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Abstract

The complete fermionic two-loop contributions to the prediction for the W-boson
mass from muon decay in the electroweak Standard Model are evaluated exactly, i.e.
no expansion in the top-quark and the Higgs-boson mass is made. The result for the
W-boson mass is compared with the previous result of an expansion up to next-to-
leading order in the top-quark mass. The predictions are found to agree with each
other within about 5 MeV. A simple parametrization of the new result is presented,
approximating the full result to better than 0.4 MeV for MH ≤ 1 TeV.
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The prediction of the W-boson mass, MW, in terms of the Z-boson mass, MZ, the Fermi
constant, Gµ, and the fine structure constant, α, is one of the most important quantities for
testing the electroweak Standard Model (SM) and its extensions with high precision. This
relation is derived from muon decay, as the Fermi constant is defined in terms of the muon
lifetime, τµ, according to
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with F (x) = 1 − 8x − 12x2 ln x + 8x3 − x4. By convention, the QED corrections within
the Fermi Model, ∆q, are included in this defining equation for Gµ. The one-loop result for
∆q [1], which has already been known for several decades, has recently been supplemented by
the two-loop correction [2]. The tree-level W propagator effects giving rise to the (numerically
insignificant) term 3m2

µ/(5M2
W) in eq. (1) are conventionally also included in the definition

of Gµ, although they do not belong to the Fermi Model prediction.
Comparing the prediction for the muon lifetime within the SM with eq. (1) yields the
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where the radiative corrections are summarized in the quantity ∆r [3]. This relation can be
used for deriving the prediction of MW within the SM or extensions of it, to be confronted
with the experimental result for MW. At present, the W-boson mass is measured with an
accuracy of 5 × 10−4, M exp

W = 80.419± 0.038 GeV [4]. The experimental precision on MW

will be further improved with the data taken at LEP2 in its final year of running, and at the
upgraded Tevatron and the LHC, where an error of δMW = 15 MeV can be expected [5].
At a high-luminosity linear collider running in a low-energy mode at the W+W− threshold,
a reduction of the experimental error down to δMW = 6 MeV can be envisaged [6]. This
offers the prospect for highly sensitive tests of the electroweak theory [7], provided that the
accuracy of the theoretical prediction matches the experimental precision.

The one-loop result for ∆r within the SM [3] can be decomposed as (with s2
W = 1 −

M2
W/M2

Z)

∆r(α) = ∆α− c2
W

s2
W

∆ρ + ∆rrem(MH), (3)

where the leading fermion-loop contributions ∆α and ∆ρ, arising from the charge and
mixing-angle renormalization, are separated out, while the remainder part ∆rrem contains
in particular the dependence on the Higgs-boson mass, MH. The QED-induced shift in the
fine structure constant, ∆α, contains large logarithms of light-fermion masses. The leading
contribution to the ρ parameter from the top/bottom weak isospin doublet, ∆ρ, gives rise
to a term with a quadratic dependence on the top-quark mass, mt [8].

Beyond the one-loop order, resummations of the leading one-loop contributions ∆α and
∆ρ are known [9]. They correctly take into account the terms of the form (∆α)2, (∆ρ)2,
(∆α∆ρ), and (∆α∆rrem) at the two-loop level and the leading powers in ∆α to all orders.
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While the QCD corrections to ∆r are known at O(ααs) [10] and O(αα2
s ) [11], only partial

results are available up to now for the electroweak two-loop contributions. They have been
obtained using expansions for asymptotically large values of mt [12, 13] and MH [14]. The
terms derived by expanding in the top-quark mass of O(G2

µm4
t ) [12] and O(G2

µm
2
tM

2
Z) [13]

were found to be numerically sizeable. The O(G2
µm2

tM
2
Z) term, involving three different mass

scales, has been obtained by two separate expansions in the regions MW, MZ, MH � mt and
MW, MZ � mt, MH and by an interpolation between the two expansions. This formally
next-to-leading order term turned out to be of a magnitude similar to that of the formally
leading term of O(G2

µm
4
t ), entering with the same sign. Its inclusion (both for MW and the

effective mixing angle sin2 θeff) had important consequences on the indirect constraints on
the Higgs-boson mass derived from the SM fit to the precision data.

Consequently, a more complete calculation of electroweak two-loop effects appears de-
sirable, where no expansion in mt or MH is made. As a first step in this direction, exact
results have been obtained for the Higgs-mass dependence (e.g. the quantity MW,subtr(MH) ≡
MW(MH)−MW(MH = 65 GeV)) of the fermionic two-loop corrections to the precision ob-
servables [15]. They have been compared with the results of expanding up toO(G2

µm2
tM

2
Z) [13],

specifically analysing the effects of the mt expansion, and good agreement has been found [16].
Beyond the two-loop order, complete results for the pure fermion-loop corrections (i.e.

contributions containing n fermion loops at n-loop order) have recently been obtained up
to four-loop order [17]. These results contain in particular the contributions of the leading
powers in ∆α as well as the ones in ∆ρ and the mixed terms.

In the present paper, all fermionic two-loop corrections to ∆r are calculated exactly, i.e.
without an expansion in the top-quark or the Higgs-boson mass. These are all two-loop dia-
grams contributing to the muon decay amplitude and containing at least one closed fermion
loop (except the pure QED corrections already contained in the Fermi model result, see
eq. (1)). Figure 1 displays some typical examples. The considered class of diagrams includes
the potentially large corrections both from the top/bottom doublet and from contributions
proportional to Nlf and N2

lf , where Nlf is the number of light fermions (a partial result for
the light-fermion contributions has been obtained in Ref. [18]). The results presented here
improve on the previous results of an expansion in mt up to next-to-leading order [13] in
containing the full dependence on mt as well as the complete light-fermion contributions at
the two-loop order, while in Ref. [13] higher-order corrections from light fermions have only
been taken into account via a resummation of the one-loop light-fermion contribution.
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Figure 1: Examples for types of fermionic two-loop diagrams contributing to muon decay.
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In the following, we briefly outline the main features of the calculation. After extracting
the IR-divergent QED corrections that are already contained in the Fermi model QED factor
(a detailed description of how this is done will be given in a forthcoming paper), the generic
diagrams contributing to muon decay can be reduced to vacuum-type diagrams, since the
masses of the external particles and the momentum transfer are negligible. The on-shell
renormalization of the gauge-boson masses, on the other hand, requires the evaluation of
two-loop two-point functions with non-zero external momentum, which is more involved
from a technical point of view regarding the tensor structure and the evaluation of the
scalar integrals. It should be noted that this complication cannot be avoided by performing
the calculation within another renormalization scheme (the MS scheme, for instance), since
ultimately one is interested in the relation between the physical parameters MW, MZ, α, Gµ,
rather than between their MS counterparts. For this reason we have decided to use the on-
shell renormalization scheme everywhere in our calculation, i.e. we use physical parameters
throughout (alternatively one could of course do the calculation in a different renormalization
scheme, with formal parameters, and perform the transition to the physical parameters in a
second step). If not otherwise stated, we use the conventions of Ref. [19].

In our calculation we have made use of some computer-algebra tools. The package
FeynArts [20] was applied to generate the Feynman amplitudes and counterterm contri-
butions. The program TwoCalc [21] was applied for the algebraic evaluation of these am-
plitudes, which were reduced, by means of two-loop tensor-integral decompositions, to a set
of standard scalar integrals. The calculation was carried out in a general Rξ gauge, which
allowed us to test the gauge-parameter independence at the algebraic level as a highly non-
trivial check. For the evaluation of the scalar one-loop integrals and the two-loop vacuum
integrals we have used analytical results as given in Ref. [22], while the two-loop two-point
integrals with non-vanishing external momentum have been evaluated numerically using one-
dimensional integral representations with elementary functions [23]. These allow a very fast
calculation of the integrals for general mass configurations.

Since we are using Dimensional Regularization [24,25] in our calculation, a careful treat-
ment of the Dirac algebra in D dimensions involving γ5 is necessary. While a naively anti-
commuting γ5 can safely be applied for all two-loop two-point contributions (for a discussion,
see e.g. the first paper of Ref. [12]) and most of the two-loop vertex- and box-type diagrams,
this is not the case for the two-loop vertex diagrams containing a triangle subgraph, shown
in Fig. 2. For these graphs, a naively anticommuting γ5, although respecting the Ward
identities, would lead to an incorrect result. This is due to an inconsistent evaluation of
the trace of γ5 together with four Dirac matrices, which in four dimensions is given by
Tr {γ5γ

µγνγργσ} = 4iεµνρσ, while applying the naively anticommuting γ5 in D dimensions
would yield zero for this trace. In order to calculate this type of diagrams, we have first
evaluated the triangle subgraph with the mathematically consistent definition of γ5 in D
dimensions according to Refs. [25, 26] (here we made use of the package Tracer [27] for
checking). After adding appropriate counterterms, which are necessary to restore the Ward
identities, the result differs from the result obtained using a naively anticommuting γ5 only
in terms proportional to the totally antisymmetric tensor εµνρσ. Inserting the latter contri-
bution into the two-loop diagrams, we find that the second loop gives a finite contribution,
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so that it can be evaluated in four dimensions without further complications.1 The fermion
line appearing in the second loop also yields an ε-tensor contribution, which results, after
contraction with the ε-tensor from the triangle subgraph, in a non-vanishing contribution to
the result for ∆r.

W−

W−

Z

e−

νe
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W−

γ,Z
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νe

Figure 2: Two-loop vertex diagrams containing a triangle subgraph, which require a careful treat-
ment of γ5 in D dimensions.

As mentioned above, we perform the renormalization within the on-shell scheme. It
involves a one-loop subrenormalization of the Faddeev-Popov ghost sector of the theory,
which is associated with the gauge-fixing part. The gauge-fixing part is kept invariant under
renormalization. For technical convenience, we manage this by a renormalization of the gauge
parameters in such a way that it precisely cancels the renormalization of the parameters and
fields in the gauge-fixing Lagrangian.2 To this end we have allowed two different bare gauge
parameters for both W and Z, ξW,Z

1 and ξW,Z
2 , and also mixing gauge parameters, ξγZ and

ξZγ. The renormalized parameters comply with the Rξ gauge, with one free gauge parameter
for each gauge boson. With this prescription no counterterm contributions arise from the
gauge-fixing sector. Starting at the two-loop level, counterterm contributions from the ghost
sector have to be taken into account in the calculation of physical amplitudes. They follow
from the variation of the gauge-fixing terms F a under infinitesimal gauge transformations.
We have derived all the counterterms arising from the ghost sector (extending the results
of Ref. [30] to a general Rξ gauge) and implemented them into the program FeynArts. In
this way we could verify the finiteness of individual (gauge-parameter-dependent) building
blocks (e.g. the W- and the Z-boson self-energy) as a further check of the calculation.

Concerning the mass renormalization of unstable particles, from two-loop order on it
makes a difference whether the mass is defined according to the real part of the complex
pole of the S matrix,

M2 = M
2 − iM Γ, (4)

or according to the pole of the real part of the propagator. In eq. (4)M denotes the complex
pole of the S matrix and M , Γ the corresponding mass and width of the unstable particle.
We use the symbol M̃ for the real pole.

1For recent discussions of practical ways of treating γ5 in higher-order calculations, see also Refs. [29, 28].
2An alternative way of achieving that the gauge-fixing sector does not give rise to counterterm contribu-

tions would have been to add the gauge-fixing part to the Lagrangian only after renormalization, in which
case the renormalized gauge transformations would have to be used.
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In the context of the present calculation, these considerations are relevant to the re-
normalization of the gauge-boson masses, MW and MZ. The two-loop mass counterterms
according to the definition of the mass as the real part of the complex pole are given by
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where ΣT,(1), ΣT,(2) denote the transverse parts of the one-loop and two-loop self-energies
(the terms from subloop renormalization are understood to be contained in the two-loop
self-energies), and Σ′

T,(1) means the derivative of the one-loop self-energy with respect to the

external momentum squared. Field renormalization constants are indicated as δZV . The
relations to the mass counterterms according to the real-pole definition, δM̃2

W,(2) and δM̃2
Z,(2),

are given by
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2
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It can easily be checked by direct computation that the terms in eqs. (7), (8) by which the two
definitions differ are gauge-parameter-dependent. Thus it is obvious that at least one of the
two prescriptions leads to a gauge-dependent mass definition. While the problem of a proper
definition of unstable particles in gauge theories has already been addressed many times in
the literature [31], it should be noted that in the present calculation two-loop contributions of
the type leading to a non-zero (and gauge-parameter-dependent) difference between the two
kinds of mass renormalization methods are for the first time fully included in a computation
of a physical observable in the Standard Model. Explicitly, these are contributions from
light fermions and bosonic loops evaluated in a general Rξ gauge. In the previous results for
MW, incorporating terms up to O(G2

µm2
tM

2
Z) [13] and MH-dependent fermionic terms [15],

the contribution Im
{
Σ′

T,(1)(M
2)
}

Im
{
ΣT,(1)(M

2)
}

was zero, making thus a strict distinction
between the two mass definitions unnecessary at the considered order.

Since our result has been obtained within a general Rξ gauge, we can investigate the
issue of whether the mass renormalization is gauge-parameter-independent by explicit com-
putation. In particular, the two-loop counterterm to the weak mixing angle, δsW,(2), ought
to be gauge-parameter-independent since sW is a physical observable (note, however, that
the same argument does not hold for the mass counterterms of eq. (5) and eq. (6); see e.g.
Ref. [32] for a discussion). We find that δsW,(2) is only gauge-parameter-independent with
the definition of the gauge-boson masses according to the complex pole, while the real-pole
definition for the masses leads to a gauge-parameter-dependent result for δsW,(2). This result
is in accordance with what is expected from S-matrix theory, in which the complex pole is
a gauge-invariant quantity [31].

We have thus adopted the complex-pole definition as given in eq. (5) and eq. (6). Us-
ing this mass definition leads to a Breit–Wigner parametrization of the resonance line
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shape with a constant decay width. Experimentally the gauge-boson masses are deter-
mined using a Breit–Wigner function with a running (energy-dependent) width. Con-
necting the latter prescription with the theoretical prediction involves the approximation
Im

{
ΣW,Z

T,(1)(s)
}
≈ sΓW,Z/MW,Z, which is valid for the fermionic contributions to the W- and Z-

boson self-energies at one-loop order. As usual, ΓW,Z denote the W- and Z-boson widths. As
a consequence of the different Breit–Wigner parametrizations, there is a numerical difference
between the mass parameters corresponding to the definition used in the experimental deter-
mination (denoted as MW, MZ henceforth) and the mass parameters in our calculation, MW,
MZ. The shift between these parameters is given by [33] MW,Z = MW,Z + Γ2

W,Z/(2MW,Z).
Since MW and MZ enter on a different footing in our computation — MZ is an experimental
input parameter, while MW is calculated — in order to evaluate the mass shifts we use the
experimental value for the Z-boson width, ΓZ = 2.944± 0.0024 GeV [4], and the theoretical
value for the W-boson width, which is given by ΓW = 3GµM3

W/(2
√

2π)(1 + 2αs/(3π)) in
sufficiently good approximation. This results in MZ ≈ MZ + 34.1 MeV and in the mass
shifts MW ≈ MW + 27.4 MeV and MW ≈ MW + 27.0 MeV for MW = 80.4 GeV and
MW = 80.2 GeV, respectively.3

We now turn to the numerical discussion of our result for ∆r. It should be noted that
our definition of ∆r according to eq. (2) is based on the expanded form (1 + ∆r) with
∆r = ∆r(α) + ∆r(α2) + . . . rather than on the resummed form 1/(1 − ∆r), indicating a
resummation of leading one-loop contributions. The terms consistently taken into account at
two-loop order with such a resummation are explicitly contained in our two-loop contribution
to ∆r. The result for ∆r contains the following contributions

∆r = ∆r(α) + ∆r(ααs) + ∆r(αα2
s ) + ∆r(Nfα

2) + ∆r(N2
f
α2), (9)

where ∆r(α) is the one-loop result, eq. (3), ∆r(ααs) and ∆r(αα2
s ) are the two-loop [10] and

three-loop [11] QCD corrections, while ∆r(Nfα
2) is the new electroweak two-loop result. The

notation (Nfα
2) symbolizes the contribution of all diagrams containing one fermion loop,

where Nf stands both for the top/bottom contribution and for all light-fermion species. The
term ∆r(N2

f α2) contains the pure fermion-loop contributions in two-loop order. Since the pure
fermion-loop contributions in three- and four-loop order have been found to be numerically
small, as a consequence of accidental numerical cancellations, with a net effect of only about
1 MeV in MW (using the real-pole definition of the gauge-boson masses) [17], we have not
included them here.

In Fig. 3 the different contributions to ∆r are shown as a function of MH. Here MW is kept
fixed at its experimental central value, MW = 80.419 GeV, and mt = 174.3 GeV [34] is used.
The effects of the QCD corrections, of the two-loop corrections induced by a resummation

3The difference in ΓW according to the way it is calculated, through the tree-level result parametrized with
α, or the improved Born result parametrized with Gµ, or the improved Born result including QCD corrections
(which is the one we used), is formally of higher order (i.e. beyond O(α2)) in the calculation of MW. Its
numerical effect is nevertheless not completely negligible; it changes the shift in MW by about −2.9 MeV if
the tree-level result for ΓW parametrized with α is used and by about −1.4 MeV if the Gµ parametrization
of the Born width (without QCD corrections) is employed.
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of ∆α, and of the purely electroweak fermionic two-loop corrections are shown separately.
The purely electroweak two-loop contributions are sizeable and amount to about 10% of
the one-loop result. We have compared the Higgs-mass dependence of ∆r with the result
previously obtained in Ref. [15] and found perfect agreement.
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Figure 3: Different contributions to ∆r as a function of MH. The one-loop contribution, ∆r(α), is
supplemented by the two-loop and three-loop QCD corrections, ∆r

(α)
QCD ≡ ∆r(ααs) + ∆r(αα2

s ), and

the fermionic electroweak two-loop contributions, ∆r(α2) ≡ ∆r(Nfα
2) + ∆r(N2

f
α2). For comparison,

the effect of the two-loop corrections induced by a resummation of ∆α, ∆r
(α2)
∆α , is shown separately.

The prediction for MW is obtained from the input parameters by solving eq. (2). Since ∆r
itself depends on MW this is technically done using an iterative procedure. The prediction
for MW based on the results of eq. (9) is shown in Fig. 4 as a function of MH for mt =
174.3 ± 5.1 GeV [34] and ∆α = 0.05954 ± 0.00065 [35]. The current experimental value,
M exp

W = 80.419± 0.038 GeV [4], and the experimental 95% C.L. lower bound on MH (MH =
107.9 GeV [36]) from the direct search are also indicated. The plot shows the well-known
preference for a light Higgs boson within the SM. Confronting the theoretical prediction
(allowing a variation of mt, which at present dominates the theoretical uncertainty, and ∆α
within 1σ) with the 1σ region of M exp

W and the 95% C.L. lower bound on MH, only a rather
small region in the plot (corresponding to 107.9 GeV < MH

<∼ 140 GeV) matches all three
constraints.

We have compared our results with those of an expansion for asymptotically large values
of mt up to O(G2

µm2
tM

2
Z) [13, 37]. The results are shown in Table 1 for different values of

MH. For the input parameters the values of Ref. [13] have been chosen, i.e. mt = 175 GeV,

7



200 400 600 800 1000

80.2

80.25

80.3

80.35

80.4

80.45

80.5

M

W

[G
eV
]

MH [GeV]

experimental lower bound on MH

M
exp

W = (80:451� 0:033) GeV

Figure 4: The SM prediction for MW as a function of MH for mt = 174.3 ± 5.1 GeV is compared
with the current experimental value, M exp

W = 80.419 ± 0.038 GeV [4], and the experimental 95%
C.L. lower bound on the Higgs-boson mass, MH = 107.9 GeV [36].

MZ = 91.1863 GeV, ∆α = 0.0594, αs(MZ) = 0.118. Relatively good agreement is found,
with maximal deviations in MW of about 5 MeV. If we had chosen a different parametrization
of ΓW in the above calculation of the shift between the masses corresponding to the fixed and
the running width definition, a somewhat larger deviation to the result of Ref. [13] would
have been obtained.

The deviations in the last column of Table 1 can of course not be attributed exclusively
to differences in the two-loop top-quark and light-fermion contributions, because the results
also differ by a slightly different treatment of those higher-order terms that are not yet under
control, such as purely bosonic two-loop contributions and effects from scheme dependence.
A detailed discussion of those differences and of the remaining theoretical uncertainties from
unknown higher-order corrections will be given in a forthcoming publication.

Following Ref. [38], we also provide a simple numerical parametrization of our result for
MW. It is given by

MW = M0
W − c1 dH− c5 dH2 + c6 dH4 − c2 dα + c3 dt− c7 dH dt− c4 dαs, (10)

where

dH = ln
(

MH

100 GeV

)
, dt =

(
mt

174.3 GeV

)2

−1, dα =
∆α

0.05924
−1, dαs =

αs(MZ)

0.119
−1, (11)

and MZ = 91.1875 GeV [4] has been used. For the coefficients c1, . . . , c7 we have obtained via
a least squares fit M0

W = 80.3755 GeV, c1 = 0.05613, c2 = 1.081, c3 = 0.5235, c4 = 0.0763,
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MH/ GeV MW/ GeV M expa
W / GeV ∆MW/ MeV

65 80.3985 80.4039 −5.4

100 80.3759 80.3805 −4.6

300 80.3039 80.3061 −2.2

600 80.2509 80.2521 −1.2

1000 80.2122 80.2129 −0.7

Table 1: The two-loop result for MW based on eq. (9) is compared with the results of an
expansion in mt up to O(G2

µm
2
tM

2
Z) [13,37], M expa

W . The last column indicates the difference
between the two results.

c5 = 0.00936, c6 = 0.000546, c7 = 0.00573. The parametrization of eq. (10) approximates
our full result for MW within 0.4 MeV for 65 GeV ≤ MH ≤ 1 TeV.

In summary, we have evaluated the complete fermionic two-loop contributions to the
W-boson mass within the electroweak Standard Model. Our result improves on previous
results as it does not involve any approximations in the top-quark and the Higgs-boson mass
and also contains the contributions of all light fermions in the Standard Model. Within
our calculation we have defined the gauge-boson masses according to the complex pole of
the S matrix, which ensures the gauge-parameter independence of the mass definition. We
have provided a simple numerical parametrization of our result, which approximates the full
result with sufficient accuracy for all values of MH up to 1 TeV. In comparison with the
previous result obtained for MW by an expansion for asymptotically large values in mt up
to next-to-leading order we find slightly lower values of MW, sharpening thus the tendency
towards a light Higgs boson within the Standard Model.
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