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Abstract

The SCHERM space charge routine reported in the
1996 linac conference is based on a representation of the
charge density distribution in a bunch with an Hermite
series expansion. Approximate values of the field
components are deduced from the properties of the
Hermite functions. First applications of the method for the
180 mA CERN proton linac showed promising results,
however the method has shown its limitations when it was
tested in a periodic accelerating channel (6 MeV to 100
MeV) with highly tune-depressed beams. Problems
underlying the approach are discussed, and solutions are
proposed.

1  INTRODUCTION
A new type of approach for the space charge

computation, without the need of a strict symmetry has
been reported in [1]. It is based on the 3-dimensional
representation of the charge density distribution with a
Hermite-series expansion. Approximated values of the
field components were deduced in order to be good in the
bunch core where most of the particles lie. The method
had been successfully applied at the 180 mA CERN
proton linac beam. Results compared very well with those
computed with SCHEFF for this beam. Emboldened by
the initial success, we applied this approach to a periodic
channel with highly tune-depressed beam. This exercise
has revealed underlying limitation of the method. These
limits are found to be purely mathematical in origin and
lie with the limitations of Hermite-series expansion of the
charge density distribution and the field components.
Solutions for circumventing these difficulties are
proposed in this article.

2  PROBLEMS WITH SERIES
REPRESENTATION

The difficulties with series representation had been
reported at the end of the eighteenth century. Dirichlet had
shown (~1870) that the Fourier-series expansion of some
class of functions does not always converge uniformly
(e.g. Gibbs phenomena). Moreover, when they converge
uniformly, they oscillate around the function in a random

manner. Using the studies of Cesaro on the divergent
series, Fejer (~1890) presented solutions to such
problems. Here, one represents, for simplification, the
process in one dimension, which can be extended in 3
dimensions. Among the two representations of the m-
order Hermite series expansion Sm(x) of the function f(x),
only the expression proposed in [1,3], converges to zero,
when x goes to infinity, and as such can be used for the
charge density distribution representation as:
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For functions f without Gaussian appearance (meaning
continuous functions decreasing to zero at the infinity
more rapidly that any power of 1/|x|), Sm usually does not
converge uniformly to f when m increases. However Sm

always minimises  the quadratic means square Im :
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Due to eq. (2), the Hermite series in eq. (1) oscillates
around the function f(x) (Weisstrass Minimax theorem). If
Sm converges uniformly to f, these oscillations disappear
when m increases to infinity. As the value of m is always
limited, Sm can have a random behaviour with unexpected
effects when the function f(x) changes during the
computation. Moreover, if Sm does not converge
uniformly to f, these oscillations are amplified with
increasing m. This problem can be circumvented with the
Cesaro-Fejer transformation. Here, one replaces the
Hermite series Sm(x) by the Cesaro-Fejer series σ
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According to the Theorem of Cesaro, if the limit f(x)
exists, the Cesaro-Fejer series in eq. (3), converges
uniformly to f(x), when m increases. The unexpected
oscillations are attenuated. An example can be seen in
figure 1.

As presented in ref.[1], the local charge density
expressed in terms of Hermite-series polynomial is given
by:
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with :
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where u=x/a, v=y/b, w=z/c, a, b and c are the rms size
of the bunch in the x, y and z directions respectively and
N is the number of particles.
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Figure 1: A function f(x) (in a) is represented by a 30-
order Hermite series (in b). The oscillations practically
disappears using a Cesaro-Fejer transformation (c).

The Cesaro-Fejer transformation of the one
dimensional function in eq. (1) leads to :
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this can be extended to 3 dimensions.

From eq. (6), we see that Cesaro-Fejer transformation
is an Hermite-expansion with attenuated high order
coefficients. This plays the role of a low-pass filter in the
Hermite base suppressing oscillations, but having a slope
smaller than that of the Hermite-series.

The effect of the Cesaro-Fejer transformation can be
seen in fig 2, where are presented the transverse emittance
growth in a periodic accelerating channel with highly tune
depressed beam (APT linac from 6.7 MeV up to 100
MeV). The computations are made for identical
conditions with and without the Cesaro-Fejer
transformation. It should be noted that the improvements
in the field computation, explained below, have not yet
been introduced. The difference in emittance growth, is
due to the unexpected oscillations resulting from the
Hermite series expansion of the charge density
distribution. This oscillation of the charge density

representation seems to introduce a diffusion like effect
(or more precisely a stochastic coupling effect between
directions) adding to the transverse emittance growth.
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Figure 2 : Transverse emittance growth in a periodic
accelerating channel (6.7 MeV to 100 MeV) with a highly
tune-depressed beam. The results are obtained from the
simple Hermite series expansion (a), and from the Cesaro-
Fejer transformation (b).

3  SELECTION OF THE NUMBER OF
TERMS IN THE HERMITE SERIES

EXPANSION
It has been shown in [1], that the charge density

distribution can be considered to be a Gaussian:
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corrected by various terms (coefficients Aijk in eq. (4)),
each of them of total charge zero. In practice most of
these coefficients can be neglected. It is essential to define
a criterion, allowing the selection of the most significant
terms. The Hermite polynomials Hi(u) are obtained from
the recurrence relation :
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Even and odd Hermite functions are represented in
fig.3:
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With even functions, the extremum is obtained when
u=0. Near this point, from the Hermite recurrence
relation, one obtains :
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For odd Hermite functions, the extremum lies between
0.5 < u < 0.75 , and one can write :
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Introducing the following numbers:
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g(0) = 1
g(1) = 0.75 (12)
g(n+2) = (n+1)⋅g(n),

one obtains from eq. (10) and eq. (11) :
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Comparing the magnitude of the right term in eq. (13),
relative to the Gaussian in eq. (7) allows us to select the
more significant terms. They are chosen such that:
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with δ� = 0.1, 0.01, ...., depending on the accuracy
desired. An estimation of the relative importance of the
terms neglected can be obtained from eq. (14). The field
contributions from only relatively more significant terms
are considered.
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Figure 3 : The functions Hn(u)/g(n) for n=0 to 11. They
decrease rapidly to zero and might be considered null
when u>5 (corresponding to 5 standard-deviation). The
definition of g(n) is given in the text.

4  COMPUTATION OF THE FIELD
COMPONENTS

Computation of the field components due to the
dominant term A000 in eq. (7) is based on one quadrature
calculation as explained in [2,3]. The field components
due the other terms Aijk are exactly calculated from the
Poisson equation, instead of the approximated approach
given in [1].

The corresponding potential from each term is given by
the Poisson law :
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Fourier transforms applied to eq. (15) leads to
analytical expressions of the field components with a 3
dimensional (3D) integral in a 3D complex plane.
Extensive effort was devoted to reduce the computation
time of the field components.

The calculus of residues allows to reduce the 3D
quadrature to a 2D one. This 2D quadrature is solved
using numerical methods, which required several steps.
Moreover, most of the values involved in these
quadratures are independant of the particle co-ordinates
and can be pre-calculated only once at the beginning of a
simulation.

The analytical formulation of the method is quite
extensive and beyond the scope of this paper.

5  CONCLUSION
Solutions to overcome the limits of the method

presented in [1] are formulated. In particular:
- Cesaro-Fejer transformation would avoid the

unexpected effects arising from the oscillations in the
Hermite-series expansion, reducing the observed
emittance growth.

- Criterion has been set (eq. (14)) to select the most
significant terms of the series expansion. Computation
have shown that only some tens of terms are sufficient for
a suitable fit of the charge density distribution.

- Precision of field calculation has been improved and
efforts have been done to reduce the computation time.
Transformations applied to Poisson equation are being
studied. Possibilities  to reduce the 2D quadrature to a 1D
one are also being looked out.

All the components of the above formualtion must be
fully implemented in the space-charge code SCHERM
before a fair beam-dynamics comparison could be done
with DYNAC [4] and PARMILA [5] codes.
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