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1. Introduction

Recently, there has been much progress in understanding the moduli spaces of mul-

tiple black holes in the supergravity context [1]–[6]. For earlier work in this area,

see [8, 9, 10]. Given the emphasis of string theory over the past few years, it is

natural to ask whether one can successfully compare such moduli spaces with those

of gauge theories. In the first part of this paper we point out that, in two simple

cases, the moduli spaces do indeed coincide with the quantum corrected Coulomb

branch of a corresponding non-abelian Yang-Mills theory.

While similar in spirit to the pre-AdS/CFT probe calculations [11, 12], the sce-

nario considered here involves an important difference: rather than restricting at-

tention to test-particles (branes) moving in a fixed background, the background is

determined by the positions of other branes which are themselves self-gravitating

and dynamical. Therefore we are necessarily dealing with the scattering of multiple

branes. Multiple D3-branes have been treated as probes in the past [13, 14], but only

in situations in which various simplifications ensure that the probes do not interact

with each other, and the resulting moduli space is simply the symmetric product of

the single probe moduli space. In the present case we find that interactions between
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branes do occur, but are restricted to two-body forces. Specifically, we show that

the supergravity moduli spaces of D2-D6 and D1-D5 brane configurations, each of

which preserve eight supercharges, coincide with the Coulomb branches of d = 3,

N = 4, and d = 2, N = (4, 4), non-abelian Yang-Mills theory, respectively. Of
course, the supergravity and gauge theory calculations have different ranges of va-

lidity and agreement between them points to the existence of a non-renormalisation

theorem which, in the present case, reduces to a strong constraint on the geometry of

the manifold due to the preservation of eight supercharges and the remaining Lorentz

invariance: the moduli metric is restricted to be hyperKähler (HK) for the D2-D6-

brane configuration and strong hyperKähler with torsion (HKT) for D1-D5-brane

configuration. As is the norm in such calculations, the classical supergravity result

is reproduced by one-loop effects in the gauge theory. We argue that there are no

non-perturbative corrections.

In the second half of this paper, we discuss situations in which the low-energy

dynamics of branes includes a potential term. Such potentials may be generated in

the context of compactifications by using the Scherk-Schwarz (SS) mechanism [15].

Since most worldvolume actions of various branes can be related by Kaluza-Klein type

of compactifications, the SS mechanism can be used to generate potentials on the

brane.1 In particular one begins from the standard Dirac-Born-Infeld type of action

of a (D-, M-, NS-) p-brane and after giving an appropriate expectation value to either

a transverse scalar or to a Born-Infeld (BI) type of field or to both, one finds after

compactification in n-directions a (p− n)-brane action which has a scalar potential
term. In many cases, the scalar potential is just a constant shift in the reduced

action but if the p-brane is placed in an appropriate supergravity background, then

a non-trivial potential can appear. The scalar potentials that appear by placing D-

branes in a constant B-field or in the non-trivial compactification of the M2-brane

in [16] are examples of this. There are many cases that one can consider by choosing

different supergravity backgrounds and by placing various brane probes in them.

However we shall not explore all these possibilities here. Instead we shall present

some new examples including compactification in the presence of a constant B-field

and non-trivial compactification of D-brane worldvolume actions in the presence of

a ten-dimensional KK-monopole.

For the cases associated with non-trivial compactifications in a KK-monopole

background, we shall show that there is an alternative bulk explanation for the

presence of a potential in the (p − n)-brane action. In particular we shall find that
the same potential appears on a (p− n)-brane probe placed in a non-marginal BPS
supergravity background. Such backgrounds were first found in [20] and further

explored in [21, 22].

1In the context of the supergravity approach to branes this has been used in [17] and further

explored in [18]. The appearance of potentials in M-theory compactifications with non-trivial

background form field strengths have been investigated in [19].
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In addition we shall investigate the presence of supersymmetric solutions in the

various probe actions with a scalar potential and examine their properties. Some

of these have the interpretation of rotating branes. Finally, we also discuss the

generation of potentials in the context of supersymmetric gauge theories.

In the section two we investigate the D1-D5 system, and in section three we

examine the D2-D6 system. Finally in section four we discuss brane potentials.

2. The D1-D5 brane system

2.1 Supergravity

Our starting point is the much studied D1-D5 system, comprised of Q1 D-strings

lying in the 01 directions and Q2 D5-branes lying in the 012345 directions. The

metric of the associated supergravity solution is,

ds2 = H
−1/2
1 H

−1/2
2 ds2(R(1,1)) +H

1/2
1 H

−1/2
2 ds2(T4) +H

1/2
1 H

1/2
2 ds2(R4) , (2.1)

where the directions 2345 are compactified on T4, and the harmonic functions, H1
and H2, associated with the D-strings and D5-branes, respectively, are given by

HI = hI +

NI∑
A=1

λIA
|~x− ~xIA|2 . (2.2)

From the form of these functions, we see that the D-strings have been organised

into N1 clusters, each consisting of λ
1
A, A = 1, . . . , N1 branes, with position in the

transverse R4 given by ~x1A. Similarly, the D5-branes have been split into N2 clusters,

consisting of λ2A, A = 1, . . . , N2 branes with position ~x
2A. Clearly QI =

∑NI
A=1 λ

I
A.

Notice further that the asymptotic volume V of the torus T4 as |x| → ∞ is given by,

V =

√
det(h

1/2
1 h

−1/2
2 δab) −→ h1

h2
,

where a, b = 2, . . . , 5 label the coordinates of the torus. Upon dimensional reduc-

tion on T4 to six dimensions, this supergravity solution becomes a string. We are

interested in the moduli space of such solitons, with the 4(N1 + N2) positions ~x
IA

considered as collective coordinates. The low-energy dynamics of these objects is

then described by a two-dimensional sigma model with (4,4) supersymmetry whose

target space is the moduli space. The computation of the moduli metric can be done

by adapting similar results for black holes given in [5]. We find,

ds2BH =
∑
A

(
h2λ

1
A|d~x1A|2 + h1λ2A|d~x2A|2

)
+
∑
A,B

λ1Aλ
2
B

|d~x1A − d~x2B|2
|~x1A − ~x2B|2 . (2.3)

This metric is compatible with two-dimensional (4,4)-supersymmetry if it is supple-

mented with an appropriate torsion term which in turn induces a Wess-Zumino term
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in the effective theory; the torsion three-form is closed. The moduli space is a strong

HKT manifold associated with two hypercomplex structures induced from those on

R
4 corresponding to a basis of self-dual and anti-self-dual two-forms. Note that the

metric (2.3) displays interaction terms only between branes of different type. There

are no two-derivative forces between branes of the same type, reflecting the fact that

in isolation each species of brane preserves 16 supersymmetries. Such interactions

would appear at fourth order in derivatives and it remains a challenge to derive them

through supergravity methods. Further note that in the case that the D-strings are

on top of the D5-branes, ~x1A = ~x2A, and λ1A = λ2A, the metric on the moduli space

becomes that of Shiraishi [10] (see [5] for λ1A 6= λ2A).

2.2 Gauge theory

We turn now to the gauge theory of the D1-D5 system. While attention is usually

focussed upon the Higgs branch of this theory, we will here be interested in the

Coulomb branch, parametrising the motion of the D1- and D5-branes in the overall

transverse space R4. The gauge theory in question resides on the 1 + 1-dimensional

intersection of the D1- and D5-branes, has N = (4, 4) supersymmetry (eight super-
charges) and gauge group U(Q1) × U(Q2) with coupling constants eI . The ratio of
the coupling constants is determined by the volume of the torus,

e21
e22
= V =

h1

h2
. (2.4)

The matter coupling consists of an adjoint hypermultiplet for each gauge group,

together with a single hypermultiplet in the bi-fundamental. Let us focus on the

bosonic matter content of the above multiplets. For each of the vector multiplets,

this consists of a two-dimensional gauge field, together with four real adjoint scalars

which we will denote ~φI , where the index I = 1, 2 labels the two gauge groups. Each

hypermultiplet consists of a further four real scalars. The vector multiplets and ad-

joint hypermultiplets arise from strings with both ends on the D-string or both ends

on the D5-branes, and furnish a representation of N = (8, 8) supersymmetry. This
is reduced to N = (4, 4) by strings stretched between the D5 and D1-branes, giving
rise to the bi-fundamental hypermultiplet. While vacuum moduli spaces do not exist

in two dimensions, progress can still be made by deriving a low-energy sigma-model

description of the gauge theory in the spirit of a Born-Oppenheimer approximation.

The target space is then referred to as the vacuum moduli space. Our theory has

two branches of vacua: an 8(Q1 + Q2)-dimensional Coulomb branch parametrised

by the scalars in the two vector multiplets and two adjoint hypermultiplets, and a

4Q1Q5-dimensional Higgs branch parametrised by the scalars in the adjoint and bi-

fundamental hypermultiplets. The latter is relevant when the D-strings are absorbed

as instantons inside the D5-brane. For the present purpose, it is the Coulomb branch
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that is of interest. The vacuum expectation values of the scalars in the vector multi-

plets parametrise the positions of the D-branes in 6789 directions, while those of the

scalars in the adjoint hypermultiplets determine the positions of the D-strings and

Wilson lines of the D5-branes in the 2345 directions. Upon dimensional reduction to

six dimensions, we will be interested only in the 6789 positions: the supergravity cal-

culation does not capture the modes specified by the adjoint hypermultiplet scalars.

Thus we set the vacuum expectation values of these scalars to zero and concentrate

on the 4(Q1 + Q2)-dimensional sub-manifold of the Coulomb branch parametrised

by four adjoint scalars ~φI .

The usual commutator terms in the scalar potential ensure that ~φI are simul-

taneously diagonalisable. To compare to the supergravity result, we further restrict

attention to the 4(N1 +N2)-dimensional subspace of the Coulomb branch, on which
~φI = diag (~φIA), A = 1, . . . , NI , where each entry ~φ

IA is proportional to the (λIA×λIA)
unit matrix. This results in the gauge symmetry breaking, U(QI) →

∏NI
A=1U(λ

I
A).

The existence of surviving non-abelian gauge symmetries implies that this sub-

manifold lies within a singularity of the full Coulomb branch, reflecting the presence

of these extra massless excitations. Nonetheless, we may concentrate only on the

subset of deformations which preserve the form of the vacuum expectation value and

derive a low-energy effective action for these modes.

Classically, this sub-manifold of the Coulomb branch is described by the flat

metric (R4N1/SN1) × (R4N2/SN2), where the quotient arises from the Weyl group
of the gauge theory. The singularities correspond to situations where the groups of

D-strings or D5-branes become coincident and further non-abelian symmetry restora-

tion occurs.

The metric receives one-loop corrections from integrating out massive matter,

including W-bosons, off-diagonal terms of the adjoint hypermultiplet, and the bi-

fundamental hypermultiplets. Importantly, the contribution from the first two of

these cancel. This is obvious as together they make a (8, 8)-supersymmetric gauge

multiplet and the moduli space metric of any gauge theory with sixteen supercharges

is constrained to be flat. This reflects the fact that the D1-branes and D5-branes do

not interact at the two-derivative level with branes of the same type. Thus the only

corrections come from the bi-fundamental hypermultiplets. Under the symmetry

breaking, U(QI) →
∏NI
A=1U(λ

I
A), these decompose into N1N2 hypermultiplets, each

transforming in the bi-fundamental representation of a single pair U(λ1A) × U(λ2B),
A = 1, . . . , N1 and B = 1, . . . , N2, and with mass |~φ1A−~φ2B|. The one-loop corrected
Coulomb branch metric is given by [14, 23],

ds2gauge =
N1∑
A=1

λ1A
e21
|d~φ1A|2 +

N2∑
B=1

λ2A
e22
|d~φ2A|2 +

N1∑
A=1

N2∑
B=1

λ1Aλ
2
B

|d~φ1A − d~φ2B|2
|~φ1A − ~φ2B|2 , (2.5)

where the factors of λ in the first two, classical, terms come from tracing over block-

diagonal matrices, and the third term arises from integrating out the bi-fundamental
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hypermultiplets. In particular, the 1/|mass|2 behaviour is typical of one-loop cor-
rections in two-dimensional gauge theories as may be seen by simple dimensional

analysis. Notice that in the simplest case in which the position of only a single

D-string is allowed to vary in the presence of fixed D5-branes, (2.5) reduces to the

five-brane metric [14, 23]. The generalization of this result is that the full Coulomb

branch metric (2.5) coincides with the metric on the moduli space of the D1-D5

system (2.3) if we identify 1/e2I = |εIJ |hJ . This further ensures that equation (2.4)
is satisfied.

As commented above, supersymmetry requires that the metric be accompanied

by a suitable torsion term. Such terms are indeed generated at one loop in the gauge

theory [23] and that the resulting low-energy dynamics is given by a two-dimensional

(4, 4)-supersymmetric sigma-model.

We have shown that the classical moduli space metric of five-dimensional black

holes coincides with the one-loop corrected Coulomb branch of an associated two-

dimensional gauge theory. For gauge groups of rank one, it can be argued that the

restrictions of HKT, together with Spin(4) symmetry inherited from the R-symmetry

of the gauge theory, require that the metric receives no further corrections. While we

know of no such analysis for higher rank gauge groups, it seems plausible that similar

behaviour occurs. In particular, on the Coulomb branch in two dimensions, there are

no candidate instanton solutions to give semi-classical non-perturbative corrections.

3. The D2-D6 brane system

3.1 Supergravity

The investigation of the D2-D6 brane configuration is similar to that of the D1-

D5 system of the previous section. Indeed, the two configurations are related by

T-duality. The D2-D6 brane supergravity solution that we shall consider is

ds2 = H
−1/2
1 H

−1/2
2 ds2(R(1,2)) +H

1/2
1 H

−1/2
2 ds2(T4) +H

1/2
1 H

1/2
2 ds2(R3) , (3.1)

where

HI = hI +

NI∑
A=1

λIA

|~x− ~xIA| , (3.2)

for I = 1, 2 are now harmonic functions on R3 associated with D2- and D6-branes,

respectively. The moduli space that we shall examine is that parametrised by the

positions ~xIA, I = 1, 2, in the overall transverse three-space of the D2- and D6-branes.

Upon reduction on T4, we are left with a membrane type of solution in six

dimensions and the effective theory is a three-dimensional sigma model with eight

supersymmetry charges. Supersymmetry requires that the sigma model target space

is a HK manifold. The moduli metric restricted on the positions ~xIA, I = 1, 2, can be

6
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computed by appropriately adapting the results on black hole moduli spaces in [5].

It was found that the moduli metric is

ds2BH =
∑
A

(
h2λ

1
A|d~x1A|2 + h1λ2A|d~x2A|2

)
+
∑
A,B

λ1Aλ
2
B

|d~x1A − d~x2B|2
|~x1A − ~x2B| . (3.3)

Note that, unlike for the D1-D5-brane configuration, we have not identified all col-

lective coordinates of the D2-D6 system. Indeed, the moduli space of positions has

dimension 3(N1 + N2) while the moduli space of the system is expected to have

4(N1+N2) dimensions because it must be HK. The absence of these collective coor-

dinates arises in the calculation of the moduli metric because perturbations of high

rank gauge potentials along the worldvolume of the D2-brane were ignored. Such

perturbations vanish in the black hole case but they do not for the D2-D6 brane

configuration. However as we shall review below, the moduli metric (3.3) admits a

unique hyperKähler completion by addition of (N1 +N2) periodic coordinates.

3.2 Gauge theory

An analysis similar to that of the previous section may be given for the gauge theory,

which consists of a three-dimensional N = 4 (eight supercharges) gauge multiplet
with gauge group U(Q1)×U(Q2), a hypermultiplet in the adjoint representation of the
gauge group and a further hypermultiplet in the bi-fundamental. While the bosonic

matter content of the hypermultiplet is unchanged in different dimensions, the vector

multiplet now contains a three-dimensional gauge field and only three real, adjoint

scalars which we again denote as ~φI . Once again, when combined with the adjoint

hypermultiplets, these fields fill out a representation of the N = 8 supersymmetry
algebra and this is broken to N = 4 only by the presence of the bi-fundamental
hypermultiplet. Dimensional reduction of this theory to two-dimensions results in

the model discussed in the previous section.

Once again, the three-dimensional gauge group is broken as U(QI)→
∏NI
A=1U(λ

I
A)

and we restrict ourselves to the relevant subspace of the Coulomb branch which is

now of dimension 3(N1 + N2). The gauge theory supplies us with the remaining

(N1 +N2) periodic scalars, σ
I
A, courtesy of the dual photons that are released upon

breaking the gauge group.

As in the two-dimensional case, the one-loop corrections from the adjoint hyper-

multiplets cancel those from the W-boson multiplets, and only the bi-fundamental

hypermultiplets contribute, making it simple to immediately write down the one-

loop corrected metric on the Coulomb branch [24], which is of the Lee-Weinberg-Yi

type [25] (see also [26]),

ds2 = gAIBJd~φ
AI · d~φBJ + (g−1)AIBJψAIψBJ , (3.4)
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where the first term is given by,

N1∑
A=1

λ1A
e21
|d~φ1A|2 +

N2∑
B=1

λ2B
e22
|d~φ2B|2 +

N1∑
A=1

N2∑
B=1

λ1Aλ
2
B

|d~φ1A − d~φ2B|2
|~φ1A − ~φ2B| (3.5)

and is seen to reproduce the supergravity result (3.3). Notice that, in contrast to (2.5)

the one-loop correction in three dimensions has 1/|mass| behaviour. The second term
in (3.4) is the hyperKähler completion mentioned above, with

ψAI = dσAI + ~ωAIBJd~φ
BJ , (3.6)

where ~ω is defined by∇×~ω = ∇g. The manifold has (N1+N2) tri-holomorphic isome-
tries which act on the periodic coordinates σAI by constant shifts. Such a manifold is

known as toric HK. These symmetries are preserved within perturbation theory and

the strong restriction of toric hyperKählarity thereby ensures that there are no higher

loop corrections to the metric. However, instanton effects break this symmetry, and

one may worry about their presence. In three dimensions, the relevant semiclassical

configurations are monopoles. Importantly, in N = 4 three-dimensional gauge the-
ories, and in contrast to their four-dimensional cousins, one-loop effects around the

background of the instanton do not cancel [27]. Moreover, in gauge groups of rank

r ≥ 2, when the Coulomb branch is interpreted in terms of soliton scattering these
terms give rise to r-body interactions [28]. As mentioned in the introduction, such

interactions do not appear from the supergravity perspective. To see that such terms

do not appear in the gauge theory either, one must determine whether instantons do

indeed contribute to the metric. In fact it is simpler to examine the four-fermi term

which is included in the supersymmetric completion of the metric. Instantons can

contribute to such a term only if they have precisely four fermionic zero modes and

no more. Thus, in order to determine whether instantons contribute in the present

case, we need only count fermionic zero modes. The necessary observation is that

the vector multiplet and adjoint hypermultiplet form an N = 8 multiplet which, for
fundamental instantons, has 8 zero modes; too many to contribute to two derivative

terms. One may wonder if four of these can be lifted through couplings to the bi-

fundamental hypermultiplets. However, these hypermultiplets do not couple directly

to the adjoint hypermultiplet, and no such term can arise. Similar comments apply

to the multi-instanton case. Therefore instantons do not contribute to two derivative

terms in these theories, and the one-loop result (3.5) is exact.

We conclude this section with the remark that the moduli metric of the D2-

D6 brane system is T-dual to the moduli metric of the D1-D5 brane system under

Buscher type duality. This can be seen by adapting the results of [1] to this case. It

appears that the type-II T-duality that relates the D2-D6 and D1-D5 brane systems

induces the Buscher T-duality on their moduli spaces.
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4. Probe brane potentials

The action of a brane probe placed in a supergravity background that preserves

some supersymmetry is invariant, after gauge fixing kappa-symmetry and world-

volume reparametrisations, under as many supersymmetry transformations as those

preserved by the background. However whether or not supersymmetry is preserved in

certain phases of the theory depends upon the existence of a supersymmetric ground

configuration. In many well-studied examples, including those of the previous sec-

tions, the derivative expansion of the probe action starts with velocity dependent

terms. In such a situation, a supersymmetric configuration is achieved by simply

ensuring that the probe is stationary and appropriately oriented with respect to

the background. However there are many cases for which the derivative expansion

starts with a potential term. In many cases this potential arises due to the pres-

ence of a non-vanishing expectation value for one or more fields of a p-brane action

compactified to a (p−n)-brane action. The (p−n)-brane action then develops a po-
tential with coefficient that depends on the above expectation values. This is the SS

mechanism. The preservation of as many as eight supercharges in the probe action

does not necessarily rule out such a potential [29, 30]. The issue then is whether or

not a supersymmetric configuration can be found which can be interpreted as the

supersymmetric vacuum of the theory.

4.1 SS mechanism for transverse scalars

We shall present two examples of brane action compactifications with the SS-mechan-

ism applied to one of the transverse scalars. These involve the M2- and M5-branes

in a KK-monopole background. The former example has been already considered

in [16] but here we shall investigate the supersymmetric ground configuration for the

standard Taub/NUT metric.

For this we begin with the M-theory solution of a KK-monopole extended in

0123456(10). The corresponding supergravity solution is

ds2 = ds2(R(1,6)) +H−1(dθ + ω)2 +Hds2(R3) , (4.1)

where H = 1+p/|y| is the harmonic function on R3, dH = ∗dω and y ∈ R3. The non-
flat part of the metric is the familiar Taub-NUT hyper-Kähler metric; the eleventh

coordinate has been identified with θ = x10. It is known that such solution preserves

1/2 of the bulk supersymmetry with supersymmetry projection

Γ7Γ8Γ9Γθε = ε . (4.2)

In this background we place a M2-brane probe and use static gauge in the directions

012. Next we compactify the direction 2 on S1 in such a way that we keep only the

9
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zero modes for all field in all directions apart from that for the transverse scalar θ

for which we set

∂2θ = q , (4.3)

where q is a constant. This KK-ansatz is consistent and it is a special case of that

proposed in [15]. For compactifications of the M2-brane see [16]. After integrating

over S1, the effective action for such a system in the small derivative approximation is

S =
1

2

∫
d2x
(
δabη

µν∂µz
a∂νz

b +Hδijη
µν∂µy

i∂νy
j +

+H−1ηµν(∂µθ + ωi∂µyi)(∂νθ + ωj∂νyj) + q2H−1
)
, (4.4)

where {za; a = 1, . . . , 4} are the transverse scalars in directions 3456, {θ, yi; i =
1, 2, 3} are the three transverse scalars associated with the KK-monopole (directions
(10)789) and µ, ν = 0, 1. This action, apart from the standard kinetic term, also

contains a potential which is the length of the tri-holomorphic vector field of the

Taub-NUT geometry. The lower-dimensional lagrangian describes a string propagat-

ing is a KK-background in the presence of a potential. As we shall see, there is an

alternative interpretation of the action (4.4) as describing a string propagating in the

background of a non-marginal ten-dimensional KK-monopole/ D6-brane background.

This system possesses a unique supersymmetric ground state in which a planar

string lies at the origin of the KK-monopole, yi = 0, so the potential vanishes, and

the rest of the transverse scalars are constant. The supergravity solution associated

with the Taub/NUT metric preserves 1/2 of the bulk supersymmetry apart from

near the origin of the KK-monopole where all bulk supersymmetry is preserved. The

string planar worldvolume solution preserves 1/2 of that of the background and so

1/4 of the bulk.

Next let us examine the theory near the origin of the KK-monopole. The

Taub/NUT metric near the origin is flat. In the natural flat coordinates (w1, w2, w3,

w4), we have the relation |y| = |w|2. In this case, the action (4.4) reduces to that of
a free theory with scalar potential

V =
q2

p
|w|2 , (4.5)

i.e. the fields along the KK-monopole directions are massive. The supersymmetry

preserved by the planar string solution is 1/2 of the bulk.

Apart from the string solution above, there exists another supersymmetric solu-

tion to the classical equations of motion given by,

za = const , yi = const 6= 0 , θ = −qt . (4.6)

The solution (4.6) describes a string which rotates with constant angular velocity

−q in the θ direction. Observe that the solution is not invariant under the string
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worldvolume Lorentz transformations. The solution (4.6) can be easily lifted to a

solution for the M2-brane as follows:

za = const , yi = const , θ = −qt+ qx2 , (4.7)

describing a M2-brane with the x2 direction wrapped on θ with winding number q,

so q ∈ Z, and rotating around θ with angular velocity −q.
To investigate the number of supersymmetry charges preserved by the string

solution (4.6), it is enough to investigate the number of supersymmetry charges pre-

served by the lifted M2-brane solution (4.7). For this, we can use the supersymmetry

condition associated with the kappa-symmetry supersymmetry projection [31, 32, 33].

A brief calculation reveals that the supersymmetry projections required are

Γ0Γ2ε = ε , Γ0Γ1Γ2ε = ε . (4.8)

Therefore the solution (4.6) preserves 1/4 of supersymmetry of the background or

1/8 of the bulk as an immediate consequence of (4.2).

For our next example, we keep the same KK-monopole background as above, but

replace the M2-brane probe with an M5-brane probe [34] in the directions 012345.

We use static gauge and set the three-form self-dual field of the M5-brane equal

to zero because it does not contribute to the potential in what follows. Next we

compactify the M5-brane in the direction x5 on S1 and keep only the zero modes for

all transverse fields apart from the transverse scalar θ for which we set

∂5θ = q , (4.9)

where q is a constant. In the small velocity approximation, the effective action for

such a system after integrating over S1 is

S =
1

2

∫
d5x
(
ηµν∂µz∂νz +Hδijη

µν∂µy
i∂νy

j +

+H−1ηµν(∂µθ + ωi∂µyi)(∂νθ + ωj∂νyj) + q2H−1
)
, (4.10)

where z is the transverse scalar in the x6 direction, {(θ, yi); i = 1, 2, 3} are transverse
scalars along the KK-monopole and µ, ν = 0, 1, . . . , 4. The action (4.10) describes

a D4-brane in a KK-monopole background which apart from the standard kinetic

term for the transverse scalars also contains a potential as in the string case above.

The analysis is now similar to the M2-brane probe. There exists a unique su-

persymmetric ground state in which the D4-brane lies at yi = 0 with all other

transverse scalars constant. There further exists a classical solution of the D4-brane

lagrangian (4.10) given by,

z = const , yi = const 6= 0 , θ = −qt , (4.11)
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which can be lifted as a M5-brane solution as

z = const , yi = const , θ = −qt+ qx5 . (4.12)

The solution (4.11) describes a D4-brane which rotates with constant angular velocity

−q in the θ direction while the M5-brane wraps and rotates in the same direction.
Again both the D4- and M5-brane solutions are not Lorentz invariant under the

appropriate worldvolume Lorentz transformations. The supersymmetry projections

associated with the M5-brane solution above are

Γ0Γ5ε = ε , Γ0Γ1 . . .Γ5ε = ε . (4.13)

Therefore using (4.2) we find that the solution preserves 1/8 of the bulk supersym-

metry.

The above is clearly a special case of a more general class of constructions where

an M-brane is placed in a supergravity background with a killing isometry. Then

using T- and S-dualities, one can construct D- and NS-brane actions with non-

trivial potentials. For example one can construct actions with potentials for all Dp-

branes in a KK-monopole background by compactifying or T-dualizing the D4-brane

action above.

It is also straightforward consider the case where the original background involves

many KK-monopoles by allowing the harmonic function H to have many centres. In

such a case the relevant action will also be given by (4.10) but now it will depend on

the new harmonic function. In this case apart of the solution that we have considered

there are other Q-kink type of solutions that preserve some supersymmetry; for work

in this direction see [16, 37].

4.2 Non-marginal BPS backgrounds and potentials

There is an alternative interpretation for the action (4.4) as describing a fundamental

string propagating in a ten-dimensional KK-monopole/D6-brane background. To

illustrate this, we take the eleven-dimensional KK-monopole background (4.1) and

change coordinates as

σ = qz + θ , ρ = z , (4.14)

where z is one of the coordinates in R(1,6) and q is identified with the parameter in

the SS mechanism for the M2-brane. Then we reduce the solution to ten-dimensions

along ρ. The resulting ten-dimensional solution is

ds2 = (1 + q2H−1)1/2
[
ds2(R(1,5)) +

1

H + q2
(dσ + ω)2 +Hds2(R3)

]
,

e
4
3
φ = (1 + q2H−1) , A1 = −H−1(1 + q2H−1)−1q(dσ + ω) . (4.15)

In this background, we place a fundamental string and choose a static gauge along

a two-dimensional subspace of R(1,5). Now the effective lagrangian of such a funda-
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mental string in the small derivative and small q approximation coincides with that

of (4.4) after relabeling σ = θ. In this approximation q is in the same order as the

derivatives of the transverse scalars.

The above computation can be adapted easily for the case of interpreting the re-

sult of the SS mechanism for the M5-brane. In particular, the action (4.10) describes

the dynamics of a D4-brane probe in the background (4.15) in the small derivative

and small q approximation.

In the case of D-branes a similar interpretation for the actions with potential

can be given. However in this case the non-marginal background that it is probed

is T-dual to the one that we have started with. For later use, the shall consider the

SS reduction of the D3-brane in the background of a ten-dimensional KK-monopole.

Changing coordinates as above and T-dualizing along the direction ρ. The T-dual

background is

ds2 = ds2(R(1,4)) + (1 + q2H−1)−1dρ2 +
1

H + q2
(dσ + ω)2 +Hds2(R3) ,

e2φ = (1 + q2H−1)−1 , H3 = −d
(
(1 + q2H−1)−1dρ ∧ (qdσ + ω)

)
, (4.16)

which describes a non-marginal ten-dimensional KK-monopole/NS5-brane bound

state. Probing this background with a D2-brane, the dynamics of the D2-brane

is described in the small derivative and small q approximation by the action

S =
1

2

∫
d3x
(
ηµνδab∂µz

a∂νz
b + ηµν∂µρ∂νρ+Hδijη

µν∂µy
i∂νy

j +

+H−1ηµν(∂µσ + ωi∂µyi)(∂νσ + ωj∂νyj) + q2H−1
)
, (4.17)

where {za; a, b = 1, 2} are the scalars along R(1,4) transverse to the worldvolume
directions of the D2-brane. Clearly the FI parameter associated with the potential

is determined by the expectation value of a transverse scalar.

4.3 SS mechanism for Born-Infeld fields

An alternative way to find brane actions that exhibit a scalar potential is to give an

expectation value to a BI type of field. This in particular can be applied in the case

of D-branes and for that of M5-branes. For the latter case see also [38].

Here we shall investigate the case involving D6-brane probes in the D2-D6 brane

system. The supergravity solution for the D2-D6 brane system is

ds2 = H−1ds2(R(1,2)) + ds2(R4) +Hds2(R3) , eφ = H1/2 ,

A7 = d vol(R(1,2) ⊕R4)(H−1 − 1) , A3 = d vol(R
(1,2))(H−1 − 1) , (4.18)

where φ is the dilaton, A3 and A7 are the R⊗R gauge potentials associated with
the D2-brane and the D6-brane, respectively. We have also identify the harmonic
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function of the D6-brane with that of the D2-brane. For later use, the projections

on the killing spinor associated with the above background are

Γ0Γ1 . . .Γ6ε = −ε , Γ0Γ1Γ2ε = ε . (4.19)

In this background we place a D6-brane probe along the R(1,2)⊕R4 directions by
choosing the static gauge. The action of the probe is the standard Dirac-Born-Infeld

(DBI) one including Chern-Simons terms. In the small derivative approximation the

DBI part of the action is

SBI =

∫
d7x

{
−H−1 + 1 + 1

2
Hδijη

µν∂µy
i∂νy

j +
1

2
δijδ

ab∂ay
i∂by

j+

+
1

4

[
H−1FµνF µν + 2FµaF µa +H−1FabF ab

]}
, (4.20)

where y = y(x, z) are the three transverse scalars, Fµν and Fab is the Born-Infeld

(BI) field in the directions 012 and (a, b = 3456), respectively and Fµa are again the

components of the BI field in the mixed directions; indices are raised and lowered

with respect to the flat metric. The contribution from the Chern-Simons term is

SCS =

∫
d7x

{
H−1 − 1 + 1

4
(H−1 − 1)Fab∗F ab

}
, (4.21)

where the Hodge duality operation is with respect to the flat metric on R4. The

two terms in the Chern-Simons contributions come from the D6-brane and D2-brane

gauge potentials, respectively. Combining both terms we find

S =
1

2

∫
d7x

{
Hδijη

µν∂µy
i∂νy

j + δijδ
ab∂ay

i∂by
j +
1

2
H−1FµνF µν + FµaF µa −

− 1
2
Fab

∗F ab +
1

2
H−1[FabF ab + Fab∗F ab]

}
. (4.22)

The term involving the combination (H−1−1) cancels between the BI and CS terms of
the action because of the BPS condition of the probe relative to the background [39].

There are several ways to compactify the above action along the directions 3456

on T4. For example one can perform a standard T4 torus compactification. The

resulting action will be that of a D2-brane propagating in the background2 Alterna-

tively, one can perform a non-trivial compactification by allowing

Fab = Bab , (4.23)

2Strictly speaking the compactification should be followed by a T-duality on the background.

However (4.18) is invariant under T-duality along all directions on T4.
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where B is a constant field. In such case the resulting action is

S =
1

2

∫
d3x

{
Hδijη

µν∂µy
i∂νy

j + δijδ
ab∂ay

i∂by
j +
1

2
H−1FµνF µν+ (4.24)

+ δabη
µν∂µz

a∂νz
b − 1
2
Bab

∗Bab +
1

2
H−1[BabBab +Bab∗Bab]

}
,

where {za} are the Kaluza-Klein scalars associated with the BI field. This action
again described a D2-brane in the background (4.18) but also exhibits a scalar po-

tential with coefficient dependent on the non-vanishing expectation value of the BI

field. The potential term vanishes if B is chosen to be anti-self-dual. The above

compactification followed by an appropriate truncation is consistent, i.e. solutions of

the reduced action are also solutions of the higher dimensional one.

Let us now discuss the supersymmetric configurations of this probe brane action.

Firstly let us suppose that B = B− is anti-self-dual. In such a case the potential
vanishes. A solution of the system is that of standard planar D2-brane located at

a point yi = const and za = const in the background with Fµν = 0. Such solu-

tion preserves 1/4 of the supersymmetry. A non-vanishing value of B does affect

the number of supersymmetries preserved by the configuration. This can be easily

seen by lifting this solution to that of a planar D6-brane probe and then use the

supersymmetry projector arising from kappa-symmetry [32, 33]. The supersymme-

try projector associated with B = B− is the same as that of the D2-brane of the
background. One may view the effect of B as inducing more D2-brane charge on the

original D6-brane. These new D2-branes lie parallel to those of the background and

so no more supersymmetry is broken.

For another supersymmetric configuration, we decompose B = B+ + B− into
self-dual and anti-self-dual parts, we require that B+ 6= 0. Moreover we seek a
solution for which za = const and Aµ = Aµ(x) and y

i = yi(x). Substituting these

into the remaining field equations, we find

∂µ(H∂
µyi)− 1

2
∂iH−1(B+abB

+ab) = 0 , ∂µ(H
−1F µν) = 0 . (4.25)

A solution for this system is

yi = 0 , Fµν = const . (4.26)

This is the most general vacuum configuration in this sector. The investigation of su-

persymmetry in more subtle. The background we are considering (4.18) does not have

a well defined near horizon geometry as |y| → 0. Consequently, the killing spinors
are not well defined at that point. However since for a generic point the background

preserves 1/4 of supersymmetry, the effective theory preserves eight supersymmetry

charges by continuity one may argue that the same number of supersymmetry charges

survives at y = 0. Assuming this, we take B+34 = B
+
56 6= 0, F12 6= 0 non-zero and with
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the rest of the components to vanish. Lifting the D2-brane solution to that of the

D6-brane probe, the naive supersymmetry conditions arising from kappa-symmetry

become after using the projections (4.2) the following:

1

2
FMNΓMΓNε =

[
F12Γ

1Γ2 +B+34(Γ
3Γ4 + Γ5Γ6)

]
ε = 0 . (4.27)

This can be rewritten using again (4.2) as

F12Γ
1Γ2 + 2B+34Γ

3Γ4 = 0 . (4.28)

Observe that the B− part does not contribute in the supersymmetry condition above.
This leads to a supersymmetry projection provided

F12 = ±2B+34 . (4.29)

Therefore the configuration preserves 1/2 of that of the background, and 1/8 of the

bulk. Let us discuss the possible interpretation of this bound state in the bulk. This

configuration clearly involves D2- and D6-branes. However, one may also view B+ as

inducing anti-D2-brane charges arising from B+. Finally F12 induces, using standard

arguments (see e.g. [35, 36]) after further compactifying on T2, D0-brane charges on

the probe. Therefore the bulk configuration should have the interpretation of a D0-

D2-D̄2-D6 bound state. However, the existence of a BPS solution of the effective

theory does not necessarily imply the existence of a bound state in the full string

theory, as one also expects tachyonic modes to be present in the system which have

not been taken into account in the above analysis [40].

A similar analysis can be done for the D1-D5 brane system leading to similar

conclusion but now involving a bound state of a D-instanton, a D-string, a anti-D-

string and a D5-brane. The relevant action in this case is as in (4.24) but there

are some differences. One difference is that the harmonic function H which appears

in the action is that on R4 instead of R3 and another is that the integration in

the same action is over a string worldvolume. In addition the D1-D5 background

considered here has near horizon geometry AdS3 × S3 × R4 preserving 1/2 of the
bulk supersymmetry [42]. Note also that in order to introduce D-instantons one has

to consider the euclidean DBI action.

It is also straightforward consider the case where the original background involves

many D2-D6 branes by allowing the harmonic function H to have many centres. In

such a case the relevant action will also be given by (4.22) but now the harmonic

function will have many centres. In this case apart of the solution that we have con-

sidered there are other Q-kink type of solutions that preserve some supersymmetry.

It would be of interest to investigate these solution further; see also [16, 37]. The

above analysis can also be carried out with the full non-linear DBI action.
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4.4 Potentials in gauge theory

In this final section, we discuss the generation of potentials on the moduli spaces

of gauge theories. Specifically, we will return to the D2-D6 system of section 2. It

will suffice to consider a single D2- and N D6-branes. We take the volume of the

torus T4 to be infinite which ensures e2 → ∞ and the dynamics of the D6-branes
are frozen. The moduli space metric (3.4) reduces to the Coulomb branch of the

D2-brane worldvolume theory which is given by the multi-centred Taub-NUT space,

ds2 = Hd~φ · d~φ+H−1(dσ + ~ω · d~φ)2 (4.30)

with H = 1/e21 + N/|~φ|, where for N > 1, the metric is singular. This reflects the

fact that the D2-brane is a probe in the multi-Kaluza-Klein monopole geometry of

the D6-branes. In particular, the dual photon σ may be identified with the eleventh

dimension. For N > 1, the gauge theory has a Higgs branch emanating from the

origin of the Coulomb branch.

Now let us consider how things change when we introduce a Fayet-Iliopoulos (FI)

parameter, ζ . Classically these terms ensure that the Coulomb branch of the gauge

theory no longer exists. However, one may nevertheless derive a description of the

low-energy dynamics of the vector multiplet as a massive sigma model with target

space (4.30) and a potential energy U . From the classical lagrangian, the potential

on the Coulomb branch is given by 1
2
e21ζ

2. However, in the full theory the coupling

constant e1 is replaced by its quantum corrected value, resulting in

U =
1

2
H−1ζ2 . (4.31)

This potential is familiar from the preceding sections; it has has a minimum at

φ = 0, implying an induced attractive force between the D2- and D6-branes. Note

that the resulting dynamics preserves eight supercharges as can be seen by noting

that the potential is proportional to the length of a tri-holomorphic Killing vector

associated with the isometry σ → σ + c [29, 30].

It has been argued that the bulk interpretation of the FI parameter is as a self-

dual background NS⊗NS B-field [41, 40]. Indeed, open string calculations reveal an
attractive force between the D2- and D6-branes in the presence of a B-field. The

main evidence for the specific identification of the self-dual part of the B-field with

the FI parameter comes from looking not at the Coulomb branch as above, but at

the Higgs branch. For theories with several D6-branes, the Higgs branch is deformed

by the FI parameter into the moduli space of a single non-commutative instanton

in U(N) gauge theory. This agrees with the string theory picture of the D2-brane

dissolving as an instanton in the D6-branes which, in the presence of a background

B-field, support a non-commutative Yang-Mills theory.
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Although the field theory has a unique supersymmetric vacua, as in the previous

sections, there are further classical supersymmetric solutions, given by,

~φ = ~φ0 = const. 6= 0 , σ̇ = ζ (4.32)

which may be simply seen to be a BPS solution by completing the square in the hamil-

tonian and noting that the residual cross-term is the Noether charge, Q, associated

with the isometry that shifts σ. The energy of this state is thus E = H−1ζ2 = Q,

and is seen to be correlated with the separation of the D2-brane from the D6-brane.

As mentioned previously, the interpretation of these states in the full IIA string

theory is unclear due to issues associated with tachyons. However, in this case,

there does indeed exist a natural interpretation. One may dualise σ into the three-

dimensional field strength F which, for the above solution, gives,

F12 = H
−1σ̇ = ζH−1 . (4.33)

Alternatively, one may consider this to be a non-marginal D0-D2 bound state. This

state therefore has the interpretation of a D0-D2-D6 bound state in the background

of a constant NS⊗NS B-field. It preserves 1/8 of the supersymmetry of the bulk.
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