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Abstract

The computation of the correction∆r in the W-Z mass correlation, derived from muon
decay, is described at the two-loop level in the Standard Model. Technical aspects which
become relevant at this level are studied, e.g. gauge-parameter independent mass renormal-
ization, ghost-sector renormalization and the treatment ofγ5. Exact results for∆r and the W
mass prediction includingO(α2) corrections with fermion loops are presented and compared
with previous results of a next-to-leading order expansion in the top-quark mass.
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1 Introduction

The electroweak Standard Model (SM), together with the theory of strong interactions (Quantum
Chromodynamics, QCD), provides a comprehensive description of experimental data with remark-
able consistency. In order to further test the validity of the SM predictions and restrict its only
missing parameter, the Higgs boson mass, precision measurements play a key role. The analysis
of precision observables is sensitive to quantum corrections in the theoretical predictions, which
depend on all the parameters of the model. In this way, the top-quark mass,mt, had been predicted
in the region where it was experimentally found.

The constraints on the Higgs mass,MH, are still rather weak sinceMH appears only loga-
rithmically in the leading order SM predictions. Therefore it is of high interest to further reduce
experimental and theoretical uncertainties. An important quantity in this context is the quantum
correction∆r in the relation of the gauge boson massesMW, MZ with the Fermi constantGF and
the fine structure constantα [1].

This relation is established in terms of the muon decay width, which was first described in the
Fermi Model as a four-fermion interactionµ− → e− νµ ν̄e with couplingGF. This yields for the
muon decay width

Γµ =
G2

F m5
µ

192π3
F

(
m2

e

m2
µ

)
(1 + ∆q) , (1)

whereF (m2
e/m

2
µ) subsumes effects of the electron mass on the final-state phase space and∆q de-

notes the QED corrections in the Fermi Model. Including two-loop QED corrections [2, 3] one ob-
tains from the measurement of the muon decay width [4]GF = (1.16637± 0.00001) 10−5 GeV−2.

The decay process in the SM, on the other side, involves the exchange of a W boson and
additional electroweak higher order corrections. Although not part of the Fermi Model, tree-level
W propagator effects are conventionally included in eq. (1) by means of a factor(1 + 3

5
m2

µ/M2
W).

Yet, this is of no numerical significance. The relation between the Fermi constantGF and the SM
parameters is expressed as

GF√
2

=
e2

8s2
WM2

W
(1 + ∆r) . (2)

Here the SM radiative corrections are included in∆r (with s2
W = 1−M2

W/M2
Z).

SinceGF is known with high accuracy it can be taken as an input parameter in equation (2) in
order to obtain a prediction for the W mass (MW is still afflicted with a considerable experimental
error,MW = 80.419± 0.038 GeV [5]):

M2
W = M2

Z

[
1

2
+

√
1

4
− απ√

2GFM
2
Z

(1 + ∆r)

]
. (3)

Since∆r itself depends onMW, eq. (3) is to be understood as an implicit expression.
One expects substantial improvement on the W mass determination from future colliders,

which will allow for increasingly stringent constraints on the SM from the comparison of the pre-
diction with the experimental value forMW. This requires an accurate theoretical determination of
the quantity∆r.
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The one-loop result [1, 6] can be split into the following contributions:

∆r(α) = ∆α− c2
W

s2
W

∆ρ + ∆rrem(MH). (4)

Dominant corrections arise from the shift in the fine-structure constant,∆α, due to large logarithms
of light-fermion masses (≈ 6%), and from the leading contribution∝ m2

t to theρ parameter result-
ing from the top/bottom doublet, which enters through∆ρ (≈ 3.3%). The full MH–dependence is
contained in the remainder∆rrem (≈ 1%).

Furthermore, QCD corrections ofO(ααs) [7] andO(αα2
s) [8] are known. Leading electroweak

fermionicO(α2) contributions were first taken into account by means of resummation relations [9].
Different approaches for the calculation of electroweak two-loop corrections have been pursued,
involving expansions for large values ofMH [10] andmt [11, 12, 13].

It turned out that both the leadingO(α2m4
t /M

4
W) [12] and the next-to-leadingO(α2m2

t /M
2
W)

[13] coefficients in themt expansion yield important corrections of comparable size. Therefore a
complete two-loop calculation of fermionic contributions would be desirable in order to further re-
duce the theoretical uncertainty, in particular if one considers that these contributions are dominant
already in the one-loop result.

A first step into this direction was the determination of the exact Higgs mass dependence of the
fermionicO(α2) corrections to∆r [15]. Recently the full calculation of these contributions [16]
has been accomplished. The results include all electroweak two-loop diagrams with one or two
fermion loops without any expansion inmt or MH. This talk gives an overview on the techniques
and the results of this calculation.

2 Calculational methods

Since in the present calculation all possibly infrared divergent photonic corrections are already
contained in the definition (1) of the Fermi constantGF and mass singularities are absorbed in the
running of the electromagnetic coupling,MW represents the scale for the electroweak corrections
in ∆r. Therefore it is possible to neglect all fermion masses except the top quark mass and the
momenta of the external leptons so that the muon decay diagrams reduce to vacuum diagrams.

All QED contributions to the Fermi Model have to be excluded in the computation of∆r as
they are separated off in the definition ofGF, see eq. (1). When writing the factor(1+∆q) formally
as(1 + ∆ω)2 the decay width up toO(α2) can be decomposed as

Γµ = Γµ,tree(1 + ∆ω)2 (1 + ∆r)2

= Γµ,tree

[
1 + 2(∆ω(α) + ∆r(α)) + (∆ω(α) + ∆r(α))2 + 2∆ω(α)∆r(α)

+2∆ω(α2) + 2∆r(α2) +O(α3)
]
.

(5)

Apart from the one-loop contributions this includes two-loop QED corrections∆ω(α2) and mixed
contributions of QED and weak corrections∆ω(α)∆r(α) which both thus have to be excluded
in ∆r(α2). For fermionic two-loop diagrams it is possible to find a one-to-one correspondence
between QED graphs in Fermi Model and SM contributions.
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The renormalization is performed in the on-shell scheme. In this context the mass renormal-
ization constants require the computation of two-loop self-energy diagrams with non-vanishing
momentum.

All decay amplitudes and counterterm contributions have been generated with the program
FeynArts 2.2[17]. The amplitudes are algebraically reduced by means of a general tensor inte-
gral decomposition for two-loop two-point functions with the programTwoCalc[18], leading to a
fixed set of standard scalar integrals. Analytical formulae are known for the scalar one-loop [19]
and two-loop [20] vacuum integrals whereas the two-loop self-energy diagrams can be evaluated
numerically by means of one-dimensional integral representations [21].

In order to apply an additional check the calculations were performed within a covariantRξ

gauge, which introduces one gauge parameterξi, i = γ, Z,W, for each gauge boson. It has been
explicitly checked at the algebraic level that the gauge parameter dependence of the final result
drops out.

3 On-shell renormalization

For the determination of the one-loop counterterms (CTs) and renormalization constants the con-
ventions of ref. [22] are adopted. Two-loop renormalization constants enter via the counterterms
for the transverse W propagator and the charged current vertex:[

W W
]

T
= δZW

(2)(k
2 −M2

W)− δM2
W(2)− δZW

(1)δM
2
W(1), (6)

W+ νe

e−

= i
e√
2sW

γµω−
[
δZe(2) − δsW(2)

sW

+
1

2

(
δZeL

(2) + δZW
(2) + δZνL

(2)

)
(7)

+ (1-loop renormalization constants)
]
.

Here,δZφ denotes the field-renormalization constant of the fieldφ, δM2
φ the corresponding mass

CT, andδZe the charge-renormalization constant. The numbers in parentheses indicate the loop
order. The mixing angle CT,δsW(2), is expressible through the gauge boson mass CTs. Throughout
this paper, the two-loop contributions always include the subloop renormalization.

The on-shell masses are defined as the position of the propagator poles. Starting at the two-
loop level, it has to be taken into account that there is a difference between the definition of the
massM̃2 as the real pole of the propagatorD,

<
{
DT)

−1(M̃2)
}

= 0, (8)

and the real partM
2

of the complex pole,

(DT)
−1(M2) = 0, M2 = M

2 − iM Γ. (9)

The imaginary part of the complex pole is associated with the widthΓ. The definition (9) yields
for the W mass CT

δM
2
W(2) = <{ΣW

T(2)(M
2
W)} − δZW

(1)δM
2
W(1) + ={ΣW/

T(1)(M
2
W)} ={ΣW

T(1)(M
2
W)}, (10)
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whereas for the real pole definition the last term of eq. (10) is missing.ΣW
T , ΣW/

T denote the
transverse W self-energy and its momentum derivative. Similar expressions hold for the Z boson.

The W and Z mass CTs determine the two-loop mixing angle CT,δsW(2), which has to be
gauge invariant sincesW is an observable quantity. With the use of a generalRξ gauge it could be
explicitly checked thatδsW(2) is gauge-parameter independent for the complex-pole mass definition,
whereas the real-pole definition leads to a gauge dependentδsW(2). This is in accordance with the
expectation from S-matrix theory [23], where the complex pole represents a gauge-invariant mass
definition.

It should be noted that the mass definition via the complex pole corresponds to a Breit-Wigner
parameterization of the resonance shape with a constant width. For the experimental determination
of the gauge boson masses, however, a Breit-Wigner ansatz with a running width is used. This has
to be accounted for by a shift of the values for the complex pole masses [24],

M = M − Γ2

2M
, (11)

which yields the relations

MZ = MZ − 34.1 MeV,
MW = MW − 27.4 (27.0) MeV for MW = 80.4 (80.2) GeV.

(12)

For MZ andΓZ the experimental numbers are taken. The W mass is a calculated quantity, and
therefore also a theoretical value for the W boson width should be applied here.1 The results above
are obtained from the approximate, but sufficiently accurate expression for the W width,

ΓW = 3
GFM

3
W

2
√

2π

(
1 +

2αs

3π

)
. (13)

At the subloop level, also the Faddeev-Popov ghost sector has to be renormalized. The gauge-
fixing sector for the gauge fieldsAµ, Zµ, W±µ (χ, φ± denote the unphysical Higgs scalars)

Lgf = −1

2

(
(F γ)2 + (F Z)2 + F+F− + F−F+

)
,

F γ = (ξγ
1 )
− 1

2 ∂µAµ +
ξγZ

2
∂µZµ, (14)

F Z =
(
ξZ
1

)− 1
2 ∂µZµ +

ξZγ

2
∂µAµ −

(
ξZ
2

) 1
2 MZ χ,

F± =
(
ξW
1

)− 1
2 ∂µW±µ ∓ i

(
ξW
2

) 1
2 MW φ±

does not need renormalization. Accordingly, one can either introduce the gauge-fixing term af-
ter renormalization or renormalize the gauge parameters in such a way that they compensate the
renormalization of the fields and masses. Both methods ensure that no counterterms arise from the

1In the version of this paper appearing in the proceedings for simplicity a fixed shift of leading order has been used.
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gauge-fixing sector but they differ in the treatment of the ghost Lagrangian, which is given by the
variation of the functionalsF a under infinitesimal gauge transformationsδθb,

LFP =
∑

a,b=γ,Z,±
ūa δF a

δθb
ub. (15)

In the latter case, which was applied in this work, additional counterterm contributions for the ghost
sector arise from the gauge parameter renormalization. The parametersξa

i in (14) are renormalized
such that their CTsδξa

i exactly cancel the contributions from the renormalization of the fields and
masses and that the renormalized gauge parameters comply with theRξ gauge.

4 Treatment of theγ5–problem

In four dimensions the algebra of theγ5–matrix is defined by the two relations

{γ5, γα} = 0 for α = 1, . . . , 4 (16)

Tr{γ5γ
µγνγργσ} = 4iεµνρσ. (17)

It is impossible to translate both relations simultaneously intoD 6= 4 dimensions without encoun-
tering inconsistencies [25].

A certain treatment ofγ5 might break symmetries, i.e. violate Slavnov-Taylor (ST) identities
which would have to be restored with extra counterterms. Even after this procedure a residual
scheme dependence can persist which is associated withε-tensor expressions originating from
the treatment of (17). Such expressions cannot be canceled by counterterms. If they broke ST
identities this would give rise to anomalies.

’t Hooft and Veltman [25] suggested a consistent scheme which was formulated by Breit-
enlohner and Maison [26] as a separation of the first four and the remaining dimensions of the
γ-Matrices (HVBM-scheme). It has been shown [27] that the SM with HVBM regularization is
anomaly-free and renormalizable. This shows thatε-tensor terms do not get merged with diver-
gences.

The naively anti-commuting scheme, which is widely used for one-loop calculations, extends
the rule (16) toD dimensions but abandons (17),

{γ5, γα} = 0 for α = 1, . . . , D (18)

Tr{γ5γ
µγνγργσ} = 0. (19)

This scheme is unambiguous but does not reproduce the four-dimensional case.
In the SM particularly triangle diagrams (Fig. 1) containing chiral couplings are sensitive to

the γ5–problem. For the presented work one-loop triangle diagrams have been explicitly calcu-
lated in both schemes. While the naive scheme immediately respects all ST identities the HVBM
scheme requires the introduction of additional finite counterterms. Even after this procedure fi-
nite differences remain between the results of the two schemes, showing that the naive scheme is
inapplicable in this case.
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Figure 1: Generic Standard Model triangle diagrams subject to theγ5–problem.
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Figure 2: CC vertex diagrams with triangle subgraphs.

In the calculation of∆r triangle diagrams appear as subloops of two-loop charged current
(CC) vertex diagrams (Fig. 2). One finds that for the difference terms between both schemes this
loop can be evaluated in four dimensions without further difficulties. This can be explained by the
fact that renormalizability forbids divergent contributions toε-tensor terms from higher loops in
the HVBM scheme. Theε-tensor contributions from the triangle subgraph in the HVBM scheme
meet a secondε-tensor term from the outer fermion lines in Fig. 2, thereby resulting in a non-zero
contribution to∆r.

Computations in the HVBM scheme can get very tedious because of the necessity of additional
counterterms. Therefore another method shall be examined. One can consider a ”mixed” scheme
that uses both relations (16) and (17) inD dimensions despite their mathematical inconsistency.
This scheme is plagued by ambiguities ofO(D − 4). When applied to the calculation of one-
loop triangle diagrams the results immediately respect all ST identities and differ from the HVBM
results only by terms ofO(D − 4),

ΓHVBM
∆(1) = Γmix

∆(1) +O(D − 4). (20)

Since for the difference terms the second loop can be evaluated in four dimensions, this also holds
for the two-loop CC diagrams,

ΓHVBM
CC(2) = Γmix

CC(2) +O(D − 4). (21)

Thus the mixed scheme, despite being mathematically inconsistent, can serve as a technically
easy prescription for the correct calculation of the CC two-loop contributions.

5 Results

In the previous sections the characteristics of the calculation of electroweak two-loop contributions
to ∆r have been pointed out. Combining the fermionicO(α2) contributions with the one-loop and
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Figure 3: Contribution of one-loop and higher order corrections to∆r.

the QCD corrections yields the total result

∆r = ∆r(α) + ∆r(ααs) + ∆r(αα2
s) + ∆r(Nf α2) + ∆r(N2

f
α2). (22)

HereNf , N
2
f symbolize one and two fermionic loops respectively. Fig. 3 shows that both the QCD

and electroweak two-loop corrections give sizeable contributions of 10–15% with respect to the
one-loop result.

In Fig. 4 the prediction forMW derived from the result (22) and the relation (3) is compared
with the experimental value forMW. Dotted lines indicate one standard deviation bounds. The
main uncertainties of the prediction originate from the experimental errors ofmt = (174.3± 5.1)
GeV [4] and∆α = 0.05954 ± 0.00065 [28]. It can be noted that light Higgs masses are favored
by this analysis. Further implications of the precision calculation ofMW are discussed in [30].

These results can be compared with the results obtained by expansion of the two-loop contri-
butions up to next-to-leading order inmt [13, 14]. The predicted values forMW for several values
of MH are given in Tab. 1. Agreement is found between the results with maximal deviations of
about 4 MeV inMW.

The theoretical uncertainty due to missing higher order contributions can be estimated as fol-
lows. The missingO(α2) purely bosonic corrections can be judged by means of resummation
relations to be very small (< 1 MeV effect onMW for a light Higgs). An estimate of theO(α3)
terms can be obtained from the renormalization scheme dependence of the two-loop result yield-
ing about 2–3 MeV, and the missing higher order QCD corrections were estimated to be about 4–5
MeV [31, 32]. Adding this up linearly, one arrives at a total uncertainty of about 7 MeV for the
MW–prediction at low Higgs masses (MH <∼150 GeV).
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Figure 4: Prediction forMW as function ofMH compared with the experimental W mass.

6 Conclusion

In this talk the realization of an exact two-loop calculation of fermionic contributions in the full
electroweak SM and its application to the precise computation of∆r were presented. Numerical
results and an estimate of the remaining uncertainties were given and might serve as ingredient for
future SM fits.

The speaker would like to thank S. Bauberger and D. St¨ockinger for valuable discussions.

Table 1: Comparison betweenMW–predictions from a NLO expansion inmt (Mexpa
W ) and the full

calculation (M full
W ). δMW denotes the difference. Experimental input values are taken from [14].

MH Mexpa
W M full

W δMW

[GeV] [GeV] [GeV] [MeV]
65 80.4039 80.3997 4.2

100 80.3805 80.3771 3.4
300 80.3061 80.3051 1.0
600 80.2521 80.2521 0.0

1000 80.2129 80.2134 −0.5
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