRR of a massless

RR state. Since the boundary state ||a〉〉 simply encodes the information about all

such one-point functions, we can write the RR-charge suggestively as an inner product

qRR(a) ∝ 〈ΦRR〉a = 〈ΦRR||a〉〉

Furthermore, expanding the boundary state in a basis of Ishibashi states,

||a〉〉 =
∑

i

Bia|i〉〉 , (8)

we see that the RR charges are (up to a normalization) nothing else than the reflection

(“Cardy”) coefficients Bia of the massless RR Ishibashi fields in the expansion of a.

Of course, the full expansion contains many more terms, but those correspond to

massive, non-topological components that we are not interested in.

The problem with this computation is that the resulting charges are not properly

normalized and that there is no immediate connection to a geometric basis of the

charge lattice. Both normalization and basis can be fixed by computing the intersec-

tion form, given in CFT by the index tr(−1)F , and comparing it with the geometric

intersection form at the Gepner point [3]. It was found in [3] that there is a very

simple relation between the intersection numbers of the Li = 0 states and the inter-

section form of the periods in the ZZK -symmetric basis. Thus, once the ambiguities

are fixed for the ~L = 0 states, the charges of all remaining boundary states, and in

particular of the resolved ones, can be determined from the reflection coefficients.

For the reflection coefficients of the resolved B-type boundary states (constructed

as A-type states in the mirror modular invariant associated to the simple current

group, as explained above) we find explicitly:

B(λ,µ,f)(~L,M,S,Ψ) =

√
|Gmirr|
ν~Lν̃~L

Ψ(f)
∏

i∈/If

2

√
2

hi
sin

[
π

(li + 1)(Li + 1)

hi

]

×
∏

i∈If

e−2πi 3ki/16
r∏

i=1

1√
2hi

e2πiMmiti/2hi
1

2r
e−2πi(Ss1+

∑
r

i=2
S2si)/4

(9)
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In this expression, (λ, µ, f) labels the Ishibashi states, which according to the gen-

eral theory requires f =
∏

i∈If
fi to be a simple current which fixes the bulk field

label (λ, µ) = (l1, ..., lr, m1, ..., mr, s1, ..., sr). (In most cases, f will simply be the

identity field, but non-trivial f ’s are possible when li = ki/2 for some i). The com-

bination (λ, µ, f) must in addition possess the right relative monodromy to cancel

the discrete torsion with respect to all symmetries of the Gepner-Greene-Plesser

construction outlined above. Furthermore, Ψ is a character of the untwisted sta-

bilizer of ~L, M =0, ..., 2K−1 measures the unbroken spacetime supersymmetry
†
,

and t =(t1, ..., tr) is the combination with minimal (non-integer) U(1) charge, i.e.
∑

i ti/hi =1/K. The label S distinguishes branes (S =0, 1) from anti-branes (S =

2, 3). Moreover, a crucial ingredient is the factor e−2πi3ki/16 which comes from the

resolution of the fixed points. Its form is inferred from known fixed point matrices

[24,13] for the simple currents in su(2) WZW models. Finally, |Gmirr| is the order of

the Gepner-Greene-Plesser simple current group.

Note that formula (9) gives the minimal D-brane charges, namely the charges

when there is no discrete torsion. As mentioned above, when there is discrete torsion,

there are “N -fold bound states” which cannot be decomposed further, and consistency

[30] requires that the allowed charges are an integral multiple of (9), i.e.,

Q = N Qmin = N B . (10)

This is the BCFT analog of the formula Q = dR/|Γ| for D-branes on orbifolds with

discrete torsion [26].

3. An example

We consider the Gepner model with (k1, k2, k3) = (4, 4, 4), which geometrically

corresponds to a K3 defined by the equation
∑3

i=1 xi
6 + x4

2 =0 in IP(1, 1, 1, 3)[6]. It

figures as fiber in a CY threefold that was investigated in [6,7]. In these references,

the appearance of brane configurations with ν =1, 2, 4, 8 was noticed, and this was

one of the motivations for the present investigation.

† M runs over even or odd values depending on the parity of ~L.
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In order to determine the RR charge vectors from the reflection coefficients (9),

we first need to have the complete set of massless Ishibashi RR states. For the model

at hand, the following massless RR fields can couple to B-type boundary states:

Φ
(1)
RR =

[
φL

(0,1,1)φ
R
(0,−1,−1)

]3

Φ
(2)
RR =

[
φL

(0,−1,−1)φ
R
(0,1,1)

]3

Φ
(3)
RR =

[
φL

(2,3,1)φ
R
(2,−3,−1)

]3

(11)

where φL,R
(l,m,s) are left- and right-moving primary fields. Using (9), we find that the

charges of the orbit of ~L=(0, 0, 0), S =0 states in this basis are, up to normalization

(ρ := e2πi/6):

QBCFT
(0,0,0) =




1 1 1
ρ −ρ2 −1
ρ2 −ρ 1


 . (12)

The columns correspond to the three Ramond ground states (11), while the rows

correspond to the different M labels, i.e. M =0, 2, 4 for ~L =(0, 0, 0). We have sup-

pressed the lower half of this matrix (M =6, 8, 10), because it is simply the negative

of the upper half and so represents the anti-branes. From [6], we know the analytic

continuation from the Gepner to the geometric charge basis at large radius, and by

inverting (12), we can easily find the matrix H that furnishes the change of basis:

H =
1

3




ρ2 2 −ρ
−ρ 2 ρ2

4 −4 4


 . (13)

Indeed, multiplying (12) from the right with H, we obtain,

vi
(0,0,0) = QBCFT

(0,0,0)H =




1 0 1
−2 2 −1
1 −2 2


 ,

which gives back the charges of the Li =0 states as given in [6,7] (up to a slight change

of basis).

To compute the charges of the remaining states, we notice that the ambiguity in

the normalization of (12) rests inside each column. Also, compared to equation (9),

we have omitted the factors
(
sin3 π

6 , sin3 π
6 , sin3 3π

6

)
. Such ambiguities just change

− 9 −



the normalization of each charge, and can be adjusted by a redefinition of the basis

change (13) that connects the BCFT charges with the geometric brane charges. With

this normalization in mind, one can easily compute the charges of the boundary states

with ~L 6=(0, 0, 0). With the help of trigonometric identities one can thereby recover

the charges found in [3,5], and listed in the Table below.

For example, the charges of states with ~L = (2, 2, 2) are given by

QBCFT
(2,2,2) =




(
sin 3π

6

sin π
6

)3 (
sin 3π

6

sin π
6

)3 (
sin 9π

6

sin 3π
6

)3

(
sin 3π

6

sin π
6

)3

ρ
(

sin 3π
6

sin π
6

)3

ρ5
(

sin 9π
6

sin 3π
6

)3

ρ3

(
sin 3π

6

sin π
6

)3

ρ2
(

sin 3π
6

sin π
6

)3

ρ4
(

sin 9π
6

sin 3π
6

)3




=




8 8 −1
8ρ −8ρ2 1
8ρ2 −8ρ −1


 = (g−1 + 1 + g)3 QBCFT

(0,0,0) ,

(14)

where g =




0 1 0
0 0 1
−1 0 0


 is the appropriate shift matrix. This yields the following

RR charges in the geometrical basis:

vi
(2,2,2) = QBCFT

(2,2,2)H =




−4 12 −4
−4 4 4
−4 −4 4


 . (15)

More precisely, because of the fixed points, these charges are the unresolved overall

charges of reducible brane configurations. We now would like to know into how many

irreducible components these (and also the other ν > 1) states split, and what the

charge vectors v of these components are. In the following, we will explicitly work out

the relevant combinatorics of the twisted and untwisted stabilizers in our example.

More details regarding the general case can be found in the appendix.

The phase symmetries (4) we divide by in the Greene-Plesser construction are

generated by the following simple currents:

Π1 = p1p
5
2

Π2 = v1p
3
1 .

(16)

As is easy to see, and follows from the general discussion after eq. (4), the simple

current group generated by the currents (16) together with the wi and u = v1p1p2p3,
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contains all three currents f1, f2, and f3. Because of the permutation symmetry, there

are then three different possible stabilizers in our example:

S =






ZZ2 = {1, f1} ~L = (2, ∗, ∗) (ν = 2)

ZZ
2
2 = {1, f1, f2, f1f2} ~L = (2, 2, ∗) (ν = 4)

ZZ3
2 = {1, f1, f2, f3, f1f2, f1f3, f2f3, f1f2f3} ~L = (2, 2, 2) (ν = 8)

(17)

(where ∗ = 0, 1).

To determine the untwisted stabilizer, we need to determine the bihomomorphism

(7). In the case of our interest, all levels are equal to zero modulo 4. It is then easy

to see that the fixed point matrices in (9) satisfy the same simple current relations as

the modular S matrix [24]. Therefore, the bihomomorphism F which would measure

the deviation from the usual simple current relations, is identically equal to one.

Furthermore, the matrix of relative monodromies on the stabilizer is given by

X(fi, fj) = X(p
hi/2
i , p

hj/2
j ) + X(vi, vj) = −δij

hi

hi

2

hj

2
+

1

2
=

{
0 mod ZZ i = j
1/2 mod ZZ i 6= j

on the generators of the stabilizers. Thus, E is given by

E(fi, fj) = (−1)1+δij .

Consider the untwisted stabilizer (6) for the case ν =4 in (17). Since E(f1, f2) =E(f2, f1) =

E(f1f2, f1) =−1, we see that in fact no non-trivial element of the stabilizer ZZ2
2 is in

the kernel of E, and the untwisted stabilizer is trivial. More generally we find for all

the other cases:

U =





ZZ2 = {1, f1} , ν̃ = 2 (for ν = 2)
{id} , ν̃ = 1 (for ν = 4)
ZZ2 = {1, f1f2f3} , ν̃ = 2 (for ν = 8) ,

which corresponds to N =1, 2, 2, respectively, in (5). According to our general reason-

ing, we thus find non-abelian gauge groups for the ν =4, 8 boundary states, namely

U(2) and U(2) × U(2), respectively.

The general result, computed in the appendix, is that for Gepner models, ν̃ =1

when ℓ̃ is even, ν̃ =2 when ℓ̃ is odd, and hence N =2[̃l/2].

To determine the resolved charge vectors from equation (9), we need to know

the complete labels of the RR ground states (11), i.e., not only the bulk labels, but

also the currents associated with them. Now Φ
(1)
RR and Φ

(2)
RR obviously have trivial
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stabilizer, so they must be combined with the identity simple current. However, for

Φ
(3)
RR the stabilizer is ZZ2 = {1, f1f2f3}, and there is a slight ambiguity as to what we

mean actually by Φ
(3)
RR. By considering the fibration of the K3 to a CY threefold, it

appears that the only consistent choice is to associate Φ
(3)
RR with the identity as well.

Having fixed the labels, and taking into account (9) and (10), we then find that

the charge vectors of the resolved boundary states are simply given by 1/ν̃ times the

charge vectors of the unresolved states. That is, the coefficients of their expansion into

massless RR Ishibashi states (8) turn out to be the same (up to an overall factor of

1/ν̃) as for the unresolved boundary states.
†

This is fortunate, since, as we will discuss

in the next section, it is precisely what we expect from the geometry of semi-stable

sheaves.

Note that the untwisted stabilizer (i.e., the discrete torsion) plays an important

rôle in determining what the charges of the resolved D-brane states are. For example,

for the fixed point boundary states with ν = 8 the unresolved charges vi
(2,2,2) in (15)

are multiples of four, and one might have been tempted to believe that the resolved

states have 1/4 of these charges. However, the resulting charges cannot describe

physical states, as the complex dimension of the moduli spaces, given by the Mukai

formula µ(v) = 〈v, v〉 + 2 [33], turns out to be fractional; in other words, the charges

are not properly quantized. This is a reflection of the fact, as mentioned above, that in

the presence of discrete torsion, ν/ν̃≡N2 > 1, we have “N -fold bound states” whose

charges are N times larger (cf., (10)); for the ν = 8 states we have ν̃ = 2 so that the

resolved states have charges which are one-half of vi
(2,2,2) in (15).

We have summarized all the relevant data in Table 2, which is the refinement

of a similar table in ref. [6], where the subtleties of the untwisted stabilizer were not

taken care of.

† Due to the independence of the ν̃ resolved states, these must then differ in the massive, non-

topological Ishibashi expansion components.
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Li v(E) =
(
r, c1(E), r+1

2c1
2(E)−c2(E)

)
ν ν̃ G

[0,0,0] (1,0,1) (1,-2,2) (2,-2,1) 1 1 U(1)

[1,0,0] (1,0,-1) (1,-2,0) (0,2,-1) 1 1 U(1)

[1,1,0] (1,-4,1) (1,2,-2) (2,-2,-1) 1 1 U(1)

[1,1,1] (3,0,-3) (3,-6,0) (0,6,-3) 1 1 U(1)

[2,0,0] (2,0,0) (2,-4,2) (0,0,-2) 2 2 U(1) × U(1)

[2,1,0] (2,0,-2) (2,-4,0) (0,4,-2) 2 2 U(1) × U(1)

[2,1,1] (2,-8,2) (2,4,-4) (4,-4,-2) 2 2 U(1) × U(1)

[2,2,0] (4,-4,0) (0,4,-4) (0,4,0) 4 1 U(2)

[2,2,1] (4,0,-4) (4,-8,0) (0,8,-4) 4 1 U(2)

[2,2,2] (4,-12,4) (4,-4,-4) (4,4,-4) 8 2 U(2) × U(2)

Table 2: Labels and unresolved RR brane charges of boundary states on the K3

surface in IP(1, 1, 1, 3)[6]. Furthermore, ν denotes the order of the stabilizer of the

fixed points, which gives the total number of gauge fields, while ν̃ is the order of

the untwisted stabilizer, which gives the number of U(N) factors and irreducible

components (with charges given by 1/ν̃ of the overall charges). On the right we

list the unbroken gauge groups G, as implied by the discrete torsion. Geometrically,

configurations with ν̃ > 1 correspond to strictly semi-stable sheaves.

4. Boundary fixed points and semi-stable sheaves

We now discuss the resolution of the boundary CFT fixed points from the view-

point of space-time geometry. Note first of all that the simple currents fi generically

have non-integer dimensions, and when this is the case, the fixed points cannot ap-

pear in the bulk, but only on the boundary. Geometrically this should mean that

these fixed points do not correspond to singularities of the manifold, but rather to

the degeneration of bundles over it.

This touches upon an interesting mathematical issue, namely the compactifica-

tion of the moduli space of instantons (mathematically: holomorphic vector bun-

dles, or more generally torsion-free coherent sheaves) on K3. Recall that for a

given Mukai charge vector v(E) (1), the complex dimension of the moduli space is
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µ(v(E)) = 〈v(E), v(E)〉+ 2 [33]. Over this space the structure of bundles or sheaves E
changes, and can in particular degenerate.

To be specific, consider for example rank two configurations with charges
†

v = (2, 0, 2−2k), k≥ 2 (which indeed appear in the BCFT construction of the K3

we discussed in the present paper, see Table 2 and [6,7]). These correspond to

SU(2) bundles with instanton number c2 =2k, whose moduli spaces have dimen-

sion µ =2rc2 − 2 dimG =8k − 6. As is well-known, these moduli spaces are (almost)

the same as the moduli spaces of SU(2) N =2 gauge theories with Nm =2rc2 hyper-

multiplets. At generic points the Higgs VEVs break the gauge symmetry completely

(ν = ν̃ =1); however at the origin, where the VEV’s of all hypermultiplets vanish,

there is an extra unbroken SU(2) gauge group (ν =4, ν̃ =1). In terms of the brane

picture, this degeneration corresponds to small instantons, ie., point-like D0-branes.

One can also envision a degeneration where just an extra U(1) factor appears, which

then would correspond to a reducible configuration with ν = ν̃ =2. In particular, the

degeneration into a reducible line bundle, E ∼ L ⊕ L−1, was discussed in [35]. Physi-

cally, this means that the brane configuration splits into two irreducible components

with non-zero first Chern class: v(±) =(1,±c1, 1−k).

In the present paper, we have found that resolving BCFT fixed points amounts

to decomposing a reducible brane system into irreducible components in the simplest

manner, namely into building blocks with identical charges. Specifically, what we find

is, for example, that a rank two bundle with charges (2, 0, 2 − 2k) and ν =2 splits

into two configurations, each with charges (1, 0, 1 − k). Unlike the above-mentioned

degeneration v → v(+) ⊕ v(−) [35], such a degeneration cannot be described in terms

of ordinary U(1) line bundles (since these would imply c1 6= 0), but it does not have

to.

Rather, it is known [36] that the moduli space of stable bundles on K3 is natu-

rally compactified by adding strictly semi-stable sheaves, which is more general than

bundles.
⋄

Physically, this amounts to including point-like degrees of freedom, in the

present example (k − 1) D0-branes sitting on each of two D4-branes.
‡

Such strictly

(Gieseker) semi-stable sheaves E have the property [33] that they have proper sub-

sheaves E ′ with rk E ′ < rk E and charges v(E ′), such that the normalized Mukai vectors

† The compactification of the moduli space of such bundles has been investigated in ref. [34].

⋄ For related considerations in the physics literature, see e.g., [37,38,39,40,41].

‡ Since this configuration is expected to exist also when the K3 is large, this should have a

conventional interpretation, for example in terms of a background B-field.

− 14 −



v(E)/rkE and v(E ′)/rk E ′ are equal. This can only occur when gcd(q4, q2, q0) > 1 (for

primitive charge vectors, gcd(q4, q2, q0) = 1, the moduli space is already compact).

Physically this condition corresponds to collinear central charges and thus to bound

states at threshold.

Precisely this structure, namely the degeneration into components with charges

v(i) = v(E)/ν̃, is what we find from CFT. While expected on general grounds, this is

nevertheless reassuring, since a priori the resolution of boundary fixed points might

have given something else and turned out to be incompatible with a geometric pic-

ture, in particular with the picture of decomposing into sub-sheaves. We thus meet

another instance where abstract properties of 2d superconformal field theory possess

an identifiable, concrete geometrical meaning when translated into the space-time

picture.
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Appendix A. Untwisted stabilizers

We discuss the general fixed point combinatorics for B-type boundary states in

Gepner models and in particular derive the general rule ν̃ =2
1−(−1)̃ℓ

2 for the order of

the untwisted stabilizer. Together with ν =2ℓ̃, this implies N =2[ℓ̃/2].

We first recall from [13] the definition of the bihomomorphism F on the stabilizer.

Consider some CFT with modular S matrix Sab and some simple current group G. For

all J ∈G, one can define a fixed point matrix SJ
ab between fields a, b with J ∈Sa ∩Sb,

where Sa ⊆G is the stabilizer of the primary field a. While the S matrix satisfies the

usual simple current relation

Sa,Kb = e2πiQK(a)Sab ,
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where QK(a) is the monodromy charge of a with respect to K, this is generically

violated for the fixed point matrices, and the violation is measured by F , i.e.:

SJ
a,Kb = e2πiQK(a)Sab F ∗

b (K, J) .

The second ingredient in the bihomomorphism (7) is the pairing X (defined

modulo ZZ). The symmetric part of X is determined by the conformal weights of the

currents. According to the general results of [42], the antisymmetric part of X can be

freely chosen (with some restrictions) and together with the choice of simple current

group G determines the modular invariant
♮
.

We now compute F in the situation of the main text, considering the case

n + r even first. For a given ~L, we denote I := {i; Li=ki/2}, distinguish some

a0 ∈ I (assuming I 6= ∅), denote the corresponding simple current by f0, and let

the stabilizer S~L be generated by f0a = f0fa, with a∈ I. We have S~L
∼=(ZZ2)

ℓ−1,

where ℓ = |I|. To compute the twisting of simple current relations, consider

(~L, M, S) =(.., k0/2, .., ka/2, .., kb/2, .., ...) and (λ, µ) = (..., k0/2, .., ka/2, .., lb, ..., ...).
∗

Explicitly, the relevant SU(2) part of the fixed point matrix is, up to irrelevant factors,

Sf0a

λ,~L
∼

∏

i6=a0,a

sin

[
π

(li + 1)(Li + 1)

hi

] ∏

i=a0,a

e−2πi 3ki/16 ,

which is a part of the expression (9). Then one easily finds:

Sf0a

λ,f0b
~L

=

{
(−1)lbSf0a

λ,~L
a 6= b

Sf0a

λ,~L
a = b .

We conclude that

F~L(f0b, f0a) =

{
(−1)k0/2 a 6= b
(−1)k0/2+ka/2 a = b ,

which gives the first part of (7).

To find the correct choice of X requires a careful analysis of the Greene-Plesser

construction. In turns out that to obtain the mirror modular invariant as a simple

♮ Notice that in [42], the antisymmetric part of X is called “discrete torsion” on the simple
current group. In the main part of the present paper, we have chosen to call E the “discrete

torsion” on the stabilizer.

∗ We only divide k’s by two when they are even.
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current invariant, one has to define X by X(pa, pb) = δabha/2 and X(va, vb) = 1/2.

Recalling fa = p
h/2
a va, one finds:

X(f0a, f0b) =
h0

4
+

ha

4
δab .

Putting things together, we thus have:

E~L(f0a, f0b) = F~L(f0a, f0b) e2πiX(f0a,f0b) = (−1)1+δab .

Computing the untwisted stabilizer (6) is now an easy exercise. Consider some

φ =
∏

b∈I′ f0b ∈S~L, with I ′⊆ I \{a0}.

E~L(f0a, φ) =

{
(−1)|I

′| a∈/ I ′

(−1)|I
′|−1 a∈ I ′ .

For φ to be in U~L, we must require E~L(f0a, φ) =1 for all a. This is only possible if

I ′ = ∅, or if I ′ = I \{a0} and |I|= ℓ is even. We conclude:

U~L =

{
ZZ2 ℓ even, ℓ 6= 0
{id} ℓ odd or ℓ = 0 .

The combinatorics for the boundary states in the case n + r = odd can be mapped

to n + r =even by appending a trivial factor with k0 =0. Put differently, the above

derivation still holds by letting S~L be generated by f0a = fa, without distinguishing

any particular a∈ I. Simple current twists and monodromy carry over mutatis mu-

tandis, but the final result is somewhat different: φ∈U~L if either I ′ = ∅ or I ′ = I, and

|I| odd. We conclude:

U~L =

{
ZZ2 ℓ odd
{id} ℓ even .

The claims then follow.
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