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ABSTRACT

We calculate temporal correlators with meson quantum numbers in the deconfined

phase of QCD using the hard thermal loop (HTL) approximation. In this way

medium effects such as thermal masses and Landau damping in the quark-gluon

plasma are taken into account. We show that both effects lead to competing modi-

fications of the free mesonic correlation functions. We find that correlators in scalar

channels are only moderately influenced by the HTL medium effects, while the

HTL-vertex corrections lead to divergent vector correlators.
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1 Introduction

While the lattice calculations of hadron properties in the vacuum have reached quite

satisfactory precision, little is known from such first principle calculations about
basic hadronic parameters in a thermal medium, e.g. masses and widths at finite

temperature. Lattice calculations of such quantities at zero temperature generally
proceed through the calculation of correlation functions in Euclidean time. This

approach naturally carries over to the calculation of spatial correlation functions
at finite temperature. Such spatial correlation functions indeed show evidence for

sudden changes of in medium hadron properties above Tc [1]. However, they provide
only indirect evidence for modifications of, e.g. hadron masses and their widths.

The appropriate approach here would be a detailed analysis of temporal correlation
functions [2, 3], which at finite temperature are restricted to the Euclidean time

interval [0, 1/T ]. The interesting information on hadronic states is then encoded in
the spectral functions for these correlators [4].

Currently available results from lattice calculations show significant changes in
the behaviour of temporal correlation functions in the high temperature plasma

phase of QCD [2, 3, 5, 6]. However, at least close to Tc the correlation functions
clearly deviate from those of freely propagating quarks. It thus is important to

understand in how far the temporal correlation functions carry information about
the existence or non-existence of bound states or resonances in the plasma phase.

Various calculations within the framework of low energy effective models also suggest
strong modifications of hadron properties [7] and consequently also of the spectral

functions [8]. However, it is difficult in such model calculations to deal with the quark

substructure of hadrons, which will become important at high temperature where
one expects to find indications for the propagation of almost free, massless quarks.

Eventually it is the hope, that spectral methods [9], which successfully have been
applied to hadron spectral functions at zero temperature [10], can also be applied

at finite temperature. In particular, in the high temperature limit, well above the
QCD phase transition temperature, it then might be appropriate to compare lattice

calculations for temporal hadron correlators also with perturbative calculations. At
least to some extend non-perturbative information can also be incorporated in such

an analytic calculation by using the hard thermal loop (HTL) resummation scheme
[11]. The recent successes in reproducing the QCD equation of state calculated

on the lattice [12, 13] with HTL-resummed perturbative calculations for T >∼ 2Tc

[14, 15] suggest that this may be a reasonable starting point also for the description

of other properties of the high temperature plasma phase [16]. Indeed, the spectral
functions, which one will extract from an analysis of temporal correlators, are closely

related to quark-antiquark annihilation processes in the quark-gluon plasma. For the
vector channel this is linked to the dilepton production at high temperature, which

has been studied in the HTL-approximation [17]. The temperature dependence of
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the pseudo-scalar correlator is related to the chiral condensate. Thermal effects
on this as well as the pseudo-scalar masses and dispersion relations influence the

appearance or suppression of a disoriented chiral condensate which might lead to
observable effects in relativistic heavy ion collisions [18].

We will analyze here the structure of temporal correlation functions at large
temperature within the context of HTL-resummed perturbation theory. In the in-

finite temperature limit the free field behaviour is expected to give the dominant
contribution to the correlation functions for energies ω ∼ T [19, 20]. The HTL-

resummed quark propagator [17, 21] goes beyond this leading order perturbative
result and incorporates two non-perturbative features, which apparently will lead to

competing effects in thermal correlation functions. On the one hand it takes into
account the generation of thermal quark masses, mT ∼ g(T )T . This cuts off the

low frequency part in the spectral functions and thus will lead to a steepening of
thermal correlation functions. On the other hand it also contains the contributions

from plasmino modes as well as interactions of quarks and antiquarks with gluons
in the thermal heat bath (Landau damping). This enhances the contribution of

soft modes with ω ∼ g(T )T which, in fact, will dominate the structure of spectral

functions at low energies even at rather high temperature [17]. These contributions
from soft modes will lead to a flattening of thermal correlation functions. We will

discuss the interplay between both features of HTL-resummed correlation functions
in this paper.

In the next section we will present the framework for the calculation of thermal

meson correlation functions in the HTL-approximation and give results for the scalar

and vector spectral function. In Section 3 we compare the resulting thermal meson
correlation functions with the leading order perturbative (free) correlators. Finally

we give our conclusions in Section 4.

2 Thermal Meson Correlation Functions

2.1 Definitions

We want to analyze the behaviour of meson correlation functions in the high temper-
ature limit. They are constructed from meson currents JM(τ, ~x) = q̄(τ, ~x)ΓMq(τ, ~x),

where ΓM is an appropriate combination of γ-matrices that fixes the quantum num-
bers of a meson channel; i.e., ΓM = 1, γ5, γµ, γµγ5 for scalar, pseudo-scalar, vector

and pseudo-vector channels, respectively. The thermal two-point functions in coor-

dinate space, GM(τ, ~x), are defined as

GM(τ, ~x) = 〈JM(τ, ~x)J†M(0,~0)〉
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Figure 1: The self-energy diagrams for free quarks (a) and in the HTL approximation
(b).

= T
∞∑

n=−∞

∫ d3p

(2π)3
e−i(ωnτ−~p~x) χM(ωn, ~p) , (2.1)

where τ ∈ [0, 1/T ], and the Fourier transformed correlation function χM(ωn, ~p) is

given at the discrete Matsubara modes, ωn = 2nπT . The imaginary part of the
momentum space correlator gives the spectral function σM(ω, ~p),

χM(ωn, ~p) = −
∫ ∞

−∞
dω

σM (ω, ~p)

iωn − ω + iε
⇒ σM (ω, ~p) =

1

π
Im χM(ω, ~p) . (2.2)

Using eqs. 2.1 and 2.2 we obtain the spectral representation of the thermal cor-

relation functions in coordinate space at fixed momentum (β = 1/T ),

GM(τ, ~p) =
∫ ∞

0
dω σM (ω, ~p)

cosh(ω(τ − β/2))

sinh(ωβ/2)
. (2.3)

For a perturbative analysis of these correlation functions at high temperature it is

convenient to introduce dimensionless variables, ω̃ = ω/T , ~̃p = ~p/T , τ̃ = τT and
the reduced spectral function σ̃(ω̃, ~̃p) ≡ σ(ω, ~p)/T 2. In terms of these variables we

find

G̃M(τ̃ , ~̃p) ≡ GM(τ, ~p)

T 3
=

∫ ∞

0
dω̃ σ̃M(ω̃, ~̃p)

cosh(ω̃(τ̃ − 1/2))

sinh(ω̃/2)
. (2.4)

2.2 Free Meson Spectral Functions

The starting point for a calculation of the meson spectral functions and the me-

son correlation functions is the momentum space representation of the latter [20].
To leading order perturbation theory one has to evaluate the self-energy diagram

shown in Fig. 1a, where the internal quark lines represent a bare quark propagator
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SF (k0, ~k) which can be expressed in terms of its spectral function ρF (ω,~k, m) and
is conveniently written as

SF (k0, ~k) = −(γ0 k0−~γ·~k+m)
∫ 1/T

0
dτek0τ

∫ ∞

−∞
dωρF (ω,~k, m) [1−nF (ω)] e−ωτ ,(2.5)

where k0 = (2n + 1)iπT , nF (ω) = 1/(1 + exp(ω/T )) and

ρF (ω,~k, m) =
1

2ω
(δ(ω − ωk) + δ(ω + ωk)) , (2.6)

with ωk =
√

~k2 + m2.

The thermal meson spectral functions are then obtained from eq. 2.2, that is
from the imaginary part of the correlation functions in momentum space,

χM(ω, ~p) = 2NcT
∑
n

∫
d3k

(2π)3
Tr

[
ΓMSF (k0, ~k)Γ†MS†F (ω − k0, ~p− ~k)

]
(2.7)

In the case of free fermions this is easily evaluated. In the limit of vanishing external

momentum one finds for the spectral functions,

σfree
M (ω, ~p = 0) =

Nc

4π2
Θ(ω − 2m) ω2 tanh(ω/4T )

√
1−

(
2m

ω

)2

·
(
aM +

(
2m

ω

)2

bM

)
, (2.8)

where different quantum number channels are characterized by the pair of param-
eters (aM , bM). For the scalar (s), pseudo-scalar (ps), vector (v) and pseudo-vector

(pv) channels they are given by (-1,1), (1,0), (2,1) and (-2,3), respectivelyb. In
the massless limit the spectral functions are chirally symmetric, |σps| = |σs| and

|σpv| = |σp|. In this case the remaining integral in eq. 2.4 can be done analytically

and one obtains for example in the pseudo-scalar case [20],

G̃ps(τ̃ , ~p = 0) = 2πNc (1− 2τ̃)
1 + cos2(2πτ̃)

sin3(2πτ̃ )
+ 4Nc

cos(2πτ̃)

sin2(2πτ̃)
. (2.9)

bIn the vector and pseudo-vector cases we denote by σM the trace over the Lorentz indices of
σµν

M .
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2.3 HTL-Approximation for Meson Spectral Functions

Since in eq. 2.4 one has to integrate over soft (ω ' gT ) as well as hard (ω ∼ T )

modes, a consistent computation of the temporal correlation functions at ~p = 0
requires at least the use of HTL resummed propagators and vertices as shown in

Fig. 1b [17]. In this way important medium effects of the quark-gluon plasma such
as effective quark masses and Landau damping are taking into account. The above

analysis for the free thermal meson correlators can then be extended to the leading

order HTL approximation. The HTL-resummed fermion propagator is obtained
from eq. 2.5 by replacing the free spectral function ρF with the HTL-resummed

spectral function which for massless quarks is given by [17, 21]

ρHTL(k0, ~k) =
1

2
ρ+(k0, k)(γ0 − i k̂ · ~γ) +

1

2
ρ−(k0, k)(γ0 + i k̂ · ~γ) (2.10)

with k̂ = ~k/k, k = |~k|, and

ρ±(k0, k) =
k2

0 − k2

2m2
T

[δ(k0 − ω±) + δ(k0 + ω∓)] + β±(k0, k)Θ(k2 − k2
0) (2.11)

β±(k0, k) = −m2
T

2

±k0 − k[
k(−k0 ± k) + m2

T

(
±1− ±k0−k

2k
ln k+k0

k−k0

)]2

+
[

π
2
m2

T
±k0−k

k

]2

Here ω±(k) denote the two dispersion relations of quarks in a thermal medium
[17, 21] and mT = g(T )T/

√
6 is the thermal quark mass. We note that in addition

to the appearance of two branches in the thermal quark dispersion relation the
HTL-resummed fermion propagator also receives a cut-contribution below the light-

cone (k2
0 < k2), which results from interactions of the valence quarks with gluons

in the thermal medium (Landau damping). Furthermore, an explicit temperature
dependence only enters through mT (T ). Also the HTL-resummed quark spectral

function can thus be written in terms of dimensionless, rescaled variables, e.g. ω̃ =
ω/T etc. and the reduced meson spectral functions σ̃HTL = σHTL/T 2 will depend

on temperature only through m̃T = g(T )/
√

6. It also should be noted that the
HTL resummed quark propagator is chiral symmetric in spite of the appearance of

an effective quark mass [21]. In the following we thus will ignore the parity of the
meson states and will generically talk about scalar and vector channels onlyc.

Inserting eq. 2.5 for m = 0 together with eq. 2.10 and eq. 2.11 into eq. 2.7 we
can determine the spectral functions for mesons in the HTL-approximation. In the

vector channel this also requires additional modifications of the vertex functions

cWe will, however, show results for pseudo-scalar and vector spectral functions and correlators
which in our notation are strictly positive.
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ΓM , i.e., the use of a HTL quark-meson vertex, as discussed in detail in [17]. In the
case of the scalar and pseudo-scalar spectral function the vertices are given by the

bare vertices Γs = 1 and Γps = γ5, since contributions from a HTL resummation
to the vertices are suppressed in this case, i.e. lead to higher order corrections, as

discussed in the Yukawa theory [22] and scalar QED [23]. If, on the other hand, the
bare vertex is proportional to γµ as in the vector meson case, the HTL vertex cannot

be neglected, since in a gauge theory it is related to the HTL fermion propagator
by Ward identities [24].

The pseudo-scalar spectral function can then be written as

σps(ω, ~p) = 2Nc(e
ω/T − 1)

∫ d3k

(2π)3

∫ ∞

−∞
dxdx′ nF (x)nF (x′)δ(ω − x− x′)

·
{
(1− ~q · ~k)[ρ+(x, k)ρ+(x′, q) + ρ−(x, k)ρ−(x, q)]

+(1 + ~q · ~k)[ρ+(x, k)ρ−(x′, q) + ρ−(x, k)ρ+(x, q)]
}
, (2.12)

where ~q = ~p−~k. The corresponding relation for the vector spectral function, which

also includes HTL-vertex contributions, is related to the dilepton production rate

calculated in Ref. [17] in the HTL approximation,

σv(ω, ~p = 0) =
18π2Nc

5α2

(
eω/T − 1

)
ω2 dW

dωd3p
(~p = 0) . (2.13)

Here α is the electromagnetic fine structure constant.

As the thermal meson correlation functions are constructed from two quark prop-
agators, they will receive pole-pole, pole-cut and cut-cut contributions, i.e., the

mesonic spectral functions for ~p = 0 are generically given by

σHTL(ω) = σpp(ω) + σpc(ω) + σcc(ω) . (2.14)

Explicit expressions for the three different contributions to the pseudo-scalar spectral
function, σHTL

ps , are given in the Appendix. Similar results for the vector spectral

function σHTL
v have been derived in [17] where also a detailed discussion of the

physical processes related to the pole-pole, pole-cut and cut-cut contributions is

given. In particular, there are characteristic peaks that show up in the pole-pole
contribution (van Hove singularities). They are caused by a diverging density of

states which is inversely proportional to the derivative of the dispersion relations,
ω′±(k), appearing in eq. A.1. Owing to the minimum in the plasmino branchd these

dIn Ref.[25] it has been argued that the full in-medium quark propagator leads in general to
two branches in the dispersion relation, of which one exhibits a minimum.
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Figure 2: The pole-pole, pole-cut and cut-cut contributions to the pseudo-scalar
(a) and vector (b) spectral function for m̃T = 1. The crosses show the free meson
spectral function.

derivatives vanish at ω = 0.47mT and 1.856mT . Apart from values close to the van

Hove singularities in σpp one finds that the cut contributions dominate the spectral
function for small values of ω̃, e.g. for ω̃ <∼ g(T ).

In Fig. 2 we show the pole (σ̃pp) and cut (σ̃pc, σ̃cc) contributions to the scalar
(Fig. 2a) and vector (Fig. 2b) spectral functions for the case m̃T = 1, extrapolating

the HTL results, obtained in the weak coupling limit, to g =
√

6. As can be seen
in Fig. 2 the pole and cut contributions influence the spectral function in different

ways. The former gives the dominant contribution for large ω̃. The deviations of
σHTL from the free spectral function in this energy regime as well as the threshold

for ω̃ ' 2 m̃T is due to the presence of a non-vanishing thermal mass in the quark
dispersion relation and reflects the almost free propagation of two quarks in the

plasma. Additional interactions of these quarks with the thermal medium (Landau
damping) are represented by the cut contributions. These lead to an enhancement

over the free spectral functions for small values of ω̃ as discussed above. Further-
more, we note that the pole-pole and pole-cut contributions to the spectral functions

are similar in the scalar and vector channels. The cut-cut contribution, however,
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behaves differently at small energies. While it vanishes for small ω̃ in the scalar
channel it diverges linearly in the vector channel. This can be traced back to the

structure of the effective HTL-vertex, which contains a collinear singularity [26].
As a consequence of this singularity infinitely many higher order diagrams in the

HTL expansion contribute to the same order in the coupling constant [27]. This,
of course, indicates that the low frequency part of the vector spectral functions is

inherently non-perturbative.

3 HTL-Approximation for Thermal Meson Cor-

relators

3.1 Thermal Pseudo-Scalar Meson Correlation Function

The competing influence of pole and cut contributions to the HTL-resummed spec-
tral functions carries over to the behaviour of thermal meson correlation functions.

The appearance of a non-vanishing thermal quark mass tends to lead to a more
rapid decrease of the correlator in Euclidean time than this is the case for the free

massless correlator. The enhancement of the low energy part which is due to the cut
contributions, on the other hand, will counteract this trend. This is evident from

the behaviour of thermal meson correlation functions in the scalar channel which
is shown in Fig. 3 for m̃T = 1 and 2. As expected the correlator constructed from

the pole-pole contribution alone is steeper than the free correlator and, moreover,
is strongly dependent on m̃T . The cut contributions, however, enhance the low en-

ergy contributions in the spectral function and thus flattens the correlator again.
Somewhat surprisingly for m̃T ' 1 this seems to compensate almost completely the

deviations from the free correlator introduced by the pole contributions. The differ-

ence between the free and HTL-resummed correlators is largest for τT ' 1/2 where
the contribution from the low energy regime in the spectral function is largest. For

τT → 0, and τT → 1, on the other hand, the free and HTL-resummed correlators
approach each other as limω→∞ σHTL(ω)/σfree(ω) = 1. These features are amplified

in the ratio GHTL
ps (τ)/Gfree

ps (τ) which is shown in Fig. 4.

3.2 Thermal Vector Meson Correlation Function

As already discussed in section 2.1 the calculation of the vector correlators within
the HTL method requires the use of effective quark-meson vertices as shown in

Fig. 1b. This does lead to a linear divergence of the spectral function in the vector
channel at low frequencies, which in turn renders the temporal correlator infrared

divergent. In fact, although the scalar correlation functions are infrared finite, it is
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Figure 3: The thermal pseudo-scalar meson correlation function in the HTL ap-
proximation for m̃T = 1 (left) and m̃T = 2 (right). The curves shown the complete
thermal correlator (middle line), the correlator constructed from σpp

s only (lower
line) and the free thermal correlator (upper line).
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Figure 4: The ratio of the HTL-resummed and free thermal pseudo-scalar correlation
function versus Euclidean time τ in units of the temperature. Shown are results for
thermal quark masses m̃T = 0.5 (top), 1.0 (middle) and 2.0 (bottom).
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Figure 5: The subtracted thermal pseudo-scalar (left) and vector (right) meson
correlation functions in the HTL approximation for m̃T = 2. The curves shown the
complete thermal correlator (middle line), the correlator constructed from σpp

ps only
(lower line) and the free thermal correlator (upper line).

to be expected, that also in this case the low frequency part of the HTL-resummed
spectral functions will be modified significantly from contributions of higher order

diagrams. It thus seems to be reasonable to consider modified correlation functions,
which are less sensitive to details of the low frequency part of the spectral functions.

We therefore define the subtracted correlators

∆G̃M(τ) ≡ G̃M(τ)− G̃M(β/2) . (3.1)

In the subtracted correlation functions the infrared divergences are eliminated. They
are well-defined in the scalar as well as in the vector channels. In Fig. 5 we compare

the HTL-resummed subtracted correlation functions with corresponding results for
the free case. This shows that after elimination of the infrared divergent parts the

structure of the pole and cut contributions is similar in scalar and vector channels.
The vector correlator seems to be even closer to the leading order perturbative (free)

correlator than the scalar correlation function.
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4 Conclusions

We have calculated thermal meson correlation functions and their spectral func-
tions in the HTL-approximation. We have analyzed the influence of the various

contributions to the HTL-resummed scalar and vector meson spectral functions on
the structure of the thermal correlators. We generally find that the correlators in

HTL-approximation – after subtracting the infrared singularity in the vector cor-
relator – are quite similar to those calculated in leading order perturbation theory

which correspond to free correlation functions. Non-perturbative features of the
HTL-resummed quark propagators such as the generation of a thermal quark mass

and Landau damping are clearly visible in the meson spectral functions. However,
they lead to competing effects in the correlation functions and to a large extent

compensate each other.

The main difference between the scalar and the vector channel using the HTL

approximation is the different behaviour of the cut-cut contribution to the spectral
functions at small energies. The vector spectral function diverges in the infrared

limit leading to a singular expression for the vector correlation function. This feature
is in agreement with the observation, that the dilepton production rate, which is

closely related to the vector spectral function, cannot be computed within the HTL
improved perturbation scheme for small invariant masses M ' g2T .

The existing lattice calculations of thermal meson correlation functions show that
the correlators deviate from the free field result significantly for temperatures T<∼2Tc.

However, also at larger temperatures it seems that the scalar correlator only slowly
approaches the free correlation function and still differs in shape from the vector

correlator. This suggests that HTL-resummed perturbation theory, which gave a
satisfactory description of bulk thermodynamics above 2Tc, will not be appropriate

for a quantitative analysis of thermal meson correlation functions at least in the
pseudo-scalar case. In other words, the HTL medium effects (thermal quark masses,

Landau damping) are not sufficient to explain the deviations of the pseudo-scalar

correlator from the free one as observed in lattice calculations. Therefore additional
non-perturbative effects, maybe related to chiral symmetry restoration, appear to

be important in the pseudo-scalar channel.
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Appendix

We will give here explicit expressions for the pole-pole, pole-cut and cut-cut contri-

butions to the pseudo-scalar spectral function. The pole-pole contribution (~p = 0)
is given by

σpp
ps (ω) =

Nc

2π2
m−4

T (eω/T − 1)
[
n2

F (ω+(k1))(ω
2
+(k1)− k2

1)
2 k2

1

2|ω′+(k1)|

+ 2
2∑

i=1

nF (ω+(ki
2))[1− nF (ω−(ki

2))](ω
2
−(ki

2)− (ki
2)

2)(ω2
+(ki

2)− (ki
2)

2) ·

· (ki
2)

2

|ω′+(ki
2)− ω′−(ki

2)|

+
2∑

i=1

n2
F (ω−(ki

3))(ω
2
−(ki

3)− (ki
3)

2)2
(ki

3)
2

2|ω′−(ki
3)|

]
. (A.1)

Here ω±(k) denote the quark dispersion relations for the ordinary quark (+) and
the plasmino (-) branch [17], k1 is the solution of ω−2ω+(k1) = 0, ki

2 and ki
3 are the

solutions of ω − ω+(ki
2) + ω−(ki

2) = 0 and ω − 2ω−(ki
3) = 0, respectively. Note that

for small momenta the last two equations can each have two solutions. Furthermore,

ω′±(k) ≡ (dω±(x)/dx)|x=k. For the pole-cut contribution we find

σpc
ps (ω) =

2Nc

π2
m−2

T (eω/T − 1)
∫ ∞

0
dk k2 ·

·
[

Θ(k2 − (ω − ω+)2)nF (ω − ω+)nF (ω+)β+(ω − ω+, k)(ω2
+ − k2)

+ Θ(k2 − (ω − ω−)2)nF (ω − ω−)nF (ω−)β−(ω − ω−, k)(ω2
− − k2)

+ Θ(k2 − (ω + ω−)2)nF (ω + ω−)[1− nF (ω−)]β+(ω + ω−, k)(ω2
− − k2)

+ Θ(k2 − (ω + ω+)2)nF (ω + ω+)[1− nF (ω+)]β+(ω + ω+, k)(ω2
+ − k2)

]
(A.2)

Finally we obtain for the cut-cut contribution

σcc
ps(ω) =

2Nc

π2
(eω/T − 1)

∫ ∞

0
dk k2

∫ k

−k
dx nF (x)nF (x− ω)Θ(k2 − (x− ω)2) ·

·
[
β+(x, k)β+(ω − x, k) + β−(x, k)β−(ω − x, k)

]
(A.3)

The resulting contributions to the thermal correlator are then given by eq. 2.3.
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