-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by CERN Document Server

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - PSDIVISION

CERN/PS 2000-008 (L P)

LONGITUDINAL BEAM DYNAMICS

Application to synchrotron

L ouis Rinolfi

Coursegiven at JUAS (Joint Universities Accelerator School) at Archamps (France)
January 2000

Geneva, Switzerland
26" April 2000


https://core.ac.uk/display/25289824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS

Chapter 1

Introduction

Fields and forces

Acceleration by time-varying fields
Relativistic equations

Chapter 2

A brief overview of some accelerators
Transit time factor

Main RF parameters

Momentum compaction factor
Transition energy

Chapter 3

Equations related to a synchrotron
Synchronous particle

Synchrotron oscillations

Principle of phase stability

Chapter 4

RF acceleration for synchronous particle

RF acceleration for non-synchronous particle
Small amplitude oscillations

Chapter 5

Oscillations with Hamiltonian formalism
Limits of stable region

Adiabatic damping

Refer ences

Appendix |
Appendix |1

Pages

10
14

18
24
25
28

37
41
42

46
49
53

59
61
67

69

71
72



PREFACE

A first course, concerning Accelerator Physics, was given at Grenoble in 1990 for
the DEA (Dipldme d'Etudes Approfondies) “Instrumentation et Mesures’ at
Joseph Fourier University. It was repeated for 3 years at Grenoble and since 1994
it is given in Archamps to the students of JUAS (Joint Universities Accelerator
Schooal).

The longitudinal beam dynamics, presented here, is applied to the circular
accelerators and mainly to the synchrotrons.

The author acknowledges the questions and the comments of the former students
and colleagues.

F. Blas, P. Bryant, W. Pirkl and D. Warner read the manuscript and made

pertinent and useful comments. The author would like to acknowledge them.



CHAPTER 1

1.1-INTRODUCTION

All particle accelerators are based on the interaction of the electric charge with static and
dynamic electromagnetic fields. These fields are used over a large range of frequencies
from static fields up to Radio Frequency (RF) fieldsin the GHz range.

In this note we discuss the basic principles which are used in circular accelerators for
particle acceleration. An introduction for pedestrians [1] was written for the students of J.
Fourier University (Grenoble).

The longitudinal beam dynamics for other types of accelerators (linacs and cyclotrons)
are presented in [2] and in JUAS lectures. The JUAS bibliography is recalled at the end
of this note. The CAS' yellow reports are a valuable source of information.

1.1.1 Betatron

Although this kind of accelerator is no longer used, it is worth mentioning as the first
circular electron accelerator. This circular accelerator does not use a single RF cavity to
accelerate the beam through many turns. It is based on the principle of acceleration by a
time-varying magnetic field. It makes use of the transformer principle where the
secondary is made by an electron beam circulating in a closed orbit.

1.1.2 Circular acceleratorsand linear accelerators

Three types of accelerator are distinguished according to the appearance of the particle
trajectories.

i) In linear accelerators, particles travel only once through the RF structures aligned in a
straight path. They are accelerated either by electrostatic fields or oscillating RF fields.
All types of particles (leptons, hadrons, ions) are accelerated with linacs.

i) In circular accelerators, particles travel on a closed orbit and periodically cross an RF
cavity. They are accelerated through many revolutions. The word “circular” is generic
and includes any shape of closed machine (circular, racetrack, square, diamond-shaped, ).
Circular accelerators can also accelerate all types of particles.

iii) In cyclotrons during acceleration, particles follow spiraling trgectories. The
maximum radius corresponds to the final energy where particles are extracted from the
accelerator. Although the particles do not follow a true closed orbit, this type of machine

' All acronyms used in this note are given in Appendix |



is often considered among the circular accelerators but it is not suited to the acceleration
of lepton beams.

Linear and circular accelerators have very specific advantages and disadvantages and up
to now, it is mainly the applications that impose the design of either one or the other.
Circular accelerators are based on the use of magnetic fields to guide the particles along a
closed orbit. Only one or a few accelerating cavities are needed which are traversed by
the charged particles many times during motion on the closed orbit. Therefore, in a
circular accelerator the RF system is greatly simplified.

In this category of accelerators, one should consider accumulator rings. Such machines
do not accelerate but accumulate (often antiparticles) at a given and fixed energy.
Nevertheless the difference of mass between light particles (e.g. positron) and heavy
particles (e.g. antiproton) has a significant consequence. While, in principle, for heavy
particles, one does not need a RF system, for light particles it is indispensable to install
an accelerating system of one or several RF cavities to compensate the losses due to the
synchrotron radiations.

In both cases, an RF system is useful to capture or extract the beam and to do some RF
manipulations in order to improve the stacking rate.

1.1.3 Synchrotron radiations

A slowly moving but accelerating charge radiates power P given by :

(1)

2 1L .2 2.2
P== Spj+
3 &, {p// 7 PL }
where p, and p, arethe components of the accelerating force parallel and
perpendicular to the velocity respectively. If E isthe total energy of the particle
and E, therest energy, onehas E =y E; . The constantsr_and c are defined in

Appendix I1. 4
The lighter the particle, the stronger the radiation. An equal accelerating force, p:?f
in each direction, provides a radiative emission y* larger if the force is applied
perpendicularly to the velocity of the particle.

The radiated energy, over alength L, isgiven by :

W:Kﬁmiﬁ%m <

With a constant magnetic field and an isomagnetic orbit (p = constant), one can establish
the energy loss per turn Wt (in V), for electrons :

W, =88x10° — 3)



where E isthe beam energy (GeV) and p the bending radius (m).

Application to the LEP: Asacircular accelerator, with a bending radius of 3026 m, LEP
collides e/e” beams. In 1989, 128 classical RF cavities were installed into 2 regions of the
machine to reach 45 GeV. According to (3), the energy loss was 126 MeV per turn. In
1999, an energy of 102 GeV per beam was reached. The RF system should now
compensate an energy loss of 3.1 GeV per turn. All new installed RF cavities are
superconducting cavities with an accelerating gradient of 6 MV/m.

1.1.4 Brief discussion for the future High Energy Physics

For High Energy Physics, a trade-off has to be found between the complexity of the
detector and the difficulty of building an accelerator capable of reaching higher energies.
For the detectors it is easier to record electron-positron collisions instead of proton-
antiproton collisions because the background is much better.

For the accelerator it is more convenient to built a circular one to obtain high energy
particle beams. But for a given energy the radiation losses become an issue and thereis a
limit where the compensation of the synchrotron radiation loss, with RF systems, become
prohibitive.

The two largest machines existing in the world for lepton collisions are the SLC in
Californiaand the LEP at CERN.

The SLC is alinear collider with a length of 3.2 km. The existing accelerating cavities
allow the beamsto reach 50 GeV.

The LEP is a circular collider with a circumference of 27 km. In 1999, an energy of
102 GeV per beam was reached.

The future LHC will be installed in the LEP tunnel after having dismantled the LEP
machine. The beam energy will be 7 TeV and will require a magnetic field of 8.3 T for
the superconducting bending magnets.

The milestones with a possible future scenario are given below:
1989: SLC first beam (50 GeV)

1989: LEP first beam (45 GeV)

1998: End of SLC (50 GeV with polarised electrons)

2000: End of LEP (104 GeV)

2005: LHC first beam p'/p” ( 7 TeV) ) (approved in 1994)
2010: Linear Collider e/e" (upto 3 TeV) (?)

2030: Muons Collider p/u” (?)

With LEP, the size of circular machines has probably reached alimit for any type of
particles.



1.2 - FIELDS AND FORCES

The equation of the motion for a particle with achargeeis:

%:e(émné) (4)

where P =NV isthe momentum, V the velocity, E the electric field and B the
magnetic induction which isusually called the magnetic field. The fields must satisfy
Maxwell's equations.

The differential forms (in the vacuum) are recalled below :

- 1 .
V-E=—p( 1) (5)
&y
V-B=0 (6)
- 0B
VAE=—— 7
NEB=-— (@)
R Y =
V/\B:,Lloj(r,t)-‘rc—zg . (8)
1 n 1 — a — a — a
V isthe operator "nabla V=a=ti—+V—+w— . 9
oX oy 0z

p and ] arethe charge and current density respectively.
g, and p, arethe permittivity and the permeability of the free space. Their values are
given in Appendix I1.

The integral forms are given below and correspond to the different laws.

i) Gauss's law : J.E-dézi p-dV . (10)
€0
S Y

On the left-hand side, the integral is taken over asurface S while on the right-hand side
it istaken through avolume V.

ii) No free magnetic poles: J.é'déz 0 . (11)
S

iii) Faraday's law :

3

§E-d|”:—j ds . (12)
L S
On the left-hand side, the integral is taken over apath length L .

Q.|O-
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iv) Ampere'slaw (modified by Maxwell)

fé-df:uoii-d§+ci2£‘;—f-d§ . (13)

1.2.1 Magnetic field
In a constant magnetic field B, acharged particle e experiencesaforce F (Fig.1)
F=eiAB . (14)

Ilts direction is always perpendicular to the velocity V of the particle. Thiskind of force
may modify the trgjectory of the particle but cannot modify its velocity, i.e. its energy.

A

Z

W<

T
<

Figurel: Lorentzforceon acharged particle

In the XY plane, a particle, with a constant energy, describes a circle in equilibrium
between the centripetal magnetic force and the centrifugal force:

mv?

evB = (15)



With the momentum, p= mv, onehas:

Bp-— (16)
e

and the angular frequency is:
B . (a7

D I<
S|lo

B iscalled the "magnetic rigidity”.
A quick analysis of equation (16) shows:
i) for a particle at constant momentum, if B increases, p decreases. Such a

particle will be deflected more within a higher magnetic field.

i) for a constant magnetic field, if p increases, the curvature radius p increases.
Such a particle will be deflected less when its energy increases.

1.2.2 Electric field
In aconstant electric field E, acharged particle e experiences aforce F:

F=eE . (18)
Its direction is always parallel to the electric field. This kind of force can modify the
trajectory of the particle but also its velocity, therefore its energy. It can be used to
accelerate or decelerate particles.
The electric field, derived from a potential, is produced from a sinusoidal voltage applied
to one or severa cavities crossed by the particles. The sinusoidal wave presents many
advantages. It is used in the RF cavities for circular machines but also in linear
accelerators with high frequencies.

1.2.3 Comparison

A comparison can be made between magnetic and electric forces




In the LEP, the magnetic field is 0.1 T while the accelerating field is 6 MV/m. The ratio
isafactor 5. In the CLIC, the accelerating electric field will be in the range of

100 MV/m. In principle, no dipoles are foreseen at high energies. However if a 1.5 TeV
beam should be deflected towards a second detector, at the collision point, the integrated
magnetic field inside such dipole would be 50 T.m for a deflection angle of 10 mrad. It
will require a superconducting dipole. Possible values could be 5 m long and a magnetic
field of 10 T. The ratio would be a factor 30.

For classical valuessuchas B= 05T and E = 10 MV/m and for relativistic
particles, the magnetic force is 15 times higher than the electric force.

1.3- ACCELERATION BY TIME-VARYING FIELDS

1.3.1 Acceleration by a time-varying magnetic field

We assume a cylindrical volume within which exists an uniform B field.

Here uniform meansthat B does not vary with position.

Let us suppose that a particle beam travels on a closed orbit perpendicular to the
cylindrical axis inside this volume. Therefore the magnetic field, enclosed by the closed
orbit of the beam, has arotationally symmetry.

According to (7) or (12), a time varying B fidd gives rise to an electric field E
(Faraday's law). A change of B leads to an electromotive force E,

do

T g (19)

@ isthe magnetic flux through the closed orbit and the minus sign is given by the Lenz's
law.

The induced force E, corresponds to the electric field E taken all around the circuit
(here the closed orhit)
~fE-dT
L

If L isacircular path with aradius R, the magnetic flux is given by :

(20)

® =7R*B,
where Bz isthe average magnetic field through the closed orbit.

Taking the time derivative :
d_CI) -rR? dB,
dt dt

10



E is tangential to the path of integration and from symmetry has the same value at all
points on the closed orbit

fE-d F:—J'j”REgde:—anEg
L

In cylindrical coordinates Ey = Ez = 0, and Eg istheinduced éectric field (minus
sign).

dB
-2z RE, = - R dtz
1 _dB
E, = = z
v 2 dt
The accelerating force on the particle will be :
dp 1 dB
— =eE, = —eR—% . 21
dt ¢ 2 dt 1)

Now if one wants that the particle remains on the closed orbit with a radius R, it must
fulfil also (16). Taking the time derivative of it :

dp_ dBf
P

where Bf isthelocal field at the particle position.

Comparing the two last equations, the betatron condition is found after an integration :

B; :%Bz-i-cte ) 22)
CElraL Poke
7T<m l\ ;_f} Bz o } - excikation ool
— X W
| i |
X B u'i‘_l}_ E [~ vacium chamber
A )

3

Figure2: Thebetatron scheme [6]
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Figure 2 shows two gaps of different aperture. One gap (g1) where the beam is
circulating has the magnetic field B, along the closed orbit, the other gap (g2), which is

apart of the return yoke, is adjustable. It allows one to fulfil the betatron condition (22).
1.3.2 Acceleration by time-varying electric field

V.. isthe voltage, time dependent, applied across the gap g (Fig.3). An accelerating field
Ez iscreated as afunction of the time and the position.

r(m) ¢

‘rw

v

®
v

-gl2. /2
g g . (m)

‘rrw

Figure 3: Schematic RF gap

Therefore a particle crossing the gap will receive an energy gain of :

9/2
AE=e J' E,(zt)z . (23)
-9/2

AE isexpressed in [MeV] if Ezisgivenin[MV/m] and gin[m].
In the cavity gap, the electric field can be expressed with separated variables as follows :

E(zt)= E(2.E()

12



E, (2) is the gpatial component and E, (t) is the time component. The latter has a
sinusoidal phase variation .

E, ()= E sng
where

t
¢=jt S (24)

o Isthe angular frequency.

RF

An example is given by the Figure 4. It shows the electric field distribution inside a RF
cavity which is a RF gun composed of one and a half cavity. The electrons are emitted
from a photo-cathode in the vertica plane, on the left. Since there is cylindrical
symmetry, only half of the cavity is plotted. The smulation code used here is called
SUPERFISH.

Beam axis Z

l - 1/2 + 1 cell cavity F = 3003.054 MHz

Figure4: Electricfield inside an RF cavity from SUPERFISH code

Note:
For historical reasons, the origin of the time is different for circular and linear
accelerators.
i) For circular accelerators, thisorigin istaken at the zero crossing of the RF voltage with
positive slope.

Phase of the particle = phase ¢ of the RF voltage when particleisat z = 0.
i) For linear accelerators, this origin is taken at the crest of the RF voltage.

Phase of the particle = Phase ¢ — n/2

13



1.4 - RELATIVISTIC EQUATIONS

1.4.1 Definitions and symbols
Y _ :
p= c Normalized velocity

_E Total energy
" E, Restenergy

2

E=mc Total energy

Bry=r21

E
p:ﬂy—cozﬁymoc

1.4.2 Some useful relationships

i) Momentum
From (26) and (34), one has :
pc=pE=pr K

14

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35



From (35), taken the square and using (32), one gets::

pc’=E*- Ej . (36)
ii) Energies
Let Ec bethe kinetic energy. Then

E=E +Ec . 37)
It can be written :

y= 1+E : (38)

Eo
v ~ 1Particle not relativistic
vy >1 Particlerelativistic
vy >> 1 Particle ultra-relativistic
iii) First derivatives
-1_-3
df =gy dy

iv) Logarithmic derivatives

1.4.3 Units
All relationships are expressed in S| system. However the common units used in

accelerator physics are based on the eV (electron-volt). Table 1 gives some current
parameters :

15



Table 1: Units

Parameters Units
Energy ev

Mass eV/c2

Momentum eVic

1.4.4 An important relationship

The magnetic rigidity Bp is expressed from the momentum p by the following
expression :

p= 03Bp (39)

whereB isin Tedla, pisin metersand p isin GeV/c.
The factor 0.3 comes from the change of units [kg.m.s'1 — GeV/d].

Note:

L et us compare three energies, assuming a black body behaviour. A factor 2 (due to
reflection and other effects) will not change the order of magnitude :

o theenergy storedin alake,

e theenergy inaflameof acandle,

e theenergy inacollison et/e at the biggest collider in the world today.

)] Energy stored in the lake.

The power arriving at the earth's surface from the sun is roughly 1.4 Wicm'. In a

lake of 100 m’, the power will be 1.4 MW.
During 3 hours of sunny period, the stored energy will be:

E1 = 15GJ.

i) Energy emitted by the flame of a candle.
Using the Stephan-Boltzmann law

M=oT -

The Stephan constant is given in Appendix I1.

16



Assuming that the temperature of the flameis around 700° C, then
T = 1000 °K .

Assuming that the area where is concentrated the heat isaround 1 mmz, then the
radiated power is:

M =56x10 W .
During 3 hours, the produced energy will be:

E2 = 605J .

i) Energy produced in ae/et collision at 100 GeV in the LEP accelerator.

100 x 10 x 1.6x 10 =1.6x 10 J

E,=16n].

Although in the first case one has a tremendous amount of energy, we cannot use it
easily, because it is not concentrated.

While in the second case, it is concentrated enough and we can make use of it in the
every day life.

In the third case, it isavery small energy which could raise one gram of water by
3x10° degree. But since the particles are tiny, their kinetic energy can be transformed
in alarge variety of matter particles.

17



CHAPTER 2

2.1- A BRIEF OVERVIEW OF SOME ACCELERATORS
2.1.1 Electrostatic accelerators

In such accelerators, the potentia difference between two electrodes is used to accelerate
particles. Current applications are the x-ray tubes used in medicine and in industry.

The thermionic guns are often used as electron sources for accelerators. The high voltage
isin the range of afew kV to 100 kV and the current can vary between mA and A.
Figure 5 shows equipotentials and beam trajectories calculated from E-GUN code [3] for
the LIL thermionic gun.

The €electrons are emitted (from the left) by the thermionic cathode with a parabolic
shape. The beam is focused inside the hole of the anode with awaist around z = 70 mm.

3587.280 EV RADIAL EXCESS ENERGY. RIPPLE=226.863 %. OMEGAL/OMEGAP= 6.48E—1
PERVEANCE=7.91E—-7 COMPRESSION=161.3 NS=8 Av=7 AVR=1.0 B000O VOLT

EGUN (SLAC-166) (GAUSS*10%%2 ) B
___________ r - _--—_____'_"-"—--'-’;'——-u_\__—-"_"
(mm) 501 - ~
- ~ 4
- ~ 18
40T Pid ~N
12
304
T8
201
107 T+
0 - S — - >
100 120 140
LIL-GUN Z  (mm)

Figure5: Electricfield and beam trajectoriesinside an electrostatic
accelerator computed from E-GUN code

2.1.2 Alvarez structure

Thisisalinear accelerator type which is still used to accelerate protons and heavy ions.
Figure 6 shows a schematic Alvarez structure. It isa section of circular waveguide |oaded
with drift tubes. Their length and position are chosen in order to have synchronism
between the particles and the accelerating field while the resonant frequency of the cavity
is kept constant. The axial accelerating field is concentrated in the gaps between drift
tubes. The operating frequency is mainly 200 MHz. The energy range is around 50 MeV
to 200 MeV.

18
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Figure6: Alvarezlinac structure[6]

Several modes of acceleration can be defined. The common value is the 2x-mode, which
means that the electric field E has the same direction in two adjacent gaps at a given
time.

In the 2r-mode, the synchronism condition is given by :

L = VSTRF = ﬂsZRF . (40)
L isthe length of the drift tube (not constant).
Vg isthe velocity of the particle
TRF isthe RF period
A is the free space wavelength of the operating frequency

The synchronism condition can be written :

2.1.3 Electron linac

At afew MeV, electrons are aimost relativistic. Therefore above these energies, particles
become ultra-relativistic and they approach a constant velocity v = c.

In a resonant cavity, the standing wave pattern can be expressed into two travelling
waves : one is the forward wave which is in synchronism with the particle, the other one
is the backward wave which has no effect on the energy gain of the particle.

19



The electric field can be expressed as :

E(zt) = Ey e

2
where K = il

RF

In order to accelerate particles continuoudly, it is necessary that the phase velocity equals
the light velocity :

Il

v =2 ~¢
-k

ph

An interesting aspect with travelling wave structures is that the RF power sources can be
pulsed during a short period of time.

Therefore the peak power pulse can be higher and the accelerating field also.

Various sources (klystrons) have been developed in different ranges of frequencies. The
common bands are :

L-band : ~1.5GHz
S-band : ~3 GHz
C-band : ~6GHz
X -band : ~12 GHz

Most of the linacs working today are in the S-band . The LIL accelerates e from 80 keV
up to 500 MeV, whilethe SLC accelerates e from 120 keV up to 50 GeV.

Studies are made for future linear colliders using higher frequencies (NLC and JLC at
11.4 GHz, CLIC at 30 GHz, R&D at 90 GHz at Berlin and SLAC).

2.1.4 Cyclotron

The trgjectory of the charged particlesfollows a spiral path (Fig.7) inside amagnetic
field with arevolution frequency that depends on the particle properties and the strength
of the magnetic field.

The particles are injected in the middle of the gap (Dee) where an oscillating RF voltage
is applied. A magnetic field exists in the whole space where particles have to circulate.
When the particle energy increases, the bending radius increases al so.

20



@ F

Figure7: Cyclotron orbit

The synchronism condition is given by :

By virtue of (17) :

©. = . (41)

In standard cyclotrons, the magnetic field B and the angular RF frequency o _ ae

constant.
Then the synchronism condition can be verified only for vy ~1 . It implies non relativistic
particles. It isthe case for ions and protons at low energy.

21



Figure 8 shows a schematic cyclotron where the RF voltage is applied across the gap of
the Dee. Particles travel in the median plane.

NORTH POLE

/ﬂ \\
DEE T \ .
/ / / // // ! ) \\ p \\ \\
// / / y , | \ \ \ \ \
; T T : o < , MEDIAN
— — i | 4+ — — L — R
> !
\\\ k )L\ l\ \\ : // /J /r ;/F‘ // PLANE
\ A\ / /
\ \ <a <€ * v » » y /
4 L
< >

SOUTH POLE
Figure8: Classical cyclotron

If one wants to accelerate relativistic particles, it is necessary to fulfil the synchronism
condition. From (41), one has:

eB
O = —
7 Cre m,

The right-hand side term is constant. Then to verify this condition , one has to decrease
the RF frequency when the particle energy increases.
It is done in the Synchro-cyclotron.

2.1.5 Synchrotron

This is a circular accelerator where particles follow a closed orbit and are accelerated
each time they pass through a RF cavity installed somewhere on the closed orbit.

The synchronism condition is given by the equality between the revolution period of the
particle Tgand the RF period T, (or one of its harmonic h) inside the cavity.

Ts =h TRF
It can be written

@ pr
=— 42
0 (42)

Tlo

Vs_
a)s_ R_ﬁs

vsisthe particle velocity and R the constant orbit radius.
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osand o increase with energy. To keep particles on the closed orbit, the magnetic field
should be varied with the time.

2.1.6 Parametersfor circular accelerators
The basic principles, for the circular accelerators, are based on the two relations :

i) The Lorentz equation
Using (34) with (16), the curvature radius can be expressed as :

_rVy

P eB

i) The synchronicity equation
Using (41), the revolution frequency can be expressed as :
eB

f =
27zym0

According to the parameter we want to keep constant or let vary, one has different
acceleration principles. They are summarised in Table 2.

Table 2: Parameters for somecircular accelerators

Machine Energy Velocity Field Orbit Frequency
Y % B p f
Cyclotron ~1 var. const. ~V const.
Synchro var. var. B(£) ~p B(o) /v(t)
Cyclotron
Proton/lon var. var. ~p R (*) ~V
Synchrotron
Electron var. const. ~p R (*) const.
Synchrotron

(*) See Chapter 3
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2.2-TRANSIT TIME FACTOR

The concept of this parameter will be illustrated with asimplified model.

Let Vi be the maximum voltage across the gap g (see Figure 3) and assume that the
corresponding electric field is independent of the longitudinal coordinate z . Then the
accelerating field will be expressed by

N

Ve

g sin(ot+¢) .

E, =

At t=0,z=0 and v = 0. The energy gain is given by (23).

After integration, one finds : R
AE = eV Tasin g

where
5
sin o
Ta = o . (43)
2V

Taiscaled the transit time factor

Taisaways smaller than 1. If the gap g — Othen Tg — 1, but an excessive local field
gradient can produce RF breakdowns.

In the general case, the transit time factor is given by :

jm E(z,r)cos(a)\;*F zj dz
= —= . (44)

I_wE (zr)dz

This is the ratio between the peak energy gained by a particle with finite velocity v to
the peak energy gained by a particle with infinite velocity oc.

In otherswords, T shows the missing energy gain due to the finite velocity of the particle
in asinusoidal electric field. It isareduction factor in energy gain.
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2.3- MAIN RF PARAMETERS

2.3.1 Amplitude, frequency, phase

To accelerate particles, longitudinal fields must be generated in the direction of the
desired acceleration.

The efficiency of the acceleration depends mainly on the temporal variations of these
fields.

The interaction of electromagnetic RF fields and charged particles assumes a wave of
frequency o propagating in the z-direction.

In asimple model, we saw that :

E(z,) = E (@ .E,®
E, (t) isexpressed as:
t
E,t) = Eosinu a)RFdr+¢OJ : (45)
t
The RF cavity which generates such field is characterised by the voltage amplitude, the
frequency and the phase.
2.3.2 Harmonic number
It could be useful to have an integer multiple of the revolution frequency for the RF

frequency.
Thisinteger is called harmonic number h. Hence

o =ho . (46)

RF s

Table 3 gives some examples for CERN accelerators.

Table 3: Harmonic numbers

Machines BS PS SPS

h 1 20 4620

Note :
All these CERN machines work also with different harmonic numbers.
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2.3.3 Longitudinal acceptance

A concept very useful to describe longitudinal motion (as well as transversal motion) is
the phase space. Don’t confuse the trajectories in the phase space with the trgjectoriesin
the real space.

The classical pendulum can be described in the phase space where the

coordinates are the angle 6 (horizontal axis) and the momentum p (vertical axis). In such
plane, the trgjectory is the closed contour of the dashed area (Fig.9) assuming no friction
and a small 6 angle when the pendulum is spaced from its equilibrium position (vertical
axisin thereal space).

Thisanalogy is useful to introduce the longitudinal phase space to describe the motion of
particles in accelerators.

The first concept is the emittance of the bunch.

It is characterised by the area, in the longitudinal phase space, where the particles move
(dashed area).

The second concept is the longitudinal acceptance of the machine.

It is characterised by another area, in the longitudinal phase space, where the parameters
are given by the RF cavities and the accelerator optics.

Figure 9 shows an RF bucket and a bunch of particles inside of it, in the longitudinal
phase space.

AP
AE, AR, 2p,
P A
Surface =emittance g
of the bunch
\ Energy spread
ﬁ % > 0
-T + T
/ v
Surface = acceptance — Bunch length
of the bucket A < >

Figure 9: RF bucket and bunch area
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The horizontal axis can have the phase, the time or the longitudinal position as variable,
while the vertical axis has either a variation of energy, or momentum or closed orbit
radius.

The area of the RF bucket determines the longitudinal acceptance A while the area of the
bunch measures the longitudinal emittance ¢ of the beam.

In order to get a good capture efficiency of the bunch inside a bucket, the emittance
should be alittle bit smaller than the acceptance.

e < A.

2.3.4 Adiabatic limit

The parameters of the motion have to be varied dowly compared to the synchrotron
oscillations period. This parameter will be defined later on in the text.

Under this condition, areversibility processis amost possible.

If Qg isthe oscillations period, a coefficient o isdefined asfollows:

2 dt

(47)

The processwill be adiabaticif a<<1.

An example of adiabatic debunching is given when the RF voltage is owly decreased to
zero from a stationary bucket. The beam (heavy particles) is debunched and forms a
continuum path along the closed orbit. The reverse process is possible if the RF voltage
issowly increased up to the nominal value. The beam is bunched again (Fig.10).

An example of a non-adiabatic effect is given when the RF phase is shifted quickly by
180° from a stationary bucket. The particles are then at the limits of the buckets and start
to be distributed along these limits.

A new quick shift of 180° brings back the particlesto the centre of the bucket.

This effect is used to obtain either a bunch compression or a diminution of the
momentum spread (Fig. 11).
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Figure 10: Adiabatic process

Rotate bunch by Jgth Jump rFphase te  Jump rf phase back

of o synehrotron put Earrch on when Eunch has
perind unstable Fixed correct form
point

Figure11: Non - adiabatic process [5]

24-MOMENTUM COMPACTION FACTOR

2.4.1 Definition

The path length along a straight section is afunction of the angle of the particle trajectory
compared to the reference path. In linear dynamics, the second order corrections to the
path length are neglected. Under these conditions, the contribution to the path length, in
circular accelerator, comes from the dipole magnets. According to the beam energy,
particles are curved differently and do not follow the same trgjectory. A nominal closed
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orbit is defined for a nominal energy. For a given particle, a momentum deviation
produces an orbit length variation. The momentum compaction is defined by the ratio :

dC/C dR/R

“ = dp/p:dp/p (48)
where C = 2 z R isthe circumference of the closed orbit
ap isaconstant parameter. Its numerical value can be calculated from
1 , Dys
—/ izds (49)
Ly Jo p(S)

where L, is the length of the reference closed orbit and D(s) the dispersion function in
the bending magnets.

2.4.2 Expression of ap versusenergy E
pc

From (34 E=—
(34) B

dE d
A logarithmic differentiation gives E = ﬂZFp and according to the definition of ap,

one has:
E dR
a, = Z—RE ) (50)
2.4.3 Expression of ap versus <B >
The average magnetic field is calculated as follow :
B, ds 1
27z R § D
where Bf isthe magnetic field inside the dipoles.
By virtue of (16) :
1 ds
B = =2 ¢ =
27z Re o,

The integration along the closed orbit is taken only in the bending magnet, where p is
not infinite. Therefore the value should be 27.

29



Then

Finaly
(B>R:pr:£ (52)
A logarithmic differentiation of (52)
d(® dr _ dp
(B R P
o dp
Dividing by ? ,onehas:
d(B)/{B)
= 1-— . 53
a, 1 dp/p (53)
Another expression using the radiusis:
1
a, = m . (54
(B) dR
2.4.4 Expression of ap for an isomagnetic guide field
dR = _1 x ds 55
= 27, o - (55)

Integration is done in the bending magnets only. The variation of the path length can be
expressed as

dR = (x),
N . dp .
The position x is afunction of ? to the first order

Ap

X =D, —
Y

(56)

Dx isthe dispersion function.
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Then:
A
dR = (D)2 (57)
P
(DX > is numerically computed from lattice programs and the momentum compaction
factor isgiven by :

a, = . (58)

Note :
The expression (56) shows that the beam dimensions will increase linearly with Dx.

However when Dy = 0, al particles will follow the same path whatever is their
momentum spread.

2.4.5 Bunch compr essor

Figure 12 shows the path length of particlesinside 3 consecutive dipoles with momentum
between p and p,.

X (mm)

A

Dipole 1 Dipole 2 Dipole 3

»Z (mm)

Figure 12: Classical bunch compressor
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Particles of different energiesinside a bunch travel on different path lengths.
Particles with lower momentum P, (in the head of the bunch) travel on alonger path.

Particles with higher momentum P, (inthetail of the bunch) travel on shorter path.
The path length differenceis given by :

tan a—«

Al=| 4p —
SNa

s 2tan? o | AP (59)
p

o isthe bending angle of each dipole,
p the curvature radius of each dipole
A the drift space between each dipole

At the exit of the three dipoles, if B is correctly adjusted, head and tail will arrive at the
same time (or the same phase).

Finaly the dispersion function of the bending magnets allow compression of a bunch
providing that the latter enters into the bunch compressor with the correct distribution of

Ap
the energy spread ? .

Figure 13a) shows the longitudinal phase space before the bunch compressor. The phase
extension is 12° .

Figure 13b) shows the same thing after the bunch compressor. The phase extension is
reduced to 2° .

These plots are the results of ssimulation ussing PARMELA code.
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Figure13: Longitudinal phase spacefor a bunch compressor
from PARMELA simulations
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2.5-TRANSITION ENERGY

2.5.1 Intuitive approach

Theincrease of energy has two contradictory effects :
i) an increase of the velocity
i) anincrease in the length of the trgectory

According to the variations of these two parameters, the revolution frequency evolves
differently.
The angular frequency of a particle in a synchrotron can be written :

=2rf (60)

where
T isthe revolution period
C isthe length of the circumference
v isthe velocity of the particle
f isthe revolution frequency

If the velocity increases faster than the length, the revolution frequency increases. In the
opposite case, the revolution frequency decreases.

In general, for a given synchrotron, one makes the difference between low and high
energy. At high energy, the velocity is close to the velocity of the light and practically
does not change. At low energy, the increase of the velocity is more important than the
variation of the trgjectory.

Then, there is an intermediate energy for which the variation of the velocity is
compensated by the variation of the trgiectory. It is the transition energy. At thislevel, a
variation of energy does not modify the frequency.

2.5.2 Quantitative approach

The dispersion of angular frequencies 7 isgiven by :

ot )
T dp/p (61)



By differentiating (60), one obtains :

do dT dg dC

dg
5
second term is given by the definition of the momentum compaction. Then

dw 1 dp )
— =|— —a,|—. Byvirtueof (61), one has:
W /4 P

d
The first term is calculated after differentiation of (34) which gives Fp = 7/2 The

N=———=—>5-0, . (62)

For a given machine, ap is afixed parameter. For a particle accelerator, yis a variable

parameter. Equation (62) shows that the dispersion of angular frequencies is equal to
zero for

1

P (63)

Q’p:

7, is the energy for which the variation of velocity is compensated by the variation of
tragjectory. It isthe transition energy.

1

2
t

1
y:

n= (64)

n <0 wheny islarge (high energies). It is called above the transition.
n >0 whenyissmall (low energies). It is called below the transition.

Note:

i) In many circular accelerators, the particles cross the transition energy when they are
accelerated (Table 4).

Table 4: Transition energiesfor CERN accelerators

PS SPS LHC
o, 0.027 0.00186 0.000347
Et (GeV) 5.7 21.7 50.4
Range (GeV) p’ 0.05 - 26 14 - 450 450 - 7000
Range (GeV) € 0.5-35 3.5-22 option
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i) Inaccumulator rings, the particles remain either above or below the transition energy.
iii) For linear accelerators, p —>oc then ap—>0and n isaways positive.

iv) According to the authors, one can find the following definition for n :

1
¥

S
y2

77:

Therefore the sign is opposite compared to our definition.
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CHAPTER 3

3.1- EQUATIONSRELATED TO A SYNCHROTRON

The following equations can be established for a synchrotron.

o _ .dR dB &5

p - ytr R B ( )

dp ,df L dR

= = 2=yt = 66

b VTR (66)

B, df ?1d

5 - e -+ [1(&} ] ap (67)
y )| p

B, df dR

B AT )

where

p isthe momentum of the particle

R istheradius of the closed orbit

B isthe magnetic field inside the dipoles

f istherevolution frequency
vt isthe parameter for the transition energy.

3.1.1 Calculation of equation (65)

Let usintegrate (48) :
dR dp

—_— = —
R P p
INR = aplnp+ cte .
o is constant for a given synchrotron.

The solutioniis:

o

R=Kp”’
where K isaconstant
The nominal closed orbit has aradius R with the momentum P,
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Then:
R "
= = {—p] . (69)
Ro Po
For a given magnetic field, (16) should be verified for a particle (po, po) on the nominal

closed orbit and for another particle (p, p).

Then

Equation (16) can take the following expression for any particle :

p=eBp-= eBpO[FpJ

0

e
R| %
p=¢eBp, {E] : (70)

By virtue of (69) :

The derivation of (70) gives the result (65) taking into account (63) :

dp

dp 2 AR
p

_4dB
B 7/trR

3.1.2 Calculation of equation (66)

A classical development between  and y gives:

dr _ (,2_4)98
Y (yZl)ﬂ

The logarithmic derivation of (35) provides:

d dy

/4

©

:d_ﬂﬁ+

o |

The expression of the momentum variation as afunction of  becomes:

d

©

_ 298 71
A (71)

o |
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Equation (42) can be written :

27 f = &
R
A logarithmic derivation gives:
dg df dR
B TR 72

3.1.3 Calculation of equations (67) and (68)

The first oneis obtained by removing d?R between (65) and (66).

: d
The second one is obtained by removing Tp between (65) and (66).

3.1.4 Constant energy

In a synchrotron, if the RF voltage is adiabaticaly set to zero, one obtains a debunched
beam after acertaintimeand dp =0.

Using (65) and (66) one concludes: If Bincreases, R decreases and f increases.

3.1.5 Constant radius

With a radial loop control, the beam is maintained on the same orbit when the energy
varies.

dR = 0 .
Using (65) and (66), one has :

dp _ dB

p B

dp _ df

p T

If pincreases, Bincreases and fincreases.
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3.1.6 Magnetic flat-top
Let us consider a bunched beam and a constant magnetic field : dB = 0.

Putting this value in (65), (67) and (68) :

Py

dp , d
_p:ytr

2
0,280 | ()| dp
f /4 P

0= 72% + 92—7{‘})%{

7|

If pincreases, Rincreases.

For the frequency f , it depends upon y . If the beam energy is below the transition, then f
increases. If the beam energy is above the trangition , then f decreases. Equation (60)
illustrates this effect according to the v value (close or not to the velocity of light).

3.1.7 Constant frequency

The beam is driven by an external oscillator which imposes the frequency.
df = 0.

Putting thisvalue in (66), (67) and (68) :

dp _ ,dR
p 7 R

2
dB _ 1_(71} dp
B y p
dB ([, ,}dR
B —(7 7’tr) R
p and R vary in the same direction. For the magnetic field B , it depends upon vy .

If the beam energy is below the transition, then B decreases.
If the beam energy is above the transition, then B increases.



Table 5 gives asummary of this discussion.

Table5: Four conditions for a synchrotron

Beam Parameter Variationsof p, B, Rand f
Debunched Ap =0 B up R down f up
Fixed orbit AR =0 Bup pup f up
Magnetic flat-top AB =0 pup R up f up (n>0)
f down (n<0)
External oscillator
Af =0 B up p down R down (m>0)
pup  Rup (n<0

3.2- SYNCHRONOUSPARTICLE

Figure 14 illustrates the possible effect of a snusoidal voltage applied to two particles

according to the respective phases.

Viret

Figure 14: Sinusoidal voltage applied to two particles
(¢=0isat zero crossing for synchrotron)

Let us consider a particle P turning in a synchrotron with an energy below the transition
(n > 0). At each turn, it crosses a RF cavity with the voltage
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~

v=V, sng .

If the revolution frequency of P is equa to the RF frequency, and if P arrives a the
time t = 0 (phase zero), this particle is neither accelerated, nor decelerated.

We call P the synchronous particle.

3.3- SYNCHROTRON OSCILLATIONS

Now we consider another particle P which enters the cavity with the phase ¢ , but with
the same energy as P, i. e. the same velocity. (Fig. 14).
P experiences a voltage

~

Ve sing,

and therefore an accelerating field E
Keeping the assumption n > 0, let consider the two following cases :

8 0<g¢g<r P is late compared to P but undergoes an accelerating field and

will then gain energy. The velocity increases and the revolution

period decreases.
P1 will be closer to P0 the next turn.

b) -7<¢<0 P isin advance compared to P but undergoes a decelerating field

and will then lose energy. The velocity decreases and the

revolution period increases.
P1 will be closer to P0 at the next turn.

When 0< ¢ < 7, P is coming closer to P until they arrive simultaneously into the RF
cavity. At this time the energy of P is greater than the energy of P, i. e. a greater
velocity. Then at the next turn, P will have a negative phase ¢ . At each turn, the delay
between P and P will increase. The negative phase o, will continue to shift until the time
where the velocity of P eguals the velocity of P.

Therefore P isin the position described in the case b) above. P will be closer to P the

next turn and so on.

An oscillatory phenomenon starts.
P oscillates around the synchronous particle P which has a constant energy and phase

equalsto zero.
The motions of P are called synchrotron oscillations.

The frequency of such oscillationsiswell below the revolution frequency
frev = UTrev
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P oscillates around P both in energy and in position. The average energy of P should be
equal to the constant energy of P..

This oscillatory motion of P isillustrated in Figure 15.

P
A

v
<

e
S

Figure15: Synchrotron oscillations

The coordinates in Figure 15 are the momentum p andthephase¢ = ot.

However, as already explained in Figure 9, other units can be used in the longitudinal
phase space.

3.4- PRINCIPLE OF PHASE STABILITY

In the previous paragraph, we have considered a particle P arriving in the RF cavity with
aphase $,=0.

Let us consider now aparticle P arriving with aphase different to zero (Fig. 16).

The energy gainis:

AE = eV sng, . (73)

The velocity increases. Assuming m > 0 (below the transition), the path length increases,
the revolution period decreases and the revolution frequency increases.



Figure 16: Synchronous particlewith ¢s=0 and n>0

Although P gains energy, let us assume that P_arrives always with the same phase ¢ in
the RF cavity. P will be the synchronous particle and its phase will be denoted as

g, = ¢s .

A particle P, with the same energy as P, but with b, <, will receive a AE<O
(compared to P ). The revolution period increases (T + dt). P, is coming closer to P_at
each turn. When b, =¢ . then E <E . The process continues until P, is at the position
of P. As before, the same oscillating cycles are present, but around a synchronous
particle which has a phase different to zero. Therefore, the symmetry around the vertical
axis (Fig.15) disappears.

The phase variations of P around ¢s do not produce the same energy gain if they take
place at the crest or at the centre of the sinusoid (Fig.17).

In the Figure 16, a particle P, passing later than P, can gain energy only if its phase ¢,
respects the following condition :

fs< §.< m-¢s .

If ¢, > 7 - ¢s, then the energy gain is not enough to move closer to P and P_ will move
away from P.
(7 - ¢g) isthe beginning of an unstable phase (Fig. 17) .

For a particle P, in advance compared to P, the extremum of the stable phase will
depend on the energy gain between (r - ¢s) and s, which meansit depends upon ¢s .

In consequence, there is a limit where the particles oscillate in phase and in energy
around the synchronous particle. Above this limit, particles are lost.

In the phase space, this limit between the stable and unstable phase is caled the
Separatrix.



This separatrix determines the RF bucket (Fig. 17)
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Figure17: Amplitudevariationsand RF bucket

Note :

The same discussion is valid above the transition (n < 0). However ¢s will be on the
negative slope of the RF voltage, instead of positive dope asin Figure 17.

Particles with higher momentum go dower, contrary to physical intuition (concept of
negative mass effect).



CHAPTER 4

4.1 - RF ACCELERATION FOR SYNCHRONOUSPARTICLE
4.1.1 Energy gain per turn and phase of synchronous particle

The acceleration of charged particles comes from an oscillating electric field where the
frequency isin synchronism with the revolution frequency.
In aRF cavity, we saw that the RF voltage is expressed as

V =Vge sng () -

The synchronous particle arrives always with the same phase in the RF cavity and the
equation of motion verifies the equation

¢ (t)= g5 = constant . (74)

In a synchrotron, the energy of the synchronous particle varies during the acceleration.
Hence if one wants to keep this particle always on the same orbit (R = constant), it is
necessary that the magnetic field varies with the time during the acceleration.

The differentiation of (52) provides

dp _ RB)_ ri
SR =eR(B) . (75)

The energy gain per turn could be obtained for the synchronous particle if the
differentials are replaced by finite increments :

(P)urn = €R (B) Trey - (76)
Trev istherevolution period
1 27R
Trey = TS
s pc

From the time derivative of (52), we can write

<B>R = B; p
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From these last two equations (76) becomes :

_ 27eR? <B> _ 27eR

(Ap)turn Ac Bc Iy

Theindex f of the magnetic field isremoved for reasons of smplicity.

The derivative of (36) gives:
A (EZ) = A (pzcz)
2EAE = c*2p4p

pc? mpc?
£ AP = =4

AE = pcAdp
Using the expression (77) of Ap, one gets:

(AE),,=27eRpB

If (73) is applied to the synchronous particle, then

(A E)t = e\7RF sin ¢,

urn

The phase of the synchronous particle can be calculated from this expression.

(77)

(78)

(79)

(80)

If (80) is satisfied for ¢s, it will also be for = - ¢s . However only one value
corresponds to a stable dynamic equilibrium as we will see later on (equation 114).

4.1.2 RF frequency versus magnetic field

Now, the relationship between frequency and magnetic field is shown below.

For the synchronous particle, (17) gives:

e
o, = r—n<B>
By virtue of (52), one has
ep
w, = ——=B
® m R
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Using (46) into (81) :

w

RE ep
= r— = -_— B
W h R (82)
Using the classical relativistic equations (Chapter 1), one can establish :
h B2
WrF = ne > > (83
R\ B? + (Ey / cep)
A magnetic field B, can be defined :
E
B = — . (84)
cep

For a given particle and a given accelerator B, IS constant.
The expression (83) of the RF angular frequency becomes:

hc | B 1
= — | —_—_— . 85
er ZER[BOJ (85)

4.1.3 Example of PS machine

In this synchrotron, there is one operation with protons where the magnetic field is
increased by 2.4 T/s . The radius of the synchrotron R=100 m . There are
100 dipoles along the circular accelerator with an effective length of 4.398 m each.

i)  Radius of curvature calculation.
Since one should have a closed orbit, the total angle should be 2. Then

0 100xp4.398 = on

p=70m .

i)  Energy gain per turn.
By virtue of (79) :
(AE)y, =27 x100x70x 2.4

= 105 keV



In MKSA units, one gets :

(AE),, = 105x10°x16x10" = 17 fJ (femtoJoules)

i) Minimum RF voltage.
It is calculated from (80).

The minimum is obtained if :
sngs = 1, i.e. g = 90°

(\“/Rpj — 105KV
min

iv) RF frequency at gection time.
When protons are gjected, the value of the magnetic fieldisB = 1.23 T.
From (84), B, = 0.0446 T.
Since B >>B_, the following approximation can be made :

hoc
= 2zR

With h = 20, the numerical calculation gives:

f =95MHz .

RF

4.2 - RF ACCELERATION FOR NON-SYNCHRONOUS PARTICLE

4.2.1 Definitions

The synchronous particle will be characterised with a s index.
The five variables, revolution frequency, RF phase, momentum, energy and azimuthal
angle, of ageneric particle, will be defined respectively asfollows:

f = fs+ Af

¢ = ¢gst Ap

p = ps+ 4p (86)
E = Es+ AE

0= Os+ A0 .

The azimuthal position isgiven by :
ds = Rd& . (87)
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A particle, passing later than the synchronous particle (A6 <0), arrivesin the RF
cavity later (A >0).If f_=f.,then:

Ap = —AO . (88)

If the harmonic number is greater than 1, by virtue of (46), one has:

Ap = —hAb . (89)

Over oneturn, 6 varies by 2r, while ¢ variesby 2xh .

4.2.2. Parameters versus ¢

4.2.2.1 - Angular frequency

For a given particle, the azimuthal angle is given by

t
0@) = [ dr . (90)
to

If one calculates the variation A8

t t
AG = J.(a)—a)s)dr = Awdr
to to
Taking the time derivative
d
—(40) = 4
a 49 “
Using (89) : (
1d 1, (dg
A = —=—(A = —FA|—
“ na &9 h \dt)
Ao = _1|:d_¢_%:|
h| dt dt
According to (74) : dd(/is =0
A = 1 ¢ 91
= TRha (1)
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4.2.2.2 - Momentum
According to (61), one can write :

Replacing Ao by its expression (91), one has:

Ap = - 99 (92)
nho  dt
4.2.2.3 - Energy
Taking the momentum derivative in (36), one can write
dE _ v
dp
which istrue for finite variations
AE v R (93)
— = = .
4p
By virtue of (92) :
Rp, dé
AE ——= 94
nh dt (%4)
4.2.3 Equation of motion
The equation (80) givesthe energy gain per turn for the synchronous particle.
From (93), the momentum gain per turn is given by
e -~ .
(A p)turn = R VRF Sln¢s ' (95)
S S
The average increase per time unit is given by dividing by the revolution period T .
ApJ . e ~ .
— = p, = —=V,8Sng, . (96)
( T wrn S 272_ Rs RF S
One can write:
2T R ps = €eVg Sng, . (97)

Thisequation is also verified by any particle.
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If we consider (97) applied to a non-synchronous particle and subtract the same
eguation applied to the synchronous particle, one has :

o (Rb—@bsj - eV (Sng - sing) . 98)

Developing the left-hand side :

dps

. . d
Rp_Rsps = Rd_r:_det

R and p can be expressed with reference to the wnchrdonous particle. g
Rp-Rp; = (R+AR)(p+4p)~ R—(P)

1K

R SR+ ART ()

The second order term is neglected.

For many reasons, the lattice is designed with dispersion-free regions around the RF
cavities (Dx =0)

It implies that particles pass on the same orbit, whatever their energies and they receive
the same energy gain. Therefore AR =0.

One can write:

. . d
ZE(RD— R Ds) = ZERSE(AP) :
Hence (98) has the following expression :

d (Ap) B e\?R,: o
& " 2rR (sng-sing). . (99)

From (92) and (99), the motion of the non-synchronous particle is given by the system
of differential equations:

d(ap) & g (100)
& - 2oR Sne-snds)
dt Ps (101)

the variables are the momentum Ap and the phase ¢.
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Note:

For ultrarrelativistic particles, the energy gain is quasi-constant and it is not necessary
to impose a dispersion-free region for RF cavities.

In synchrotrons, the betatron acceleration force due to the time variation of the
magnetic field is, in general, self compensated.

A development can befound in [5].

A simplified expression isgiven by :

d(ap)

e A (sng-sings) (102)
d¢
% _ Ba 103
ot P (103)
where
e\l\/RF
A= 27R (109
g = -2he. . _uhfic (105)
P ps Ry

4.3- SMALL AMPLITUDE OSCILLATIONS

4.3.1 First approximation

Equation (102) can be written :

d11d9)  ral(sns—s _
dt{BdJ [Al(sing-sing,) 0 . (106)

We assume that variations in time of quantities between square brackets are sow
compared to the variations Ap = ¢ - ds.

Hence equation (106) becomesin the first approximation (B = 0) :

d% o2 . .
— + —— (dng—9n = 0 (107)
2 cos (sing—sing)
where
eV__nhpg.c
Q? = —ABcosg. = RE > cos 108
S ¢S 27Z'ps Rsz ¢S ( )
or 0 = Qfcosg, . (109)
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ev.. nhp,c
We have 22 = —-AB = Ve 7/ C . (110)

27p, R
This quantity can be expressed in energy instead of momentum

psc B C VA 1 c?

pS R52 - mS VS ng mS VS 2 mS R52 ES ng
Then

eV nhc?
_Qg Lz (1112)
27 E, RS
In thisfirst approximation, the equation of motion is given by the second order
differential equation in phase ¢.
d? 2 /. :
— +05(sing—sing;) = 0 . (112)

dt?

4.3.2 Second approximation

We consider particles which remain close to the synchronous particle. Their variations
in phase and in energy are small. We developsin¢ :

sng = sn(ds+A¢d) = SNdscosAd + cosdpssSin A
To thefirst order :

Sng = sing,+cosg, A¢
and (sng-sing,) = Ag¢ cosg,
To the second order :

d2g  d*(44)

dtz T dt?

Under these assumptions, (107) becomes:

2
%‘;@JFQSZM = 0 . (113)

For small amplitude oscillations, we obtain the equation of a harmonic oscillator where
Qgisthe angular frequency.



4.3.3 Stability condition

According to the harmonic oscillator equation (113), the stability is obtained under the
condition that Q§ isreal positive, which implies that the right-hand side of (108)

should be positive . The only parameters which could be negative are n and cos ¢s.
Discussion about the condition :

ncos¢gs > 0 . (114)
We saw in (80) that the synchronous acceleration admits two distinct phases ¢s and

7 — ¢s . The condition (114) imposes the following conditions on the synchronous
particle:

¥ <%y, 1 >0, cosgg >0, 0<¢S<%

Yy >y, 1 <0, cosps <O, %<¢S<7r.

Before the transition , the stable synchronous particle crosses the cavity during the rise
time of the accelerator field . After the trangtion , this particle crosses the cavity
during the falling time of the accelerator field .

We remark that for the two cases mentioned above , the variations range of ¢g always
gives sin¢s>0.

This corresponds to an acceleration of the synchronous particle .

Now when sin ¢s< 0 it will correspond to a deceleration of the synchronous particle.

In order to fulfil the stability condition (114), one should have :

y>7ryw, n<0, cosgs<O0, ”<¢s<%

Yy <yy,» n>0, cosgs>0, %<¢s<277

All these cases are summarised on the Figure 18.
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Figure 18: Phasing of moving and stationary buckets relative to RF voltage [4]
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Notes :

i) At the transition energy 7 — 0 and _(252 — 0 , there is no longer phase
stability , in the first approximation.

i) In a synchrotron, when the particles have to cross the transition energy , the RF
system must quickly shift its phase from ¢sto n — ¢s, in order to maintain the

dynamic stability through the transition.

i) In the case of the lepton machines, (synchrotrons or accumulators), where the
velocity of particlesisamost equal to ¢, we have:

4.3.4 Longitudinal phase space

The solution of the harmonic oscillator equation expressed by the second order
differential equation (113) is:

Agp = Apsin(2t+4,) . (115)
By virtue of (103), one has

dg d(44)

— = B = .

at 4P ot
The time derivative of (115) is

A -

%f}) = ApQ cos(2t+6,) = BAp

The longitudinal phase space variables are given by :

{Agb = Ag sin(2t+4,)

. (116)
Ap = Apcos(2t+g,)
. n Q. -
with A p = E A¢

The motion is a stable oscillation around the phase ¢s for small A¢ and assuming that
condition (114) isfulfilled.
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4.3.5 Synchrotron oscillations frequency for lepton machines

In these machines, either synchrotrons or accumulators, vs = ¢ and the following
simplifications can be applied :

p=l n= —a,, a)S;ECS, psz%
Therefore (108) becomes :
0 = _ezv;FEO: ‘;?2 c CoSg, . (117)
The synchrotron tune is defined as :
Q-2-2R

S

From (117) :

—eV, h
Q = \/—ZZFE% coS ¢,

In lepton machines, Rs and ows do not change and the RF frequency is also constant.

The maximum phase extension A <|A> from (116), is:

Ag = —AD

Q| w

S
It can be expressed as a function of the synchrotron tune using (105) :

aphA_b
Q P

Ap =
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CHAPTER 5

51-OSCILLATIONSWITH HAMILTONIAN FORMALISM

The am of this chapter is to illustrate the limits of the stable regions for the large
amplitude oscillations and the adiabatic damping for the small amplitude oscillations
using the Hamiltonian formalism.

5.1.1 Notion of invariant

In Physics, the notion of invariant is important and useful. One example is given by
Liouville's theorem. It says that an elementary volume of the phase space is conserved as
the isolated system undergoes transformations. Nevertheless its shape changes in general.

Another way to express this theorem is : an arbitrary area (p,g) in the phase space is
conserved in a canonical transformation.

In the longitudinal phase space, with changing parameters, the stable trajectories do not
exactly close over one cycle of synchrotron oscillation.

Therefore the area conservation is not obvious.

We introduce the concept of the Action integral.

The Boltzmann-Ehrenfest theorem specifies that a non dissipative oscillatory system with
dowly changing parameters has its canonical variables which are evolving so that the
action integral remains constant.

One can write:

| = jpdq = constant

T

p and g arethe canonical variables.
T isan oscillation period.

5.1.2 Hamiltonian equation
Since the invariance exists only for canonical variables, it is necessary to define them.

Let H(¢p,W,t) be the Hamiltonian of the motion. Then the canonical variables should
fulfil the following conditions :

d¢ oH
at W
(118)
dw  AH
R
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We define the "energy" variable W which is the canonically conjugate variable of the
"position” ¢ as:

W = — (119)

where AE = energy gain and f = frequency.

The new variable has the dimension of an "action" : it is a product of energy with time.
Severa expressions can be givento W :

AE AE
W = ~ = 27[7 = 27R4p = C4dp . (120)

The differential equations system (102) (103) can be written :

d\{[v = AC(sing—sings)
(121)
d¢ _ By,
d C
These equations can be derived from the Hamiltonian :
H($,W,t) = AC [cosg - cosg, +(4 - ¢s)sm¢s]+ 1B\
One can verify that the conditions (118) are fulfiled for this Hamiltonian.
Taking into account (104) and (105), the Hamiltonian can be written :
H (¢, W.t) = eV . [cosg —cosg, + (¢ - ¢S)sm¢s]— p R w2 . (122
S S

1, Bs Ps, Rs, ¢s and Ve can be a function of the time. However their variations are

slow compared to the synchrotron oscillations.
In this case, the Hamiltonian will be time independent

d_H_@_O
s A S
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5.1.3 Adiabatic condition

Using (47), one can write

1 d9s dp
02 dp dt

By virtue of (96) and (108), one has:

AN

1
eV e COSPs >
2r hn ps Bs C

1
= t <<1 .
5 g ¢

N

In the synchroton, if V.. and ¢s are constant during the acceleration, then this

adiabatic condition is respected.

Note :
If the beam energy goes through the transition energy, then this condition is no longer
respected (n =0).

52-LIMITSOF STABLE REGION
5.2.1 Qualitative approach

In Figure 15, the plots given for the P_trajectory and for the external contour are for a
constant Hamiltonian. It is the same for the plot given in Figure 17 which crosses the
phase  — ¢s.

Figure 19 shows families of curves above the transition (n < 0). Particles moves along
the trgjectories (in time) in the direction of the arrows.

)] Let usconsider Figure 19 a).
We have a stationary bucket :

¢S:7Z' .

The separatrix joints the adjacent unstable points. There is no communication
between the 2 half planes. Inside the stationary buckets, one has a stable region.
For a given Hamiltonian, we have 2 points where W = 0. Outside of these
buckets, one has an unstable region with one point where W =0, at ¢ = £ kx
(k integer).

61



a)

b}

¢}

Let us consider Figure 19 b).
We have a moving bucket

gs = m  (gs=150") .

Inside the stable region, we have 2 points where W = 0.

Outside, we have the unstable region with one point where W = 0.
Particles can pass from one half plane (above W,) to the other (below W ).

===
===

Figure19: Trajectoriesfor a constant Hamiltonian (y > y”) from [4]
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5.2.2 Quantitative approach

Particles moving along the trajectories of the longitudinal phase plane fulfil the following
conditions:

*° d¢ JH hn o,
— = _ = _ 123
/ dt AN 27 p, R (123)
dw _ JH A .
W= E: _§_¢ = eVRr [SII‘I(,}S— Sn¢s] . (124)

We discuss the different points over an interval 2r.

i) ¢ =9s W=0
It is the synchronous particle.
By virtue of (123) and (124), one has :

b=W=0.

We will have an extremum for W.

i) In the stable region, we have 2 points where W = 0.
According to (123), it implies an extremum for ¢ .

i) ¢ = m-¢s W =20.
It is the unstable point belonging to the separatrix and corresponding also to an
extremum of ¢.

iv) dbs=m or ¢s= 0.

By virtue of (96), bs = 0. Therefore thereis no acceleration.
It corresponds to the stationary bucket.

The limits of oscillations, in W, inside the stable regions are provided by W = 0.
By virtue of (124) one has 2 solutions :
ds and © — ¢s (unstable point).
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For ¢ = ¢s, (122) gives:

HWg) =- ;‘ﬁwz . (125)

N

Since the Hamiltonians are constant, one can equate (122) and (125) and the limits W,
in energy, are given by :

N2

hnawg

R) [cosp—cosps+(g—¢s)sings] . (126)

Thelimits of oscillations, in ¢ , inside the stable regions are provided by ¢ = O.

Equation (123) implies W = 0 and from (122), one has :

H(W,Qﬂj — VR {cosfﬁ —cos¢s+(g?5 —¢sj s‘n¢s} (127)

Equating the two Hamiltonians (122) and (127), one obtains a transcendental equation in
o :

cosq?—cos¢s+[$s—¢s]sn¢s=(cos¢—cos¢s)+(¢—¢s)s-n¢s—W‘;%wz C129)
S RF

5.2.3 Special cases

5.2.3.1 - Stationary bucket

Let usconsider n>0.Inthiscase ¢s=0.

The maximum ¢ is obtained when W = 0, and the maximum W is obtained when

¢ = ¢s = 0.



Using (126), one has

W2 = _ Ve (47 psRs) [COS¢3—1]
hnog

_Q7R|:47TDSRS Zs.nzé
hnog 2
W2 = K2sn?? (129)
= 5

Taking the square root :

Note:

1) Equation (129) has the form of the Hamiltonian for the classical pendulum.

2) Theratio — isvery important for the longitudinal matching of bunches

into buckets.

5.2.3.2 - Small oscillationsin the moving bucket.

Assumethat A = ¢ — s <<1.
Then the quantity between brackets of (122) issimplified :

1

[ 1= —E(Aqﬁ)z CoS¢s

Putting this expression into (126), with W =0, one has:

1

h 2 .
Ap = J_{ 1% } W
27 R, s €V COSg
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5.2.4 Equation of separatrix

One of the limits of the stability region isgiven by :
W=0 ad ¢ =n-9¢s.

Putting these values into (126), one can obtain an extremum of W which belongs to the
Separatrix :

W, - % [2cosg (z-245) singy] - (130)
n

S

This other limit in phase d)sep isgiven by putting (130) into (126) with ¢ = d)sep and W=0

COSpeep + Psep SNPeep= (T—s) SN — COSPs .

The equation of the separatrix is established by multiplying (107) by <|> (1).

C Q2 . ~
¢¢+COS¢S(¢sn¢—¢sn¢s)—0-

A firstintegral is:

1 ¢2 - Q—g(cosgb + ¢ singg) = constant
2 COSpq S '

By virtue of (123) and (105) :

BZ 5 _(22
S W +¢s = . 131
872 R? cosg, (cosg +4 sing,) constant (131)

The constant is determined by a point which belongs to the separatrix.
Forexample: W =0 and ¢ = 7n-9¢s.
The equation (131) becomes:

B 2 2 Qsz

87% R? W CcoSg@,

(cosgb + cosd, + (¢ -7+ ¢S)sin ¢sj =0 . (132

Thisisthe equation of the separatrix in the longitudinal phase space.
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5.3- ADIABATIC DAMPING

Applying the action integral, one has

| = ﬂ;Wd¢ = ﬂsw%dt = constant . (133)

d
We consider small amplitude oscillations and we average the product W d_(tb over one

synchrotron oscillation period.
dg
= (W—) T,
< dt> S

> 2—7T = constant.

- <W¢

S
Using (108) and (123), one has

K1 < W2 > = constant

1
2r hna, }2

where K, = { =
R; ps €V, cosgs

For sinusoidal variations, one can write :

(W?) = ITSVAVZSinz_QStdt .
0

1
TS
After development, one has:

/Wz\ _ 1W2
W5 =5 . (134)

Including all constant parameters of K into the right-hand side constant, one has:

V/\V: |: \7RF pS R COS¢S

2
} x constant . (135)
nog
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The adiabatic variations of the phase are obtained in the similar way :

dw
| = §A¢-dw = § AgzsF dt = constant .

| = <A¢-V'V>% .

S

We saw that development for small amplitudes of the right-hand side of (124) provides:

W = e\A/RFA(/ﬁcosqﬁs.

Then : K, <A¢2> = constant
E
27 R, p,ey__cosg, |2
where K, = 27{ RP Ve ¢}
hnw

Including all constant parameters of K, into the right-hand side constant, and with the
same equation as (134) applied to A¢, one has

1

4

Ap = { 7% } x constant .
Rs ps VRF COS¢S

AN
Conclusion : when ps increases, A ¢ decreases as ps'1/4 . It is called the adiabatic

damping of the synchrotron oscillations.
A VAN
However one can see that the product W . A ¢ remains constant while ps changes.

Therefore the Liouville's theorem holds.
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AA =

AD =

BS =

CAS

CERN

CLIC

JUAS =

JC =

LEP

LHC

LIL =

NLC

PS =

RF =

SLAC=

SLC

SPS =

APPENDIX |

List of acronyms

Antiproton Accumulator
Antiproton Decelerator
Booster Synchrotron
CERN Accelerator School

Conseil Européen pour la Recherche Nucléaire (1954)
European Organization for Nuclear Research (2000)

Compact Linear Collider (CERN study)
Joint Universities Accelerator School
Joint Linear Collider (KEK study - Japan)
Large Electron Positron collider

Large Hadron Collider

LEP Injector Linac

Next Linear Collider (SLAC study - California)
Proton Synchrotron

Radio Frequency

Systéme I nternational

Stanford Linear Accelerator Center
Stanford Linear Collider

Super Proton Synchrotron
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APPENDIX 1

Some physical constants

Symbols Meaning Value Units
c velodity of light 299792458 x 10 | msl
e electric charge 16021 10 C
h Planck’s constant 6.6256 x 10 . Js
m rest mass of electron 91091 x 10 | kg
0511006 x 10 | Gev/c?
m rest mass of proton 16795 x 10 kg
0.93826 Gev/c2
r classical electron radius 28178 x 10 m
i permeability of free space Axx 10 H.m-L
g permittivity of free space 8.8542 x 10 Eml
k Boltzmann's constant 1.38066 x 10 JeKk-1
G Stephan's constant 5.670 x 107 W.m?.°K*
g, M ¢ =
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